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Robust partial-learning in linear Gaussian systems
Valérian Némesin, and Stéphane Derrode

Abstract—This paper deals with unsupervised and off-line learning of
parameters involved in linear Gaussian systems, i.e. the estimation of
the transition and the noise covariances matrices of a state-space system
from a finite series of observations only. In practice, these systems are
the result of a physical problem for which there is a partial knowledge
either on the sensors from which the observations are issued or on
the state of the studied system. We therefore propose in this work
an “Expectation-Maximization” learning type algorithm that takes into
account constraints on parameters such as the fact that two identical
sensors have the same noise characteristics, and so estimation procedure
should exploit this knowledge. The algorithms are designed for the
pairwise linear Gaussian system that takes into account supplementary
cross-dependences between observations and hidden states w.r.t. the
conventional linear system, while still allowing optimal filtering by means
of a Kalman-like filter. The algorithm is made robust through QR
decompositions and the propagation of a square-root of the covariance
matrices instead of the matrices themselves. It is assessed through a
series of experiments that compare the algorithms which incorporate or
not partial knowledge, for short as well as for long signals.

Index Terms—Dynamic linear model, Kalman filter, Pairwise Kalman
filter, Expectation-Maximization, Parameter learning.

I. INTRODUCTION

An important problem in signal processing consists in estimating a
set of hidden variables x = {xn}n=[0:N ] from a set of observations
y = {yn}n=[0:N ]. In this work, we are interested in the model called
pairwise linear Gaussian system (PLGS)(

xn+1

yn

)
︸ ︷︷ ︸

tn+1

=

(
F x,x F x,y

F y,x F y,y

)
︸ ︷︷ ︸

F

(
xn

yn−1

)
︸ ︷︷ ︸

tn

+

(
ωxn+1

ωyn+1

)
︸ ︷︷ ︸

ωn+1

, (1)

introduced in [1] and extended to triplet Markov chain models in [2],
where
• xn ∈ Rnx and yn ∈ Rny denote the states and observations

respectively (nt = nx + ny);
• the transition matrix F and the noise covariance matrix Q,

supposed independent of n in this work, define the parameters
of the model;

• ω = {ωn}n=[0:N ] is a Gaussian process, where ωn ∈ Rnt are
mutually independent and independent of t0 ∼ N

(
t̂0,Q0

)
and

ωn ∼ N (0nt ,Q), where Q =

(
Qx,x Qx,y

[Qx,y]T Qy,y

)
.

The model (1) extends the conventional linear Gaussian system
while preserving Kalman-like algorithms (i.e. optimal, exact and fast
algorithms) for filtering and smoothing data. Indeed, there exists ad-
ditional cross-dependences between successive states and successive
observations that classical linear Gaussian system can not take into
account (F x,y = 0 and F y,y = 0).

Let us consider an example to show where such a PLGS can
be useful in practice. Consider the case of two independent sensors
which measure respectively the position pobs and the velocity vobs of
an object. Each sensor generates its own measurement noise, which
are reasonably assumed to be independent. In this configuration, we
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expect the velocity measurement to enhance the estimation of the
object’s position p. So, tn = (pn, p

obs
n , vobsn ) and matrix F writes

F =


[
1
] [

Ts 0
][

∗
1

] [
∗ ∗
0 0

] ,
where Ts is the sampling period. This is obviously not the transition
matrix of a KF because F x,y 6= 0. The second line of F depends
on the velocity property of the object and should be adapted to the
problem of interest. Suppose now that we do not know exactly the
velocity properties. Hence, we seek to estimate F .

The maximum-likelihood estimation of parameters by means of
EM algorithm [3], [4] is widely used in signal and image processing.
The principle of EM has been applied to different models, including
finite mixture models [5], [6], hidden Markov chains [7], hidden
Markov random fields [8], linear Gaussian systems [9] and the
PLGS [10], [11], and even non-linear systems [12]. When trying
to estimate all model parameters, as in previous model, we will
talk about full-learning algorithms, in contrast with partial-learning
algorithms we discuss later.

Due to well-known identifiability problems in such systems, the
restoration of a signal using an EM algorithm can be very erroneous
since the estimated set of parameters can be far from the true one.
In this work, we propose to exploit possible a priori knowledge on
the physical system to constrain EM, to reduce the dimension of
search space and so to improve parameter estimation efficiency and
robustness. This strategy, known as partial-learning, has only been
addressed in Gaussian mixture models [13], [14], in hidden Markov
chains [15] and in linear systems [16]. The problem is more complex
in PLGS, given the higher dimension of F and Q. One crucial
point is that it is not possible to force any type of constraint and
to get a closed-form solution for parameter re-estimation formulas
within EM recursions. However, as exposed later, it is still possible to
define configurations of parameters which give a closed-form solution
covering many practical cases.

This paper extends the work done by E. Holmes [16] on linear
Gaussian systems to PLGS, with two main contributions: (1) the
characterization of constraints that still allow strict EM re-estimation
formulas and, (2) a robust version based on the computation of
triangular square root of covariance matrices instead of the matrices
themselves. The remainder of the paper is organized as follows.
Firstly, Section II presents constraints that still allow an EM-based
partial-learning algorithm for the pairwise linear system. Then, a
robust version of this EM algorithm is proposed in Section III, based
on a previous work regarding full-learning estimation [11]. Examples
of realistic simulations are reported in Section IV to illustrate the
interest and the robustness of the partial-learning algorithm for signal
restoration. Finally, main conclusions and perspectives are presented
in Section V.

II. PARTIAL LEARNING EM-PLGS ALGORITHM

This Section intends to present configurations of parameters for
which a constrained estimation of PLGS parameters with strict EM
remains possible.
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Fig. 1: Flowchart of the EM-PLGS algorithm.

The EM algorithm search to approach the maximum of likelihood
function to estimate parameters. It is an iterative algorithm in which
each iteration1 decomposes into two steps [11]:

• the Expectation step (E-step) evaluates the auxiliary likelihood
function from probability density functions of smoothing states
xn|N

gC̃(Q,F ) = −1

2
[N + 1] log |Q|

− 1

2
tr

[
Q−1 [F , −I] C̃ [F T

−I

]]
,

(2)

where C̃ is the sum of correlation matrices of the augmented
smoothing states

[
tn|N , tn+1|N

]
(see [11, section II] for details).

• the Maximization step (M-step) re-estimates PLGS parameters
by maximizing (2).

It is not possible to impose whatever constraint on F and Q while
keeping strict EM learning principle. So we next present a series of
constraints that preserve EM and which only impact its M-step so that
the flowchart sketched in Fig. 1 remains valid. The term “constraints”
is used to express a priori knowledge on the PGLS model. In order
to preserve a strict EM algorithm (exact closed-form re-estimation
formulas for PGLS parameters), we impose F to be processed row-
wise (blocks F i), while forcing a decorrelation of corresponding sub-
noise blocks Qi. For example, to constrain observations and states
separately F y,t = [F y,x,F y,y] and F x,t = [F x,x,F x,y], we have
to assume Qy,x = 0.

Remark: We must mention that the EM algorithm designed below
does not work in case of singular Qy,y (e.g. when observations are
perfect).

A. Model noise decorrelation

In order to estimate transition matrix F using row-wise blocks,
noise covariance matrix Q has to be block-diagonal, i.e. noise de-
composes into nIN independent sub-noises with covariance matrices
{Qi}i=1:nIN

, and F is estimated accordingly. Hence, matrices Q

1The index j of EM iteration is intentionally forgotten to improve read-
ability.

and F are written

Q =

nIN∑
i=1

P T
i QiP i, (3)

F =

nIN∑
i=1

P T
i F i, (4)

where {P i}i=1:nIN
are the projectors of diagonal blocks of Q . We

recall that projectors are mutually orthogonal (∀i 6= j,P T
i P j = 0).

Under these hypotheses, auxiliary likelihood function in (2) de-
composes into nIN independent sub-functions according to

gC̃(Q,F ) =

nIN∑
i=1

gC̃i(Qi,F i), (5)

where

C̃i =

[
I 0

0 P i

]
C̃

[
I 0

0 P T
i

]
, (6)

which can be maximized separately. Let see now how to maximize
each auxiliary sub-functions gC̃i(Qi,F i) with respect to F i and to
Qi in next subsections.

B. Constraining row-wise blocks of F

Each matrix F i can always be written

F i = F 0
i + F b

i , (7)

where F 0
i is a known matrix and F b

i is a matrix to be estimated.
The estimation of F b

i is obtained by maximizing the auxiliary sub-
function in (5). Maximizing gC̃i(Qi,F i) is equivalent to maximize
g
C̃
b
i
(Qi,F

b
i ) with

C̃
b

i =

[
I 0

−F 0
i I

]
C̃i

[
I 0

−F 0
i I

]T
. (8)

Closed-up form solutions were obtained for the four following
matrix shapes:

(0) F b
i = 0, nothing has to be done.

(1) F b
i = Gi, where Gi is a (ni by nt)-matrix to be fully esti-

mated. In this case, matrix F̂ b
i which maximizes the auxiliary

sub-function g
C̃
b
i
(Qi,F

b
i ) is given by

F̂ b
i = C̃

b,[1,0]

i

[
C̃
b,[0,0]

i

]−1

, (9)

where C̃
b,[0,0]

i , C̃
b,[1,0]

i correspond to the matrix views of C̃
b

i

with respective sizes (nt by nt) and (ni by nt) according to

C̃
b

i =

C̃b,[0,0]

i C̃
b,[0,1]

i

C̃
b,[1,0]

i C̃
b,[1,1]

i

 .
(2) F b

i = GiM i , where Gi is a (ni by nGi )-matrix to be
estimated and M i is a known and full-rank (nGi by nt)-matrix
i.e. rk(M i) = nGi . In this case, matrix F̂ b

i which maximizes
the auxiliary sub-function g

C̃
b
i
(Qi,F

b
i ) is given by

F̂ b
i = C̃

b,[1,0]

i M i

[
M iC̃

b,[0,0]

i MT
i

]−1

M i. (10)

Examples:
• Full-learning in PLGS is obtained by setting G1 =[

F x,x F x,y

F y,x F y,y

]
, M1 = I and F 0

1 = 0, in which case

eq. (4) writes F = F 1 and C̃
b

i = C̃i. So that, eq. (10) is,
up to notation, exactly the one given in [10].
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• The classical linear Gaussian system is another example of

constrained system where G1 =

[
F x,x

F y,x

]
, M1 =

[
I, 0

]
and F 0

1 = 0, in which case eq. (4) also writes F = F 1

and C̃
b

i = C̃i. So that, eq. (10) is, up to notation, exactly
the one given in [17, chapter 6, page 343].

(3) F b
i =

∑nλi
j=1 λ

j
iU

j
i where

{
U j
i

}
j=1:nλi

are known and in-

dependent matrices, and Λi =
(
λji
)
j=1:nλi

is the vector of
parameters to be estimated. Furthermore, matrix Qi defined
in (3), has to be proportional to a known symmetrical positive-
definite matrix denoted Q0

i . In this case, the vector Λ̂i which
maximizes the auxiliary sub-function g

C̃
b
i
(Qi,F

b
i ) is given by

Λ̂i = A−1
i Bi, (11)

where

Ai =

nλi∑
k=1

nλi∑
l=1

tr
[[
Q0
i

]−1
Uk
i C̃

b,[0,0]

i U l
i

]
Ek,l,

(12)

with Ek,l, the (k, l)th-matrix canonical element and where

Bi =

nλi∑
k=1

tr
[[
Q0
i

]−1
Uk
i C̃

b,[0,1]

i

]
ek,

(13)

with ek, the kth vector canonical element.
Example: Let consider the following PLGS which allows to
estimate the gain between observations and hidden states when
the transition matrix is partially known:
• For F : F x,x = 0.5, F x,y = 0.5, F y,y = 0 and

F y,x = λ where λ has to be estimated. Hence, F =
[F T

1 ,F
T
2 ]
T with F 1 = [F x,x,F x,y] = [0.5, 0.5] and

F 2 = [F y,x,F y,y] = [λ, 0].
• For Q: Qx,x = Q1 = σ2, Qy,y = Q2 = γ2 and Qx,y =

0, where γ and σ have to be estimated.
In this example, blocks of F and Q have respective projectors
P 1 = [1, 0], P 2 = [0, 1]. Block F 1 is type-(0) and block F 2

is type-(3) with nλ2 = 1, F 0
2 = [0, 0], and U1

2 = [1, 0].
Finally, the estimation of F writes

F̂ =

nIN∑
i=1

P T
i F̂ i. (14)

We now assume that F has been estimated, so we next write F̂
instead of F .

C. Constraining blocks of Q

Recalling that the noise covariance matrix Q is block-diagonal,
each block Qi (i ∈ [1 : nQB) is assumed to be unitary-equivalent to
a block-diagonal matrix QM

i , i.e. Qi = M iQ
M
i MT

i , where M i is
a known unitary matrix. Hence, Q is unitary-equivalent to a block-
diagonal matrix denoted QM , i.e. Q = MQMMT , where

M =

nIN∑
i=1

M iP
T
i .

Then, auxiliary likelihood function can be expressed using QM by
gC̃(Q, F̂ ) = g

C̃
M (QM , ˆFM ), where

ˆFM = MT F̂ , (15)

C̃
M

=

[
I 0

0 MT

]
C̃

[
I 0

0 M

]
. (16)

So, QM writes

QM =

nQB∑
i=1

[
PM
i

]T
QM
i PM

i , (17)

where
{
PM
i

}
i=1:nQB

are the projectors of diagonal blocks QM
i .

Hence, auxiliary likelihood function decomposes into nQB indepen-
dent sub-functions according to

gC̃(Q, F̂ ) =

nQB∑
i=1

g
C̃
M
i
(QM

i ,
ˆFM
i ), (18)

where

ˆFM
i = PM

i
ˆFM , (19)

C̃
M

i =

[
I 0

0 PM
i

]
C̃
M

[
I 0

0 PM
i

]T
. (20)

Blocks are supposed to be independent, so each sub-function can
be maximized individually. Closed-up form solutions were obtained
for the four following matrix shapes:

(O) QM
i = Q0

i , no estimation is required.
(A) QM

i has to be fully estimated. In this case, the covariance
matrix Q̂M

i , which maximizes the auxiliary sub-function, is
given by

Q̂M
i =

1

N + 1

[[
ˆFM
i , −I

]
C̃
M

i

[
ˆFM
i , −I

]T ]
. (21)

(B) QM
i = λiQ

0
i , where λi is a scalar to be estimated and Q0

i a
known matrix. In this case, the scalar λ̂i, which maximizes the
auxiliary sub-function, is given by

λ̂i =
1

(N + 1)nMi
tr
[ [

Q0
i

]−1

[
ˆFM
i , −I

]
C̃
M

i

[
ˆFM
i , −I

]T ]
.

(22)

(C) QM
i =

∑nBi
j=1

[
P j
i

]T
M j

iR
M
i

[
M j

i

]T
P j
i , where{

M j
i

}
j=1:nBi

are known invertible matrices,
{
P j
i

}
j=1:nBi

are orthogonal projectors and RM
i is a covariance matrix to

be estimated. Matrix R̂M
i , which maximizes the auxiliary

sub-function, is given by

R̂M
i =

1

(N + 1)nBi

nBi∑
j=1

[
[
M j

i

]−1

P j
i

[
ˆFM
i , −I

]
C̃
M

i[
ˆFM
i , −I

]T [
P j
i

]T [
M j

i

]−T ]
.

(23)

Example: Let assume a system where two identical sensors
measure a physical quantity. It is legitimate to want to fix the
same measurement noise covariance Qs for both sensors. So,
the measurement covariance matrix is a type-(C) matrix, with
shape

Qy,y = QM
2 =

[
Qs 0

0 Qs

]
,

with

P 1
2 =

[
I, 0

]
,P 2

2 =
[
0, I

]
,

M1
2 = M2

2 = I and R2 = Qs.



ROBUST PARTIAL-LEARNING IN LINEAR GAUSSIAN SYSTEMS 4

In this section, we presented an EM algorithm that takes into ac-
count constraints on matrices F and Q to allow partial-learning using
strict EM principle. Despite constraints may seem restrictive, this
algorithm is very general as illustrated in the Section IV. Whatever,
this kind of algorithm suffers from numerical instabilities [11]. Next
section is devoted to design a robust version of this partial-learning
algorithm.

III. ROBUST ALGORITHM

Following [18], we now propose a robust version of the partial-
learning algorithm which makes use of only a triangular square-root
S for each positive-definite matrix P (P = STS) instead of P itself.
Robust algorithm is almost the same as the one presented in [11]
except for the M-step which is modified to take into account the
constraints for partial-learning. The only difference lies in the way
to compute Q̂

1/2
from matrices F̂ and C̃

1
2 [11, Section III].

The algorithm decomposes into four steps2:

(1) First, a square root of C̃
M

(16) is given by QR decomposition[
C̃
M
] 1

2
= Z∗C̃

1
2

[
I 0

0 M

]
. (24)

(2) Then each block QM
i is estimated using the following algo-

rithm
a) A square root of C̃

M

i (20) is obtained by QR decompo-
sition [

C̃
M

i

] 1
2
= Z∗

[
C̃
M
] 1

2

[
I 0

0 PM
i

]T
. (25)

b)
[
Q̂M
i

] 1
2 is computed depending on its block-type.

For a type-(O) block,
[
Q̂M
i

] 1
2
=
[
Q0
i

] 1
2 .

For a type-(A) block,
[
Q̂M
i

] 1
2 is computed according to

QR decomposition[
Q̂M
i

] 1
2
=

1√
N + 1

Z∗
[
C̃
M

i

] 1
2 [

FM
i , −I

]T
. (26)

For a type-(B) block,
[
Q̂M
i

] 1
2 is computed according

to (22).

For a type-(C) block,
[
Q̂M
i

] 1
2 is computed according to

the following method:
• A square root of RM

i (23) is computed according to

QR algorithm:
[
RM
i

] 1
2 = 1

(N+1)nBi

[
W

nBi
i

] 1
2

where

W k
i =

k∑
j=1

[ [
M j

i

]−T
P j
i

[
FM
i , −I

]
C̃
M

i

[
FM
i , −I

]T [
P j
i

]T [
M j

i

]−1 ]
.

(27)

(a) For k = 0,
[
W 0

i

] 1
2 = 0

(b) For k = 1 to nBi ,
[
W k

i

] 1
2 is computed from QR

decomposition[[
W k

i

] 1
2

0

]
= Z∗

[[
W k−1

i

] 1
2

Ki

]

2All unitary matrices denoted Z∗ that appears in QR decompositions are
never used.

TABLE I: Parameters of experiment in Section IV-A. Row 1: true
parameters, Row 2: initial values for EM; Rows 3 to 6: estimated
parameters for the four filters described in the text (N = 1000
samples).

F Q

θ

(
0.5 −0.5

1.0 0

) (
0.1 0

0 1

)
θ(0)

(
1.0 0

1.0 0

) (
1 0

0 10

)
θ̂ELGS

(
0.62 0

1 0

) (
0.14 0.37

0.37 1.28

)
θ̂FPLGS

(
0.38 −0.64

0.72 0.11

) (
0.54 −0.27

−0.27 0.83

)
θ̂EPLGS

(
0.49 −0.51

1 0

) (
0.25 −0.10

−0.10 0.83

)
θ̂CPLGS

(
0.50 −0.50

1 0

) (
0.099 0

0 0.99

)

where

Ki =
[
C̃
M

i

] 1
2 [

FM
i , −I

]T[
P j
i

]T [
M j

i

]−1

.

• Then,
[
Q̂M
i

] 1
2 is obtained by QR decomposition:

[
Q̂M
i

] 1
2

= Z∗
nBi∑
j=1

[ [
P j
i

]T
[
RM
i

] 1
2
[
M j

i

]T
P j
i

]
.

(28)

(3) Hence, we get a square root of Q̂M according to[
Q̂M

] 1
2
=

nQB∑
i=1

[
PM
i

]T [
Q̂M
i

] 1
2
PM
i . (29)

(4) Finally, a square root of Q̂ is obtained according to the last
QR decomposition[

Q̂
] 1

2
= Z∗

[
Q̂M

] 1
2
MT︸ ︷︷ ︸[

Q̂+
] 1
2

. (30)

The algorithm described in this Section is robust to the propaga-
tion of the numerous covariances matrices involved in the learning
algorithm. Experimental section just after exclusively makes use of
this algorithm.

IV. EXPERIMENTS

To illustrate the potential of unsupervised partial-learning in PLGS,
we propose two series of experiments which are representative of
different learning situations. Please note that initial expectation t̂0
and covariance matrix Q0 are not estimated.

A. Simulated PLGS scalar signal

In this first experiment, all series of PLGS-signals were simulated
according to parameters reported in first row of Table I. Values for t̂0
and Q0 were respectively set to [0, 0] and to I . Then, the observations
were restored by

0. the optimal PLGS (OPLGS),
1. an equivalent3 LGS (ELGS),

3We used the method described in [11] in order to select an equivalent filter
in which F y,x = I and F y,y = 0.
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(b)

Fig. 2: Mean Square Error (MSE) for simulated signals with varying
number of samples, for the five filters experimented in Section IV-A.
A trajectory is reported in (a).

2. a free PLGS (FPLGS), that is to say full-learning PLGS
3. an equivalent3 PLGS (EPLGS),
4. and a constrained PLGS (CPLGS).

For the CPLGS, we imposed

• a two-block decomposition of transition matrix F ,
• a type-(0) constraint on F y,t = [1, 0],
• a type-(2) constraint on F x,t = λ[1, 1] + [1, 0] with λ to be

estimated,

• a type-(B) constraint on Q : Q = γ

[
1 0

0 10

]
with γ to be

estimated 4.

Initial EM parameters are given in row two, and final mean
estimation of 100 experiments in rows three to six for ELGS, FPLGS,
EPLGS and CPLGS respectively for a N = 1000 samples signal. An
example of trajectory is reported in Fig. 2a. Mean MSE for increasing
signal sizes for the four filters are reported in Fig. 2b.

This experiments allows to draw three main conclusions: (1) As
expected, an ELGS is not able to restore correctly PLGS data. More-
over, FPLGS does not give expected results due to the identifiability
problem of PLGS. (2) Although we get nice estimation by EPLGS,
CPLGS produces better one for short as well as long signals. (3) For
signals that exceed 1000 samples, CPLGS has the same performances
than the optimal filter!

Observations

Hidden states

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

(a)

Observations
LGS

PLGS
ACLGS

0

0.05

0.10

0.15

0.2.

0.25

0 20 40 60 80 100

(b)

Fig. 3: Instantaneous MSE for simulated signals with for N = 100
samples for the three filters defined in Section IV-B (b). An example
of trajectory is reported in (a).

TABLE II: Parameters of experiment in Section IV-B. Rows 1 and
2: initial values for EM; Rows 3 to 5: estimated parameters for the
three filters described in the text.

F Q

θ
(0)
LGS/PLGS

(
1 0

1 0

) (
1 0

0 1

)

θ
(0)
ACLGS

1 1 0

0 1 0

0 1 0


1 0 0

0 1 0

0 0 1


θ̂LGS

(
0.68 0

1 0

) (
0.32 0

0 0.01

)
θ̂PLGS

(
1.48 −0.83

1 0

) (
0.04 0.07

0.07 0.15

)

θ̂ACLGS

 1 1 0

−0.38 0.61 0

1 0 0


 0.002 0 −0.003

0 0.001 0

−0.003 0 0.091



B. Sinusoidal signal

In order to evaluate partial-learning EM-PLGS algorithm, we
chosed to restore a noisy signal y(t) = p(t) + b(t), where p(t) =
cos(0.2πt) is a pseudo-sinusoid and b(t) is a white Gaussian noise
with variance 0.1. Noisy signal is sampled between moments t = 0s
and t = 99s with a sampling period TS = 1s. Hence, previous model
becomes

yn︸︷︷︸
y(nTS)

= p(nTS) + ωyn︸︷︷︸
b(nTS)

4Constraint on Q is compatible with constraints on F since we forced
decorrelation between process and measurement noises.
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Three filters were used to restore the signal
1. A classical LGS in which there are no correlation between

measurement and process noise covariances, and with F y,x =
I and F y,y = 0.

2. A PLGS in which F y,x = I and F y,y = 0.
3. An augmented and constrained LGS (ACLGS). For that, we

decomposed Q and F into, respectively, two blocks Q1, Q2

and F 1, F 2 with projectors P 1 =

[
1 0 0

0 0 1

]
and P 2 =[

0 1 0
]
. Block Q1 and Q2 are type-(A) or free blocks. We

imposed a type-(0) constraint on block F 1 =

[
1 1 0

1 0 0

]
, and

a type-(2) constraint on block F 2 = [a, b]

[
1 0 0

0 1 0

]
with a

and b to be estimated.
Table II reports EM initial parameters in rows 1 and 2 and

estimated parameters in rows 3 to 5. An example of generated signal
is reported in Fig. 3a, whereas instantaneous mean square restoration
errors for 1, 000 experiments are reported in Fig. 3b.

This experiments allow to draw three main conclusions:
(1) Classical LGS can not restore noisy sinusoidal data.
(2) Although PLGS outperforms restoration by LGS, augmented and

constrained LGS gives the best restoration. The difference be-
tween PLGS and ACLGS is that PLGS introduces measurement
noise in hidden states, which degrades a little bit the restoration
of this kind of signals.

(3) An augmented LGS seems to be the optimal model for restoring
sinusoidal data, as the low process noise covariance matrix and
the low MSE suggest.

V. CONCLUSION

The main interest of the Pairwise Linear Gaussian System (PLGS)
relies on the possibility for the user to finely tune the amount of
interactions between successive observations and states. In turn, this
increases the number of parameters to be estimated if no a priori
knowledge is available. In practice, due to the underlying physics of
the model, some knowledge parameters are often partially known,
whether they are fixed or constrained by other parameters. In this
context, we have proposed an EM-based approach for unsupervised
partial estimation of parameters in a PLGS, by extending the work in
[16] regarding classical linear systems. Since the latter is a particular
PLGS, our algorithm is directly applicable to robust partial-learning
of linear Gaussian system parameters.

We have evaluated our algorithm in different configurations includ-
ing the difficult case of very short signals (i.e. N = 100 samples). All
experiments confirm the robustness of our approach. As expected, the
constrained PLGS-EM algorithm provides a better quality estimation
than the full-learning one. It is worth noting that, in some cases,
the classical linear system can outperform the PLGS when using
an augmented state-space, yet at the expense of a larger number of
parameters to estimate.

A perspective to this work is to relax strict EM principle, allowing
GEM principle instead [3], so that to increase the possibilities to
constraint the model with other kind of a priori knowledge. Especially
of interest, will be to impose that the model we want to estimate is
stationary.
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