their method can be used for goal/plan recognition.

In this work, we propose a generative game-theoretic framework to tackle the problem of adversarial plan recognition in a fully observable, multi-agent setting where actions have stochastic effects. The adversarial plan recognition task therefore consists of inferring a probability distribution over the set of possible plans of an agent whose behavior results from a finite two-player zero-sum stochastic game, where the players are respectively the attacker/observed agent and the defender/observer. The problem of strategy formulation then reduces to the selection of the most likely best response. Stochastic games are used to model the strategic interactions between the defender and the attacker planning strategies due to the common environment and their conflicting goals. The use of deception and concealment by the attacker is out of the scope of this paper and is left for future work. Since generative plan recognition techniques require the definition of an action model to encode the possible behaviors of the observed agent, we define a contextual action model based on the COI model of intentional action [START_REF] Steinberg | Predictive modeling of interacting agents[END_REF] which enables the automatic assessment of all opportunities for action available to each player in the current situation.

The rest of this paper is organized as follows. In Section 2, we provide a brief background on generative plan recognition and stochastic game theory. Section 3 contains an extensive description of PRESAGE, our generative gametheoretic framework for adversarial plan recognition. Section 4 applies this to a urban warfare scenario and presents preliminary experimental results. In Section 5 we discuss the current progress of our work and the planned extensions.

Background Generative Plan Recognition

Most of previous research in plan recognition relies on an a priori, handcrafted plan library specifying all the possible plans of the observed agent [START_REF] Avrahami-Zilberbrand | Incorporating observer biases in keyhole plan recognition (efficiently!)[END_REF][START_REF] Geib | A probabilistic plan recognition algorithm based on plan tree grammars[END_REF][START_REF] Lisỳ | Game-theoretic approach to adversarial plan recognition[END_REF]). This library is generally assumed to be exhaustive, which is quite impractical in real-world applications. Recently, a new paradigm known as generative plan recognition (also called model-based plan recognition or plan recognition by inverse planning) has been proposed by [START_REF] Baker | Action understanding as inverse planning[END_REF] and further studied in a series of work by Ramírez and Geffner [START_REF] Ramırez | Plan recognition as planning[END_REF][START_REF] Ramırez | Probabilistic plan recognition using off-the-shelf classical planners[END_REF][START_REF] Ramırez | Goal recognition over pomdps: Inferring the intention of a pomdp agent[END_REF]. In plan recognition by inverse planning, observed agents are assumed to be rational, i.e. they will plan optimally to achieve their goals. The first advantage of generative methods is that the need for an explicit declaration of the possible agent behaviors as a plan library is replaced by an implicit encoding, using an agent action model and a set of possible goals, thus making generative methods far more flexible and less dependent on the availability of expert knowledge. The second advantage is that the set of optimal plans can be generated automatically using state-of-the-art planners, including classical planners [START_REF] Ramırez | Plan recognition as planning[END_REF][START_REF] Ramırez | Probabilistic plan recognition using off-the-shelf classical planners[END_REF], Markov Decision Processes (MDPs) [START_REF] Baker | Action understanding as inverse planning[END_REF], and partially-observable MDPs [START_REF] Ramırez | Goal recognition over pomdps: Inferring the intention of a pomdp agent[END_REF].

Stochastic Games

Definition Stochastic games -also called Markov games -have been introduced by Lloyd Shapley [START_REF] Shapley | Stochastic games[END_REF] as an extension of MDPs to the multi-agent case. In a stochastic game, the players perform joint actions that determine both the new state of the environment, according to transition probabilities, and the reward obtained by each agent. Formally, a stochastic game is defined as a tuple Ag, S, A, {R i , i = 1, ..., |Ag|}, T where • Ag = {1, ..., |Ag|} is a finite set of players.

• S is a finite set of states.

• A i = {a i 1 , ..., a i |A i | } is a finite set of actions available to player i. • A ≡ × i∈Ag A i is the set of joint actions • R i : S × A → R is the payoff function of player i. • T : S × A × S → [0, 1] is the transition function.
The game is played in discrete time steps. In each time step t, the players choose their actions simultaneously and the joint action a = {a 1 , ..., a |A g | } is obtained. Each agent i receives a reward R i (s t , a) depending on the current state of the environment and the joint action, and the players are transferred to the next state s t+1 according to the transition function T . A policy π i : S → ∆A i for agent i defines for each state of the game a local, mixed strategy, i.e. a probability distribution over the set of available actions.

Solution concepts

Given a joint strategy π = π i , π -i where π -i is the joint strategy of all players except player i, the expected utility of π for player i is defined in each s ∈ S as the expected value of the utility function of normal form games [START_REF] Burkov | Stochastic games[END_REF])

u π i (s) = E a∈A [R i (s, a)]
(1) The state utilities U π i (s) for player i associated with joint policy π can be quantified using the same performance criteria than for MDPs, i.e. the long-term expected value over i's reward. For instance, using the γ-discounted criterion

U π i (s) = E [∑ ∞ t=0 γ t u π i (s t )|s 0 = s] = u π i (s) + γ ∑ a∈A ∑ s ∈S T (s, a, s )π a (s)U π i (s ), (2) 
where π a (s) is the probability of joint action a in s given joint policy π, s 0 is the initial state of the game and γ ∈ [0, 1] is the discount factor. For other performance criterion, see [START_REF] Garcia | MDPs: models and methods[END_REF].

The concept that is most commonly used as a solution of non-cooperative stochastic games is the one of Nash equilibrium, i.e. a combination of strategies where each player selects the best response to the other players' strategies, and no player can improve its utility by unilaterally deviating from this strategy. Formally, a joint strategy

π * = π * i , π * -i is a Nash equilibrium if ∀s ∈ S, ∀i ∈ Ag, ∀π i ∈ Π i , U π * i ,π * -i i (s) ≥ U π i ,π * -i i (s), (3) 
where Π i is the set of policies available to agent i. The existence of at least one Nash equilibrium for 2-player stochastic games has been demonstrated by Shapley [START_REF] Shapley | Stochastic games[END_REF]. 

Plan Recognition using Stochastic Games

In this section, we describe PRESAGE (Plan REcognition using StochAstic GamEs), a generative game-theoretic framework for adversarial plan recognition. This framework models the strategic interactions between the decisionmaking strategies of an attacker (observed agent) and a defender (observer) as Markov games. As any other generative method, our framework requires the definition of an action model. We propose an adaptation of the COI model of action [START_REF] Steinberg | Predictive modeling of interacting agents[END_REF] to the domain of automated planning so that the opportunities (equivalent to MDPs' actions) available to each player can be automatically assessed from the situation and used to generate valid plans. Finally, we design a probabilistic plan recognition method whose aim is to create and maintain a belief state over the set of optimal strategies of the attacker from observations of his behavior.

General Architecture

Figure 1 is a representation of PRESAGE functional architecture. PRESAGE is divided into two independent modules. The first module (Module 1) is dedicated to the automatic generation of the optimal plan library. Starting from the definition of a planning problem P, including the initial situation and the set of possible goals of the attacker, the plan generation module executes a three-step procedure to build the library of possible plans for the attacker:

1. Situation projection: first, the set of possible future situations is generated and modeled as a probabilistic finite automaton Σ [START_REF] Stoelinga | An introduction to probabilistic automata[END_REF], whose transitions are labeled by joint opportunities of the attacker and the defender. Opportunities for action available to each actor are assessed in each state of Σ using a generic opportunity assessment engine.

2. Game generation: for each possible goal g of the attacker, we build an Adversarial Plan Recognition Stochastic Game (APRSG) Γ g by considering each state of Σ where g is achieved as a terminal state, and by representing each remaining state as a two-player zero-sum static game using a predefined payoff function.

3. Game solving: each APRSG is solved independently of the others using off-the-shelf solving algorithms so as to obtain an optimal plan library Π * P containing one optimal strategy for each possible goal of the attacker.

The second module (Module 2) encapsulates a plan recognition engine which, given a plan library and an observation history of both actors' actions, returns an a posteriori distribution over the set of possible plans of the attacker.

Assessing Opportunities for Action

Our action model is an adaptation of the COI model of threat to the planning domain. This model was first proposed in [START_REF] Steinberg | An approach to threat assessment[END_REF][START_REF] Little | An ontological analysis of threat and vulnerability[END_REF] and has been further extended in [START_REF] Steinberg | Predictive modeling of interacting agents[END_REF] to represent any intentional action. It considers the capability, opportunity, and intent of an agent to carry out actions on some targets to be the necessary and sufficient factors to characterize these actions:

Capability the possession of the resources and/or skills required to perform an action.

Opportunity "the right context" to perform an action, i.e. the presence of an operating environment in which potential targets are susceptible to be acted upon.

Intent the plans and goals an agent wants to achieve.

These action components are tightly interrelated. For instance, the intent of an agent can evolve in light of his capabilities and current opportunities, e.g. by changing his target.

Inversely, the agent's intent can motivate the acquisition of new capabilities/opportunities, etc. Since our goal is to infer the intent of an agent from observations of his actions as restrained by its capabilities and opportunities, intent is implicit in our model and we postulate that it is constrained by the rationality principle. We also assume that we have full and certain knowledge of the capabilities of each agent. We therefore focus on the opportunity assessment task which consists of determining which action(s) can be performed on which target(s) in the current situation and estimating the expected outcome of these actions. To understand the con-cept of opportunity assessment, let us consider the example depicted on Figure 2. In this situation, the actor owns a resource assault rifle which provides him with the capability to perform action shooting. However, if the agent wants this action to have an effect on a target t, he must first acquire the opportunity to act upon t. Given a situation s, we will consider that an agent has the opportunity to perform action a on a target t if:

• the agent has the capability to perform action a in s • the agent has access to target t in s, • target t is vulnerable to action a in s.

We propose a simple, yet expressive opportunity model that takes into account the three aforementioned conditions and associates probabilities to the possible consequences of an action, namely success or failure. Enhanced action definitions may include more than two outcomes. Definition 1. An opportunity o i for actor i is a tuple a,t, p , where a is an action, t is the target of the action, and p is the probability of success of action a when performed on t.

Given a situation s, the goal of the opportunity assessment engine is to compute for each actor i, the set O i (s) of opportunities available to i in s. In our model, each capability (feasible action) is associated with one area of effect (AoE). Definition 2. The area of effect associated with a capability a is a tuple AoE(a) = P, P a (success) where P is a set of preconditions necessary for a target t to be considered accessible (e.g. lying within a spatial area), and P a (success) is the probability of success of action a. Definition 3. Assuming that actor i has the capability to perform action a, there exists an opportunity o i for i to perform action a on a target t iff 1. t satisfies the accessibility conditions listed in P, 2. the probability of success p > 0.

p is determined by both the probability of success of the action P a (success) and the vulnerability of the target t to action a when t satisfies the accessibility conditions (written t ∈ AoE(a)). p = P(success(a),t ∈ AoE(a), vulnerable(t, a)) P a (success)P(vulnerable(t, a)|success(a),t ∈ AoE(a))

The vulnerability of a target to an action may be seen as its ability to thwart some possible effects of this action. For instance, considering the two possible effects of the shooting action to be target killed (success) and target missed (failure), we can assume that a target wearing a bulletproof vest will be less vulnerable to this action, i.e. the probability to obtain effect target killed on this particular target will be smaller than with an unprotected target. Definition 4. The vulnerability of a target t to an action a is the conditional probability V t (a), where V t (a) = 0 means that t is not vulnerable to action a and V t (a) = 1 represents the highest level of vulnerability.

The overall probability of success p is therefore given by p = P a (success) ×V t (a)

(5)

Example 1. In the situation depicted in Figure 2, the only opportunity for the attacker is to attack the vulnerable (V blue f orce (shooting) = 1.0) blue force with a probability of success P shooting (success) = 0.7; the civilian group cannot be acted upon because it does not lie within the (spatial) AoE, and the attacker does not possess the capability bombbridge required to act upon the bridge. Therefore, we have O i (s) = { shooting, blue f orce, 0.7 }.

PRESAGE Planning Problem

A PRESAGE planning problem is defined as a tuple P = Ag, I, G, T , where Ag is a finite set of actors, I is the initial situation, G is the set of goals of the attacker, and T is a set of terminal situations. Elements of G are not necessarily elements of T , thus offering the possibility to account for an adversary trying to achieve several goals sequentially.

Situation Projection

The goal of the situation projection engine is, given the definition of a PRESAGE planning problem, to generate a probabilistic finite automaton Σ which aims at formally representing the possible future situations and their dynamics. Σ is defined as a tuple s 0 , S, S T , O, T . The definitions for the different parameters are compiled in Table 1.

Par. Description Expression S

A finite set of states S = {s 0 , ..., s |S| } s 0

The initial state

s 0 ∈ S S T A finite set of terminal states S T ⊂ S O i
A mapping assigning to each s ∈ S \ S T the set of opportunities for player i in s

O i (s) = {o i 1 , ..., o i n } with o i j = (a i j ,t i j , p i j ) O(s) The set of possible joint op- portunities in state s ∈ S \ S T O(s) ≡ × i∈Ag O i (s)

SO

The set of all possible joint opportunity profiles

SO = {(s, o)|s ∈ S \ S T , o ∈ O(s)} T A transition function T : SO × S → [0, 1]
Table 1: Definitions for the parameters of Σ Given a PRESAGE planning problem P and an opportunity assessment engine OA with ∀s ∈ S \ S T , i ∈ Ag, OA(s, i) → O i (s), we build Σ using the situation projection algorithm shown in Algorithm 1. The algorithm first checks the terminal conditions (lines 5-6). If the current state s is not terminal, opportunities available to each player in s are assessed using the opportunity assessment engine so as to build the set of possible joint opportunities O(s) (line 8-10). Line 11 loops over all possible joint opportunities o in O(s). Given a state s and a joint opportunity o, the findSuccessors function (whose algorithm is not detailed here due to a lack of space) computes the set of successor states S obtained when executing joint action o in s, as well as the transition probability P(s |s, o) for each s ∈ S (line 12). Each successor state s in S , if not already processed, is added to S and the corresponding transition probability is used to update the transition function T (lines 13-16). The recursive situation projection procedure is applied to each state until no new state can be added to S (line 17).

Algorithm 1: Situation projection algorithm 

Data: P = Ag, I, G, T , OA Result: Σ 1 begin 2 s 0 ← I, S ← {s 0 }, S T ← {}, T ← {} 3 project(P, s 0 , S, S T , T ) 4 procedure project(P, s, S, S T , T ) 5 if s ∈ T then 6 S T ← S T ∪ {s} 7 else 8 foreach i ∈ Ag do 9 O i (s) ← OA(s, i) 10 O(s) ← × i∈Ag O i (s)

Stochastic Games Generation and Solving

The projected situation Σ is used as a basis for building one Adversarial Plan Recognition Stochastic Game (APRSG) planner per possible goal of the attacker. An APRSG for goal g ∈ G is a finite two-player zero-sum stochastic game which is formally defined as a tuple Γ g = Σ g , {R i g , i = 1, ..., |Ag|} where Σ g = Ag, S g , S T g , O g , T g and R i g : SO g → R is the payoff function of player i. The only addition to the classical definition of stochastic games (as discussed above) is the set S T g ⊂ S g of terminal states for goal g.

Players -An APRSG is a two-player game between an attacker (player 1, the observed agent), which tries to maximize his payoff, and a defender (player 2, the observer), which aims at minimizing player 1's payoff. Therefore we have Ag = {1, 2}.

State space and transition function -The game generation procedure is shown in Algorithm 2. First, S g and S T g are initialized as copies of their respective equivalent set in Σ. Then, each state s in S g corresponding to a situation where goal g is achieved is marked as a terminal state of game Γ g (lines 3-5). The pruneDisconnectedStates function (line 6) acts by removing all the edges originating from terminal states (∀s ∈ S T g , ∀o ∈ O g (s), ∀s ∈ S g , T (s, o, s ) ← 0). States in S g and S T g , which are no more connected to the initial state s 0 due to the fact that goal states are now considered as terminal, are pruned using depth-first-search algorithm. The state space S g of game Γ g is therefore at most as large as the initial state space S. Finally, T g and O g (s) are respectively defined as the restriction of T and O(s) to the set S g \ S T g (lines 7-8). This algorithm is applied for each attacker's goal g ∈ G. A simple example illustrating this game generation procedure is depicted in Figure 3.

Algorithm 2: Game generation algorithm

Data: Σ, g, {R i g , i = 1, ..., |Ag|} Result: Γ g 1 begin 2 S g ← copy(S), S T g ← copy(S T ) 3 foreach s ∈ S g do 4 if g is achieved in s then 5 S T g ← S T g ∪ {s} 6 pruneDisconnectedStates(s 0 , S g , S T g , T ) 7 T g ← T |S g \S T g 8 O g (s) ← O |S g \S T g (s) 9 Σ g ← Ag, S g , S T g , O g , T g 10 Γ g ← Σ g , {R i g , i = 1, ..., |Ag|}
Payoffs and optimal strategy -The payoffs for player i playing game Γ g are given by the application-dependent payoff function R i g which associates to each joint opportunity and in every state of the game, a gain in terms of utility for player i. Each state of an APRSG can be seen locally as a two-player zero-sum static game. Consequently, the payoff function must satisfy the following constraint: ∀s ∈ S g , ∀o ∈ O g (s), ∑ i∈Ag R i g (s, o) = 0. A two-player zero-sum static game can be solved using the Minimax algorithm [START_REF] Neumann | Zur theorie der gesellschaftsspiele[END_REF]. Assuming that player 1 wants to maximize its payoff while player 2 wants to minimize player 1's payoff, the optimal strategy for player 1 (resp. player 2) is called the maximin (resp. minimax) strategy, and an equilibrium is reached if maximin = minimax. Such an equilibrium always exists in mixed strategy. Let R g (s) be a m × n matrix where m (resp. n) is the number of opportunities available to player 1 (resp. player 2) in s, and R g (s) i, j = R 1 g (s, o 1 i , o 2 j ), the mixed maximin strategy x * = (x * 1 , ..., x * m ) in s is obtained by solving the following linear program [START_REF] Nisan | Algorithmic game theory[END_REF]):

Figure 3: Illustration of the game generation procedure. In this example, the attacker has two possible goals: bombing the bridge (g 1 ) and/or attacking the embassy (g 2 ). Terminal states are represented as grey ellipses and do not necessarily corresponds to goal states. By defining terminal situations distinct from goal states, we allow an attacker to achieve a sequence of goals. From the projected situation Σ resulting from the situation projection procedure, the game generation algorithm derives two Markov games Σ g 1 and Σ g 2 associated to goal g 1 and g 2 respectively, by converting their respective goal states into terminal states and pruning unreachable successor states. The attacker can achieve the sequence of goal (bombBridge, attackEmbassy) by executing the optimal strategy π * 1,g 1 , then switch to strategy π * 1,g 2 once he reach the first goal state.

maximize v s.t ∑ i x i R g (s) i, j v, f or 1 j n and ∑ i x i = 1.
The mixed minimax strategy y * = (y * 1 , ..., y * n ) in state s is obtained by solving the analogous linear program:

minimize v s.t ∑ i y i R g (s) T i, j
v, f or 1 j m and ∑ i y i = 1.

An APRSG Γ g is played in discrete time steps. In each time step t, each i ∈ Ag chooses an opportunity o i t from his set of available opportunities O i (s t ), where s t is the current state of the game. Decisions are simultaneous and the joint opportunity o t ∈ O g (s t ) is obtained. Each player i received a reward R i g (s t , o t ) and the players are transferred to the next state s t+1 . A policy π i,g : SO g → [0, 1] for agent i defines for each state of Γ g a mixed strategy, i.e. a probability distribution over the set of available opportunities.

We use Shapley's algorithm [START_REF] Shapley | Stochastic games[END_REF], an extension of the Value-Iteration algorithm to the case of stochastic games, to find one Nash equilibrium π * g = (π * 1,g , π * 2,g ) in each Γ g . Shapley's algorithm iteratively builds a normal form game M(s) for each state s ∈ S g by using a value function which accounts for both the immediate utility of choosing an action in s and the long-term utility of playing the equilibrium starting from the next state. The optimal joint strategy π * (s) is then obtained by calculating the maximin and minimax strategies for the two-player zero-sum static game M(s). Once a Nash equilibrium π * g is known for each Γ g , we can finally build the set Π * P = {π * 1, g |∀g ∈ G} of optimal plans for the attacker and the set br(Π * P ) = {π * 2, g |∀g ∈ G} of best responses for the defender given problem P.

Plan Recognition

The aim of the plan recognition module is to infer the current intent (goal and plan) of the attacker from observations of his actions. The past behaviors of both the attacker and the defender are represented as an observation history H h which keeps record of the last h states visited by the players and of the joint opportunities that were played in these states:

H h (t) = {(s t-(h-1) , o t-(h-1) ), ..., (s t , o t )}.
According to the rationality principle underlying the generative plan recognition paradigm, if the attacker intends to reach the desired end-state g ∈ G, then he will follow the optimal policy π * g ∈ Π * P to achieve g. Our plan recognition procedure acts by creating and updating at each time step t a belief state defined over the set Π * P of optimal plans for the attacker. This belief state is represented by a belief function b t :

Π * P -→ [0, 1] with b t (π * g ) = P π t = π * g |H h (t), s t
, where π t is the policy of the attacker at time t. Hence b t (π * g ) represents the belief of the defender that, at time t, the attacker is following policy π * g ∈ Π * P given the observation history H h (t).

Proposition 1. Let o t be the opportunity played by the attacker in state s t . Given history H h (t), the belief that the attacker is following policy π * g at t is given by: b

t (π * g ) ∝ P(o t |π * g , s t )× h-1 ∏ i=1 P(o t-i |π * g , s t-i )T g (s t-i , o t-i , s t-i+1 ),
with the constraint that b t is a probability distribution over Π * P .

Proof. From Bayes' rule:

P π * g |H h (t), s t = P H h (t)|π * g , s t P π * g , s t /P (H h (t), s t ) , Let H n = H h-n (t) (i.
e. the last hn observations at t), and τ = t -(h -1). The expression for P H h (t)|π * g , s t results from the following recursive decomposition P H n |π * g , s τ+n = P o τ+n |π * g , s τ+n T g s τ+n , o τ+n , s τ+(n+1) P H n+1 |π * g , s τ+(n+1) , with H n+1 = H n \ {(s τ+n , o τ+n )}. Therefore, starting from state s t-(h-1) (n = 0), we obtain

P H h (t)|π * g , s t = P(o t |π * g , s t ) × h-1 ∏ i=1 P(o t-i |π * g , s t-i ) T g (s t-i , o t-i , s t-i+1 ).
The use of a finite length history allows us to handle the fact that the adversary may change his intent during the execution of the plan recognition procedure. By keeping only "up-to-date" information, we prevent old observations inconsistent with the new intent from deteriorating the solution of the inference process. Another important remark is that the plan recognition algorithm introduced in Proposition 1 does not require the plan library to contain optimal strategies, but can be used to recognize any type of plan, with the constraint however that these plans are represented as MDP policies.

Experimental results

Scenario description

We perform our experiments on the scenario depicted in Figure 4. In this scenario, the defender is the Blue force (b f ) with capabilities "move to", "attack red force", and "do nothing", and the attacker is the Red force (r f ) with capabilities "move to", "attack embassy", "attack civilians", "attack blue force" and "do nothing". Each capability is associated with an area of effect specifying the type of target which can be acted upon, the action range, and the probability of success of the action. The set of possible goals of the attacker is G = {g i = destroyed(target i )|i = 1...6}. Of course, the true goal of the attacker is hidden to the defender. The mission of the defender is to determine which target has been chosen and to protect this target by eliminating the attacker. In this particular set of experiments, we assume that the attacker has only one single goal (hence he will not try to achieve several goals sequentially) and therefore the set of terminal situations is T = G ∪ {destroyed(r f ), destroyed(b f )}. We also define a simple application-dependent payoff function R i g : S → R which associates immediate rewards to each state of a game given a goal g ∈ G: Experiments We use the scenario defined in the previous section to evaluate the ability of our generative game theoretic framework to recognize the current plan of a rational adversary. We also verify that the recognition of the attacker's plan is rapid enough for the defender to select and implements the appropriate response before the attacker reaches his goal. With this in mind, we define two possible strategy selection policies for the defender. Let b t (π * g ) be the belief state of the defender at time t: WAIT : the defender waits until ∃g ∈ G such as b t (π * g ) = 1, then executes the best response br(π * g ). MAX : the defender executes the best response br(π * g ) with g = argmax g ∈G b t (π * g ), and chooses randomly between goals with the same maximum likelihood.

R i g (s) =      = 200, if s |= g, = 50, if s |= destroyed(b f ), = -100, if s |= destroyed(r f ), = αd(r f ,target) -β d(r f , b f ),
Figure 5 shows the belief state b t (π * g ) for g = destroyed(target 6 ) as a function of time. As we can see from this plot, the true goal of the attacker is correctly recognized by our plan recognition algorithm at t = 16. This is not a surprise: since the attacker is assumed to be strictly rational, we are guaranteed to recognize his real goal in finite time (in the worst case when the attacker executes the final action leading to the achievement of the goal), unless a terminal situation such as destroyed(b f ) or destroyed(r f ) is achieved before the true goal has been recognized. The real question is therefore to know if our plan recognition engine is able to recognize the real goal of the attacker before it is fulfilled. Table 2: Mean percentage of instances during which the real goal of the attacker was recognized before it was achieved.

Table 2 contains the results of the evaluation of the ability of our plan recognition method to infer the real goal of the adversary before he achieves this goal. For instance, when the true goal of the adversary is goal 1 and the strategy selection policy of the defender is MAX, our approach is able to recognize the goal of the attacker before the destruction of the target in 98.9% of cases (mean over 100 runs of 100 scenario instances). Our method performs better on average when associated to the MAX selection policy, since it seems to lead the attacker in being less unclear about the goal he is chasing. This is particularly true for ambiguous goals such as goal 2 (whose optimal policy is very similar to those of goals 3 and 6) and goal 4 (similar to goal 5 and 1).

From Table 2, we saw that our plan recognition method is able to infer the real goal of an adversary before the achievement of this goal in most cases. But does this inference occurs soon enough for the defender to implement the appropriate response and defend the target? To evaluate this point, we define several strategy formulation policies which will serve as baseline values for comparison with the WAIT and MAX policies defined above: RO : the defender selects an opportunity randomly in each state of the game (uniform distribution). RS * : the defender selects a goal g randomly in each state of the game and executes the best response br(π * g ). RS : the defender selects a goal g randomly at the beginning of the game and executes the best response br(π * g ). CLOSE : the defender selects the goal g which is closest from the attacker in each state of the game and executes the best response br(π * g ). BR : the defender always executes the best response br(π * g ) where g is the true goal of the attacker. The quality of each policy is evaluated by averaging the number of scenario instances during which the attacker successfully achieved his goal over a total of 100 runs of 100 instances for each goal. From the results depicted in Figure 6, we can see that the MAX strategy formulation policy, which relies on our plan recognition engine, performs better on average than every other baseline (except BR of course). In a few cases however (goal 3 and 6), it may be preferable for the defender to wait to be certain about the real goal of the attacker before acting. But the disappointing results of the WAIT policy on the other 4 goals tend to confirm this famous quote from Prussian general and military theorist Carl Von Clausewitz

The greatest enemy of a good plan is the dream of a perfect plan [START_REF] Clausewitz | On War[END_REF]. 

Conclusion and Future Work

In this paper, we presented PRESAGE, a generative game theoretic framework for adversarial plan recognition in stochastic multi-agent environments. This framework generates a library of optimal plans for a rational attacker from the definition of a planning problem. We proposed an algorithm for situation projection relying on a simple yet expressive contextual action model. We showed how a set of Markov games can be generated automatically from this projected situation to model the planning processes of both the defender and the attacker. By computing one Nash equilibrium for each one of these games, we built a library of optimal plans for the attacker and a set of best responses for the defender. This library was later exploited by a probabilistic plan recognition algorithm to infer the current plan of the adversary from observations of his behavior. Finally, we demonstrated the capability of our adversarial plan recognition to assist a decision-maker in selecting the most appropriate response to a given threat. An interesting direction for future works would be to relax the attacker's rationality assumption and to adapt our plan recognition algorithm to the case of an adversary with bounded rationality. We also plan to extend our framework in order to deal with an adversary which would be actively hostile to the inference of his plans. This would require the ability to detect deceptive actions performed by the attacker. We would also have to relax the assumption of full observability of the opponent's actions, since he may use concealment. Currently, our APRSGs are defined as two-player zero-sum stochastic games and therefore, they can only model the strategic interactions between one defender and one attacker. Our intuition is that our framework can be generalized quite directly to the 1 vs N and N vs N cases.
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 1 Figure 1: PRESAGE general architecture.
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 2 Figure 2: An example of opportunity assessment.

  S such as P(s |s, o) = 0 do 14 T (s, o, s ) ← P(s |s, , P, s , S, S T , T )

  otherwise, with d(r f ,target) the distance between the attacker and his target, d(r f , b f ) the distance between the attacker and the defender, and α + β = 1.
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 4 Figure 4: Initial situation of our urban warfare scenario.
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 5 Figure 5: Evolution of the defender's belief about the real goal of the attacker.
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 6 Figure 6: Mean attacker's percentage of success when using MAX and WAIT, compared to BR and other baselines.
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