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their method can be used for goal/plan recognition.
In this work, we propose a generative game-theoretic

framework to tackle the problem of adversarial plan recogni-
tion in a fully observable, multi-agent setting where actions
have stochastic effects. The adversarial plan recognition task
therefore consists of inferring a probability distribution over
the set of possible plans of an agent whose behavior results
from a finite two-player zero-sum stochastic game, where
the players are respectively the attacker/observed agent and
the defender/observer. The problem of strategy formulation
then reduces to the selection of the most likely best response.
Stochastic games are used to model the strategic interactions
between the defender and the attacker planning strategies
due to the common environment and their conflicting goals.
The use of deception and concealment by the attacker is out
of the scope of this paper and is left for future work. Since
generative plan recognition techniques require the definition
of an action model to encode the possible behaviors of the
observed agent, we define a contextual action model based
on the COI model of intentional action (Steinberg 2007)
which enables the automatic assessment of all opportunities
for action available to each player in the current situation.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide a brief background on generative plan
recognition and stochastic game theory. Section 3 contains
an extensive description of PRESAGE, our generative game-
theoretic framework for adversarial plan recognition. Sec-
tion 4 applies this to a urban warfare scenario and presents
preliminary experimental results. In Section 5 we discuss the
current progress of our work and the planned extensions.

Background
Generative Plan Recognition
Most of previous research in plan recognition relies on an
a priori, handcrafted plan library specifying all the possi-
ble plans of the observed agent (Avrahami-Zilberbrand and
Kaminka 2007; Geib and Goldman 2009; Lisỳ et al. 2012).
This library is generally assumed to be exhaustive, which
is quite impractical in real-world applications. Recently, a
new paradigm known as generative plan recognition (also
called model-based plan recognition or plan recognition by
inverse planning) has been proposed by Baker et al. (Baker,
Saxe, and Tenenbaum 2009) and further studied in a series of
work by Ramı́rez and Geffner (Ramırez and Geffner 2009;
2010; 2011). In plan recognition by inverse planning, ob-
served agents are assumed to be rational, i.e. they will
plan optimally to achieve their goals. The first advantage
of generative methods is that the need for an explicit dec-
laration of the possible agent behaviors as a plan library
is replaced by an implicit encoding, using an agent action
model and a set of possible goals, thus making genera-
tive methods far more flexible and less dependent on the
availability of expert knowledge. The second advantage is
that the set of optimal plans can be generated automatically
using state-of-the-art planners, including classical planners
(Ramırez and Geffner 2009; 2010), Markov Decision Pro-
cesses (MDPs) (Baker, Saxe, and Tenenbaum 2009), and
partially-observable MDPs (Ramırez and Geffner 2011).

Stochastic Games
Definition Stochastic games - also called Markov games
- have been introduced by Lloyd Shapley (Shapley 1953)
as an extension of MDPs to the multi-agent case. In a
stochastic game, the players perform joint actions that de-
termine both the new state of the environment, according
to transition probabilities, and the reward obtained by each
agent. Formally, a stochastic game is defined as a tuple
〈Ag,S,A,{Ri, i = 1, ..., |Ag|},T 〉 where
• Ag = {1, ..., |Ag|} is a finite set of players.
• S is a finite set of states.
• Ai = {ai

1, ...,a
i
|Ai|} is a finite set of actions available to

player i.
• A≡×i∈AgAi is the set of joint actions

• Ri : S×A→ R is the payoff function of player i.
• T : S×A×S→ [0,1] is the transition function.
The game is played in discrete time steps. In each time step t,
the players choose their actions simultaneously and the joint
action a = {a1, ...,a|Ag|} is obtained. Each agent i receives a
reward Ri(st ,a) depending on the current state of the envi-
ronment and the joint action, and the players are transferred
to the next state st+1 according to the transition function T .
A policy πi : S→ ∆Ai for agent i defines for each state of the
game a local, mixed strategy, i.e. a probability distribution
over the set of available actions.

Solution concepts Given a joint strategy π = 〈πi,π−i〉
where π−i is the joint strategy of all players except player
i, the expected utility of π for player i is defined in each
s ∈ S as the expected value of the utility function of normal
form games (Burkov and Chaib-draa 2008)

uπ
i (s) = Ea∈A[Ri(s,a)] (1)

The state utilities Uπ
i (s) for player i associated with joint

policy π can be quantified using the same performance cri-
teria than for MDPs, i.e. the long-term expected value over
i’s reward. For instance, using the γ-discounted criterion

Uπ
i (s) = E [∑∞

t=0 γ tuπ
i (st)|s0 = s]

= uπ
i (s)+ γ ∑a∈A ∑s′∈S T (s,a,s′)πa(s)Uπ

i (s
′),

(2)
where πa(s) is the probability of joint action a in s given
joint policy π , s0 is the initial state of the game and γ ∈ [0,1]
is the discount factor. For other performance criterion, see
(Garcia and Rachelson 2008).

The concept that is most commonly used as a solution of
non-cooperative stochastic games is the one of Nash equi-
librium, i.e. a combination of strategies where each player
selects the best response to the other players’ strategies, and
no player can improve its utility by unilaterally deviating
from this strategy. Formally, a joint strategy π∗ = 〈π∗i ,π∗−i〉
is a Nash equilibrium if

∀s ∈ S, ∀i ∈ Ag, ∀πi ∈Πi, U
〈π∗i ,π

∗
−i〉

i (s)≥U
〈πi,π

∗
−i〉

i (s),
(3)

where Πi is the set of policies available to agent i. The exis-
tence of at least one Nash equilibrium for 2-player stochastic
games has been demonstrated by Shapley (Shapley 1953).



Figure 1: PRESAGE general architecture.

Plan Recognition using Stochastic Games
In this section, we describe PRESAGE (Plan REcogni-
tion using StochAstic GamEs), a generative game-theoretic
framework for adversarial plan recognition. This frame-
work models the strategic interactions between the decision-
making strategies of an attacker (observed agent) and a de-
fender (observer) as Markov games. As any other generative
method, our framework requires the definition of an action
model. We propose an adaptation of the COI model of ac-
tion (Steinberg 2007) to the domain of automated planning
so that the opportunities (equivalent to MDPs’ actions) avail-
able to each player can be automatically assessed from the
situation and used to generate valid plans. Finally, we de-
sign a probabilistic plan recognition method whose aim is
to create and maintain a belief state over the set of optimal
strategies of the attacker from observations of his behavior.

General Architecture
Figure 1 is a representation of PRESAGE functional archi-
tecture. PRESAGE is divided into two independent modules.
The first module (Module 1) is dedicated to the automatic
generation of the optimal plan library. Starting from the def-
inition of a planning problem P, including the initial situ-
ation and the set of possible goals of the attacker, the plan
generation module executes a three-step procedure to build
the library of possible plans for the attacker:

1. Situation projection: first, the set of possible future sit-
uations is generated and modeled as a probabilistic finite
automaton Σ (Stoelinga 2002), whose transitions are la-
beled by joint opportunities of the attacker and the de-
fender. Opportunities for action available to each actor are
assessed in each state of Σ using a generic opportunity as-
sessment engine.

2. Game generation: for each possible goal g of the at-
tacker, we build an Adversarial Plan Recognition Stochas-
tic Game (APRSG) Γg by considering each state of Σ

where g is achieved as a terminal state, and by represent-
ing each remaining state as a two-player zero-sum static
game using a predefined payoff function.

3. Game solving: each APRSG is solved independently of
the others using off-the-shelf solving algorithms so as to
obtain an optimal plan library Π∗P containing one optimal
strategy for each possible goal of the attacker.

The second module (Module 2) encapsulates a plan recog-
nition engine which, given a plan library and an observation
history of both actors’ actions, returns an a posteriori distri-
bution over the set of possible plans of the attacker.

Assessing Opportunities for Action
Our action model is an adaptation of the COI model of threat
to the planning domain. This model was first proposed in
(Steinberg 2005; Little and Rogova 2006) and has been fur-
ther extended in (Steinberg 2007) to represent any inten-
tional action. It considers the capability, opportunity, and
intent of an agent to carry out actions on some targets to
be the necessary and sufficient factors to characterize these
actions:

Capability the possession of the resources and/or skills re-
quired to perform an action.

Opportunity ”the right context” to perform an action, i.e.
the presence of an operating environment in which poten-
tial targets are susceptible to be acted upon.

Intent the plans and goals an agent wants to achieve.

These action components are tightly interrelated. For in-
stance, the intent of an agent can evolve in light of his capa-
bilities and current opportunities, e.g. by changing his target.
Inversely, the agent’s intent can motivate the acquisition of
new capabilities/opportunities, etc. Since our goal is to in-
fer the intent of an agent from observations of his actions as
restrained by its capabilities and opportunities, intent is im-
plicit in our model and we postulate that it is constrained by
the rationality principle. We also assume that we have full
and certain knowledge of the capabilities of each agent. We
therefore focus on the opportunity assessment task which
consists of determining which action(s) can be performed
on which target(s) in the current situation and estimating the
expected outcome of these actions. To understand the con-



cept of opportunity assessment, let us consider the example
depicted on Figure 2.

Figure 2: An example of opportunity assessment.

In this situation, the actor owns a resource assault rifle
which provides him with the capability to perform action
shooting. However, if the agent wants this action to have an
effect on a target t, he must first acquire the opportunity to
act upon t. Given a situation s, we will consider that an agent
has the opportunity to perform action a on a target t if:
• the agent has the capability to perform action a in s
• the agent has access to target t in s,
• target t is vulnerable to action a in s.

We propose a simple, yet expressive opportunity model
that takes into account the three aforementioned conditions
and associates probabilities to the possible consequences of
an action, namely success or failure. Enhanced action defi-
nitions may include more than two outcomes.
Definition 1. An opportunity oi for actor i is a tuple 〈a, t, p〉,
where a is an action, t is the target of the action, and p is the
probability of success of action a when performed on t.

Given a situation s, the goal of the opportunity assessment
engine is to compute for each actor i, the set Oi(s) of op-
portunities available to i in s. In our model, each capability
(feasible action) is associated with one area of effect (AoE).
Definition 2. The area of effect associated with a capability
a is a tuple AoE(a) = 〈P,Pa(success)〉 where P is a set
of preconditions necessary for a target t to be considered
accessible (e.g. lying within a spatial area), and Pa(success)
is the probability of success of action a.
Definition 3. Assuming that actor i has the capability to
perform action a, there exists an opportunity oi for i to per-
form action a on a target t iff

1. t satisfies the accessibility conditions listed in P ,
2. the probability of success p > 0.

p is determined by both the probability of success of the
action Pa(success) and the vulnerability of the target t to ac-
tion a when t satisfies the accessibility conditions (written
t ∈ AoE(a)).

p = P(success(a), t ∈ AoE(a),vulnerable(t,a))
Pa(success)P(vulnerable(t,a)|success(a), t ∈ AoE(a))

(4)

The vulnerability of a target to an action may be seen as its
ability to thwart some possible effects of this action. For in-
stance, considering the two possible effects of the shooting
action to be target killed (success) and target missed (fail-
ure), we can assume that a target wearing a bulletproof vest
will be less vulnerable to this action, i.e. the probability to
obtain effect target killed on this particular target will be
smaller than with an unprotected target.

Definition 4. The vulnerability of a target t to an action a
is the conditional probability Vt(a), where Vt(a) = 0 means
that t is not vulnerable to action a and Vt(a) = 1 represents
the highest level of vulnerability.

The overall probability of success p is therefore given by

p = Pa(success)×Vt(a) (5)

Example 1. In the situation depicted in Figure 2, the only
opportunity for the attacker is to attack the vulnerable
(Vblue f orce(shooting) = 1.0) blue force with a probability of
success Pshooting(success) = 0.7; the civilian group cannot
be acted upon because it does not lie within the (spatial)
AoE, and the attacker does not possess the capability bomb-
bridge required to act upon the bridge. Therefore, we have
Oi(s) = {〈shooting,blue f orce,0.7〉}.

PRESAGE Planning Problem
A PRESAGE planning problem is defined as a tuple P =
〈Ag, I, G, T 〉, where Ag is a finite set of actors, I is the initial
situation, G is the set of goals of the attacker, and T is a
set of terminal situations. Elements of G are not necessarily
elements of T , thus offering the possibility to account for
an adversary trying to achieve several goals sequentially.

Situation Projection
The goal of the situation projection engine is, given the defi-
nition of a PRESAGE planning problem, to generate a prob-
abilistic finite automaton Σ which aims at formally repre-
senting the possible future situations and their dynamics. Σ

is defined as a tuple 〈s0,S,ST ,O,T 〉. The definitions for the
different parameters are compiled in Table 1.

Par. Description Expression
S A finite set of states S = {s0, ...,s|S|}
s0 The initial state s0 ∈ S

ST A finite set of terminal states ST ⊂ S
Oi A mapping assigning to each

s ∈ S\ST the set of opportu-
nities for player i in s

Oi(s) = {oi
1, ...,o

i
n}

with oi
j = (ai

j, t
i
j, pi

j)

O(s) The set of possible joint op-
portunities in state s ∈ S\ST

O(s)≡×i∈AgOi(s)

SO The set of all possible joint
opportunity profiles

SO = {(s,o)|s ∈ S \
ST ,o ∈O(s)}

T A transition function T : SO×S→ [0,1]

Table 1: Definitions for the parameters of Σ

Given a PRESAGE planning problem P and an oppor-
tunity assessment engine OA with ∀s ∈ S \ ST , i ∈ Ag,



OA(s, i)→ Oi(s), we build Σ using the situation projection
algorithm shown in Algorithm 1. The algorithm first checks
the terminal conditions (lines 5-6). If the current state s
is not terminal, opportunities available to each player in s
are assessed using the opportunity assessment engine so as
to build the set of possible joint opportunities O(s) (line
8-10). Line 11 loops over all possible joint opportunities
o in O(s). Given a state s and a joint opportunity o, the
findSuccessors function (whose algorithm is not de-
tailed here due to a lack of space) computes the set of suc-
cessor states S′ obtained when executing joint action o in s,
as well as the transition probability P(s′|s,o) for each s′ ∈ S′
(line 12). Each successor state s′ in S′, if not already pro-
cessed, is added to S and the corresponding transition prob-
ability is used to update the transition function T (lines 13-
16). The recursive situation projection procedure is applied
to each state until no new state can be added to S (line 17).

Algorithm 1: Situation projection algorithm
Data: P = 〈Ag, I, G, T 〉, OA
Result: Σ

1 begin
2 s0← I, S←{s0}, ST ←{}, T ←{}
3 project(P, s0, S, ST , T)

4 procedure project(P, s, S, ST , T)
5 if s ∈T then
6 ST ← ST ∪{s}
7 else
8 foreach i ∈ Ag do
9 Oi(s)← OA(s, i)

10 O(s)←×i∈AgOi(s)
11 foreach o ∈O(s) do
12 S′← findSuccessors(s,o)
13 foreach s′ ∈ S′ such as P(s′|s,o) 6= 0 do
14 T (s,o,s′)← P(s′|s,o)
15 if s′ /∈ S then
16 S← S∪{s′}
17 project(Ag, P, s′, S, ST , T)

Stochastic Games Generation and Solving
The projected situation Σ is used as a basis for building one
Adversarial Plan Recognition Stochastic Game (APRSG)
planner per possible goal of the attacker. An APRSG for goal
g ∈G is a finite two-player zero-sum stochastic game which
is formally defined as a tuple Γg = 〈Σg,{Ri

g, i = 1, ..., |Ag|}〉
where Σg = 〈Ag,Sg,ST

g ,Og,Tg〉 and Ri
g : SOg → R is the

payoff function of player i. The only addition to the classical
definition of stochastic games (as discussed above) is the
set ST

g ⊂ Sg of terminal states for goal g.

Players — An APRSG is a two-player game between an
attacker (player 1, the observed agent), which tries to max-
imize his payoff, and a defender (player 2, the observer),
which aims at minimizing player 1’s payoff. Therefore we
have Ag = {1,2}.

State space and transition function — The game gener-
ation procedure is shown in Algorithm 2. First, Sg and ST

g
are initialized as copies of their respective equivalent set in
Σ. Then, each state s in Sg corresponding to a situation where
goal g is achieved is marked as a terminal state of game Γg
(lines 3-5). The pruneDisconnectedStates function
(line 6) acts by removing all the edges originating from ter-
minal states (∀s ∈ ST

g ,∀o ∈Og(s),∀s′ ∈ Sg,T (s,o,s′)← 0).
States in Sg and ST

g , which are no more connected to the
initial state s0 due to the fact that goal states are now con-
sidered as terminal, are pruned using depth-first-search al-
gorithm. The state space Sg of game Γg is therefore at most
as large as the initial state space S. Finally, Tg and Og(s) are
respectively defined as the restriction of T and O(s) to the
set Sg \ST

g (lines 7-8). This algorithm is applied for each at-
tacker’s goal g ∈G. A simple example illustrating this game
generation procedure is depicted in Figure 3.

Algorithm 2: Game generation algorithm
Data: Σ, g, {Ri

g, i = 1, ..., |Ag|}
Result: Γg

1 begin
2 Sg← copy(S), ST

g ← copy(ST )

3 foreach s ∈ Sg do
4 if g is achieved in s then
5 ST

g ← ST
g ∪{s}

6 pruneDisconnectedStates(s0,Sg,ST
g ,T )

7 Tg← T|Sg\ST
g

8 Og(s)←O|Sg\ST
g
(s)

9 Σg← 〈Ag,Sg,ST
g ,Og,Tg〉

10 Γg← 〈Σg,{Ri
g, i = 1, ..., |Ag|}〉

Payoffs and optimal strategy — The payoffs for player
i playing game Γg are given by the application-dependent
payoff function Ri

g which associates to each joint oppor-
tunity and in every state of the game, a gain in terms of
utility for player i. Each state of an APRSG can be seen
locally as a two-player zero-sum static game. Consequently,
the payoff function must satisfy the following constraint:
∀s ∈ Sg,∀o ∈ Og(s), ∑i∈Ag Ri

g(s,o) = 0. A two-player
zero-sum static game can be solved using the Minimax
algorithm (Neumann 1928). Assuming that player 1 wants
to maximize its payoff while player 2 wants to minimize
player 1’s payoff, the optimal strategy for player 1 (resp.
player 2) is called the maximin (resp. minimax) strategy,
and an equilibrium is reached if maximin = minimax. Such
an equilibrium always exists in mixed strategy. Let Rg(s)
be a m× n matrix where m (resp. n) is the number of
opportunities available to player 1 (resp. player 2) in s,
and Rg(s)i, j = R1

g(s,o
1
i ,o

2
j), the mixed maximin strategy

x∗ = (x∗1, ...,x
∗
m) in s is obtained by solving the following

linear program (Nisan et al. 2007):



Figure 3: Illustration of the game generation procedure. In this example, the attacker has two possible goals: bombing the bridge
(g1) and/or attacking the embassy (g2). Terminal states are represented as grey ellipses and do not necessarily corresponds to
goal states. By defining terminal situations distinct from goal states, we allow an attacker to achieve a sequence of goals. From
the projected situation Σ resulting from the situation projection procedure, the game generation algorithm derives two Markov
games Σg1 and Σg2 associated to goal g1 and g2 respectively, by converting their respective goal states into terminal states and
pruning unreachable successor states. The attacker can achieve the sequence of goal (bombBridge, attackEmbassy) by executing
the optimal strategy π∗1,g1

, then switch to strategy π∗1,g2
once he reach the first goal state.

maximize v
s.t ∑i xi Rg(s)i, j > v, f or 1 6 j 6 n

and ∑i xi = 1.

The mixed minimax strategy y∗ = (y∗1, ...,y
∗
n) in state s is

obtained by solving the analogous linear program:

minimize v
s.t ∑i yi Rg(s)T

i, j 6 v, f or 1 6 j 6 m
and ∑i yi = 1.

An APRSG Γg is played in discrete time steps. In each
time step t, each i ∈ Ag chooses an opportunity oi

t from his
set of available opportunities Oi(st), where st is the current
state of the game. Decisions are simultaneous and the joint
opportunity ot ∈Og(st) is obtained. Each player i received a
reward Ri

g(st ,ot) and the players are transferred to the next
state st+1. A policy πi,g : SOg→ [0,1] for agent i defines for
each state of Γg a mixed strategy, i.e. a probability distribu-
tion over the set of available opportunities.

We use Shapley’s algorithm (Shapley 1953), an exten-
sion of the Value-Iteration algorithm to the case of stochastic
games, to find one Nash equilibrium π∗g =(π∗1,g,π

∗
2,g) in each

Γg. Shapley’s algorithm iteratively builds a normal form
game M(s) for each state s ∈ Sg by using a value function
which accounts for both the immediate utility of choosing
an action in s and the long-term utility of playing the equi-
librium starting from the next state. The optimal joint strat-
egy π∗(s) is then obtained by calculating the maximin and
minimax strategies for the two-player zero-sum static game
M(s). Once a Nash equilibrium π∗g is known for each Γg,
we can finally build the set Π∗P = {π∗1, g|∀g ∈ G} of optimal

plans for the attacker and the set br(Π∗P) = {π∗2, g|∀g ∈ G}
of best responses for the defender given problem P.

Plan Recognition
The aim of the plan recognition module is to infer the current
intent (goal and plan) of the attacker from observations of
his actions. The past behaviors of both the attacker and the
defender are represented as an observation history Hh which
keeps record of the last h states visited by the players and
of the joint opportunities that were played in these states:
Hh(t) = {(st−(h−1),ot−(h−1)), ...,(st ,ot)}.

According to the rationality principle underlying the gen-
erative plan recognition paradigm, if the attacker intends to
reach the desired end-state g ∈ G, then he will follow the
optimal policy π∗g ∈ Π∗P to achieve g. Our plan recognition
procedure acts by creating and updating at each time step t a
belief state defined over the set Π∗P of optimal plans for the
attacker. This belief state is represented by a belief function
bt : Π∗P −→ [0,1] with bt(π

∗
g ) = P

(
πt = π∗g |Hh(t),st

)
, where

πt is the policy of the attacker at time t. Hence bt(π
∗
g ) rep-

resents the belief of the defender that, at time t, the attacker
is following policy π∗g ∈ Π∗P given the observation history
Hh(t).

Proposition 1. Let ot be the opportunity played by the at-
tacker in state st . Given history Hh(t), the belief that the at-
tacker is following policy π∗g at t is given by:

bt(π
∗
g )∝ P(ot |π∗g ,st)×

h−1

∏
i=1

P(ot−i|π∗g ,st−i)Tg(st−i,ot−i,st−i+1),

with the constraint that bt is a probability distribution over
Π∗P.



Proof. From Bayes’ rule:

P
(
π
∗
g |Hh(t),st

)
= P

(
Hh(t)|π∗g ,st

)
P
(
π
∗
g ,st
)
/P(Hh(t),st) ,

Let Hn = Hh−n(t) (i.e. the last h− n observations at t), and
τ = t − (h− 1). The expression for P

(
Hh(t)|π∗g ,st

)
results

from the following recursive decomposition

P
(
Hn|π∗g ,sτ+n

)
= P

(
oτ+n|π∗g ,sτ+n

)
Tg
(
sτ+n,oτ+n,sτ+(n+1)

)
P
(
Hn+1|π∗g ,sτ+(n+1)

)
,

with Hn+1 = Hn \ {(sτ+n,oτ+n)}. Therefore, starting from
state st−(h−1) (n = 0), we obtain

P
(
Hh(t)|π∗g ,st

)
= P(ot |π∗g ,st)×

h−1

∏
i=1

P(ot−i|π∗g ,st−i)

Tg(st−i,ot−i,st−i+1).

The use of a finite length history allows us to handle the
fact that the adversary may change his intent during the exe-
cution of the plan recognition procedure. By keeping only
”up-to-date” information, we prevent old observations in-
consistent with the new intent from deteriorating the solu-
tion of the inference process. Another important remark is
that the plan recognition algorithm introduced in Proposi-
tion 1 does not require the plan library to contain optimal
strategies, but can be used to recognize any type of plan,
with the constraint however that these plans are represented
as MDP policies.

Experimental results
Scenario description
We perform our experiments on the scenario depicted in
Figure 4. In this scenario, the defender is the Blue force
(b f ) with capabilities ”move to”, ”attack red force”, and ”do
nothing”, and the attacker is the Red force (r f ) with capabil-
ities ”move to”, ”attack embassy”, ”attack civilians”, ”attack
blue force” and ”do nothing”. Each capability is associated
with an area of effect specifying the type of target which can
be acted upon, the action range, and the probability of suc-
cess of the action. The set of possible goals of the attacker is
G = {gi = destroyed(targeti)|i = 1...6}. Of course, the true
goal of the attacker is hidden to the defender. The mission
of the defender is to determine which target has been chosen
and to protect this target by eliminating the attacker. In this
particular set of experiments, we assume that the attacker
has only one single goal (hence he will not try to achieve
several goals sequentially) and therefore the set of terminal
situations is T = G∪{destroyed(r f ),destroyed(b f )}. We
also define a simple application-dependent payoff function
Ri

g : S→R which associates immediate rewards to each state
of a game given a goal g ∈ G:

Ri
g(s)=


= 200, if s |= g,
= 50, if s |= destroyed(b f ),
= −100, if s |= destroyed(r f ),
= αd(r f , target)−βd(r f ,b f ), otherwise,

with d(r f , target) the distance between the attacker and his
target, d(r f ,b f ) the distance between the attacker and the
defender, and α +β = 1.

Figure 4: Initial situation of our urban warfare scenario.

Experiments We use the scenario defined in the previ-
ous section to evaluate the ability of our generative game
theoretic framework to recognize the current plan of a ra-
tional adversary. We also verify that the recognition of the
attacker’s plan is rapid enough for the defender to select
and implements the appropriate response before the attacker
reaches his goal. With this in mind, we define two possible
strategy selection policies for the defender. Let bt(π

∗
g ) be the

belief state of the defender at time t:

WAIT : the defender waits until ∃g∈G such as bt(π
∗
g ) = 1,

then executes the best response br(π∗g ).

MAX : the defender executes the best response br(π∗g ) with
g = argmaxg′∈G bt(π

∗
g′), and chooses randomly between

goals with the same maximum likelihood.

Figure 5 shows the belief state bt(π
∗
g ) for g =

destroyed(target6) as a function of time. As we can see from
this plot, the true goal of the attacker is correctly recognized
by our plan recognition algorithm at t = 16. This is not a
surprise: since the attacker is assumed to be strictly rational,
we are guaranteed to recognize his real goal in finite time
(in the worst case when the attacker executes the final action
leading to the achievement of the goal), unless a terminal sit-
uation such as destroyed(b f ) or destroyed(r f ) is achieved
before the true goal has been recognized. The real question
is therefore to know if our plan recognition engine is able to
recognize the real goal of the attacker before it is fulfilled.

Policy Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6
MAX (%) 98.9±1.0 75.5±2.6 100 80.4±3.8 89.2±3.8 100
WAIT (%) 100 42.1±4.5 100 17.6±2.7 100±0 100

Table 2: Mean percentage of instances during which the real
goal of the attacker was recognized before it was achieved.

Table 2 contains the results of the evaluation of the ability
of our plan recognition method to infer the real goal of the
adversary before he achieves this goal. For instance, when
the true goal of the adversary is goal 1 and the strategy se-
lection policy of the defender is MAX, our approach is able
to recognize the goal of the attacker before the destruction
of the target in 98.9% of cases (mean over 100 runs of 100



Figure 5: Evolution of the defender’s belief about the real
goal of the attacker.

scenario instances). Our method performs better on average
when associated to the MAX selection policy, since it seems
to lead the attacker in being less unclear about the goal he is
chasing. This is particularly true for ambiguous goals such
as goal 2 (whose optimal policy is very similar to those of
goals 3 and 6) and goal 4 (similar to goal 5 and 1).

From Table 2, we saw that our plan recognition method is
able to infer the real goal of an adversary before the achieve-
ment of this goal in most cases. But does this inference oc-
curs soon enough for the defender to implement the appro-
priate response and defend the target? To evaluate this point,
we define several strategy formulation policies which will
serve as baseline values for comparison with the WAIT and
MAX policies defined above:
RO : the defender selects an opportunity randomly in each

state of the game (uniform distribution).
RS∗ : the defender selects a goal g randomly in each state

of the game and executes the best response br(π∗g ).
RS : the defender selects a goal g randomly at the beginning

of the game and executes the best response br(π∗g ).
CLOSE : the defender selects the goal g which is closest

from the attacker in each state of the game and executes
the best response br(π∗g ).

BR : the defender always executes the best response br(π∗g )
where g is the true goal of the attacker.
The quality of each policy is evaluated by averaging the

number of scenario instances during which the attacker suc-
cessfully achieved his goal over a total of 100 runs of 100 in-
stances for each goal. From the results depicted in Figure 6,
we can see that the MAX strategy formulation policy, which
relies on our plan recognition engine, performs better on av-
erage than every other baseline (except BR of course). In a
few cases however (goal 3 and 6), it may be preferable for
the defender to wait to be certain about the real goal of the
attacker before acting. But the disappointing results of the
WAIT policy on the other 4 goals tend to confirm this fa-
mous quote from Prussian general and military theorist Carl
Von Clausewitz

The greatest enemy of a good plan is the dream of a
perfect plan (Clausewitz 1832).

Figure 6: Mean attacker’s percentage of success when using
MAX and WAIT, compared to BR and other baselines.

Conclusion and Future Work
In this paper, we presented PRESAGE, a generative
game theoretic framework for adversarial plan recog-
nition in stochastic multi-agent environments. This
framework generates a library of optimal plans for a
rational attacker from the definition of a planning prob-
lem. We proposed an algorithm for situation projection
relying on a simple yet expressive contextual action
model. We showed how a set of Markov games can be
generated automatically from this projected situation to
model the planning processes of both the defender and
the attacker. By computing one Nash equilibrium for
each one of these games, we built a library of optimal
plans for the attacker and a set of best responses for the
defender. This library was later exploited by a prob-
abilistic plan recognition algorithm to infer the current
plan of the adversary from observations of his behavior.
Finally, we demonstrated the capability of our adversar-
ial plan recognition to assist a decision-maker in select-
ing the most appropriate response to a given threat.
An interesting direction for future works would be to
relax the attacker’s rationality assumption and to adapt
our plan recognition algorithm to the case of an adver-
sary with bounded rationality. We also plan to extend
our framework in order to deal with an adversary which
would be actively hostile to the inference of his plans.
This would require the ability to detect deceptive ac-
tions performed by the attacker. We would also have
to relax the assumption of full observability of the op-
ponent’s actions, since he may use concealment. Cur-
rently, our APRSGs are defined as two-player zero-sum
stochastic games and therefore, they can only model the
strategic interactions between one defender and one at-
tacker. Our intuition is that our framework can be gen-
eralized quite directly to the 1 vs N and N vs N cases.
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