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Abstract

Parseval’s theorem leads to the finding that the minima of a least-squares spectral response
cost functional K are at the same positions as the minima of a least squares signal response
functional C. We describe the useful functional properties of K, in the context of a simple
geophysical inverse problem pertaining to the retrieval of the shear wavespeed in a homogeneous
underground, notably for enabling the location of its global minimum and dealing with the
secondary minima. We show how the width of the search interval, the number and positions
of the sensors, as well as the central frequency and bandwidth of the spectrum of the probe
radiation, condition the aspect of the cost functional, particularly as regards the number of
secondary minima and the depth of the trough associated with the global minimum. Finally,
we evaluate the influence of prior uncertainties on the accuracy of the retrieval (via K) of the
shear body wavespeed of the underground.
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1 Introduction

Many seismic inverse problems (IP) consist in retrieving a set of parameters of the seismic source
and/or of the medium traversed by the wave emitted from the source. These IP involve two
indispensable ingredients: 1) the signals (hereafter termed: data) recorded by sensors located
on/underneath the boundary (e.g., the ground, often assumed to be flat) constituting the response
of the medium to the wave and 2) a theoretical model (hereafter termed: retrieval model) of how
such a response can be produced.

The sought-for parameters form a subset R of the set of parameters P inherent in the retrieval
model and the remaining parameters (hereafter termed: priors), forming the set Q, are considered
to be known (which simply means that no effort is made to retrieve them in the given IP). The
inversion consists in extracting R from the retrieval model by comparing the latter to the data
[11]. Thus, the retrieved R is usually considered to be the set that yields the best fit between the
response data and the prediction of this response furnished by the retrieval model.

Often, the notion of best fit is synonymous with the attainment of the global minimum of a
L2 cost functional involving the square of the absolute difference the predicted response and the
actual response. The response can either take its ”natural” space-time form, or its space-frequency
form; in the first eventuality, the cost functional C involves temporal integrals of squared (real)
response differences whereas in the second eventuality, the cost functional K involves frequency
integrals of absolute squared (complex) response differences. In either case, to get a full grasp
of the complexities involved in seismic IP, one must obtain an adequate representation of the
(preferably-mathematical) properties of the cost functional.

If the number of parameters of R exceeds two, it becomes impossible to obtain a complete
graphical representation of C or K; in this situation, either graphs of the cost versus one or two
parameters at a time are offered [4, 2, 14, 8, 10] or the properties of the cost functionals are studied
in rather abstract terms [7]. Non-uniqueness is often evoked as being an essential aspect of the
ill-posed character of IP [9]), but cases are also encountered in which either the solution of the IP is
sought (by employing local search algorithms) as if it were unique or cost functionals are obtained
which appear to be convex in the search domain of R [13, 8, 14]: is this apparent uniqueness due to
the choice of space-time rather than space-frequency cost functionals, to the choice of a rather small
search domain, or to some other cause?. More generally, the question arises as to how to interpret
a cost functional that possesses a single, relatively-deep minimum and several relatively-shallow
minima [3, 2, 14, 6]: is this the consequence of errors or bad choices in the recording and processing
of data and/or of the choice of retrieval model, and/or due to some other cause such as uncertainty
of the values ascribed to the priors in the set Q? It is difficult to provide rational answers to such
questions in the usually-encountered seismic inverse problems which involve many to-be-retrieved
parameters and mathematically (and/or numerically)-elaborate retrieval models. This is why it
appears to be opportune to focus attention on a seismic IP involving the retrieval of only a single
parameter, from simulated (i.e., synthetic) data (as opposed to real data that is affected by noise
and other uncontrollable errors), via an extremely-simple retrieval model.

Our inverse problem (in some respects similar to the ones treated in [3, 13]) concerns the retrieval
of the material constant constituted by the real part of the shear wavespeed c0 of a hard rock-like
underground probed by a natural or man-made seismic disturbance (impulsive body wave) radiated
by sources rather far underneath the ground. The data is furnished by the total shear-horizontal
body wave response registered either at one, or several, point-like sensors located beneath or on
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the ground.

1.1 Physical configuration and governing equations

The scattering configuration is a half space (termed: underground) bounded by a planar, stress-free
surface (termed: ground). The half-space is infinite in the x and z directions of the Oxyz cartesian
coordinate system. Its intersection with the xOy plane defines (see fig.1):
i) the boundary Γ1 = {y = y1 = const. ; ∀x ∈ R}, and
ii) the half-plane region Ω0 = {y < y1 ; ∀x ∈ R}, which is unbounded in the x-direction and of
half-infinite extent in the y-direction,

Figure 1: Problem configuration in the xOy plane. Γ is denoted by the dark line.

It is assumed that Ω0 is filled with a linear, homogeneous, isotropic, possibly lossy, time-invariant
(underground) medium M0. The latter is characterized by the generally-complex, scalar, material

constant c0 related to the (generally-complex) rigidity µ0 and density ρ0 by c0 =
√

µ0
ρ0
.

The underground is probed by a shear-horizontal elastodynamic wave emitted by a cylindrical
source (with generator parallel to the z axis) far beneath the ground, so that the wave takes the
form of a SH plane wave (only the z-component of the displacement associated with this wave is
non-nil) in the vicinity of the stress-free (SF) boundary.

The SF nature of the boundary as well as the polarization of the incoming wave are responsible
for the fact that the scattered displacement field is also SH-polarized (i.e., only its z-component
is non-nil) and independent of z. Consequently, the problem is two-dimensional and is henceforth
analyzed in the x − y (sagittal) plane. Moreover the SF character of the boundary makes it
impossible for the incident wave to penetrate into the half-space above the boundary, so that only
the field below this boundary is of concern hereafter.

Let u0(x, t) (with t the time and x the vector joining the origin O to the point (x, y)) be
the z-component of the total field in Ω0. This field is the sum of the incident field u+0 (x, t) and
(z-component of the) scattered field u−0 (x, t):

u0(x, t) = u+0 (x, t) + u−0 (x, t) . (1)
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We express u0 by the Fourier transform (in which ω is the angular frequency)

u0(x, t) =

∫ ∞

−∞
u0(x, ω) exp(−iωt)dω , (2)

with similar expressions for u+0 and u−0 so that the essential task (in both the forward and inverse
scattering contexts) is to determine u0(x, ω) constituting the response, at a sensor situated at x,
to the solicitation constituted by u+(x, ω), the latter (an incoming wave with respect to O) being
expressed by

u+0 (x, ω) = s(ω)v+(x, ω) , (3)

wherein

v±(x, ω) = exp[iωξ±(x)] , ξ±(x) =
x sin θi ± (y − y1) cos θ

i

c0
, (4)

with s(ω) the spectrum of the excitation pulse such that s(−ω) = s∗(ω) (∗ designating the complex
conjugate), c′0 = ℜc0 ≥ 0, c′′0 = ℑc0 ≤ 0, and |θi| < π

2 so that cos θi > 0, with θi the incident angle.
The governing equations are:(

∆+
ω2

c20

)
u±0 (x, ω) = 0 ; x ∈ Ω0 , (5)

u−0 (x, ω) = u0(x, ω)− u+0 (x, ω) ∼ wave that is outgoing from O ; ∥x∥ → ∞, , x ∈ Ω0 , (6)

µ0∂yu0(x, ω) = 0 ; x ∈ Γ , (7)

the last relation being the translation of the fact that the boundary is stress-free.

2 Solution of the forward problem in the space-frequency domain

It is easy to show that the solution of the boundary-value problem expressed by (1)-(7) is

u−0 (x, ω) = s(ω)v−(x, ω) , (8)

so that the total field is
u0(x, ω) = s(ω)v+(x, ω) + s(ω)v−(x, ω) . (9)

3 Solution of the forward problem in the space-time domain

The sought-for solution is

u0(x, t) =

∫ ∞

−∞
s(ω)[exp(iωξ+(x)) + exp(iωξ−(x))] exp(−iωt)dω , (10)
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3.1 Case of a flat excitation spectrum for all ω

We first treat the (ideal) case in which c0 is real and

s(ω) = ι exp(iψω) ; ∀ω ∈ R , (11)

wherein ι and ψ are real constants with respect to ω. It ensues that

u±0 (x, t) = ι

∫ ∞

−∞
exp

[
iω

(
ξ±(x) + ψ − t

)]
dω = 2πιδ

(
t− ψ − ξ±(x)

)
, (12)

with δ( ) the Dirac delta distribution. The total space-time field at point (x, y) is then

u0(x, t) = 2πιδ
(
t− ψ − ξ+(x)

)
+ 2πιδ

(
t− ψ − ξ−(x)

)
, (13)

which represents two spike-like pulses occurring at t = t+ = ψ + ξ+ and t = t− = ψ + ξ−.
We find

t− − t+ = −2(y − y1) cos θ
i

c0
≥ 0 , (14)

for y ≤ y1, which shows that the pulse associated with the scattered wave arrives later (or at the
same time) as the pulse associated with the incident wave at the point (x, y ≤ y1).

3.2 Case of a flat band-limited (i.e., rectangular) excitation spectrum

We now treat the less-idealized case in which c0 is real and

s(ω) =
{ ι exp(iψ) ; ∀ω ∈ [α, β]

0 ; ∀ω /∈ [α, β]
, (15)

wherein ι and ψ are again real constants with respect to ω. It ensues that

u±0 (x, t) = ι

∫ β

α
s(ω) exp

[
iω

(
ξ±(x) + ψ − t

)]
dω =

ι(β − α) cos

[(
β + α

2

)(
t− ψ − ξ±(x)

)]
sinc

[(
β − α

2

)(
t− ψ − ξ±(x)

)]
, (16)

wherein sinc(x) = sinx
x .

The total space-time field at point (x, y) is then

u0(x, t) = ι(β − α) cos

[(
β + α

2

)(
t− ψ − ξ+(x)

)]
sinc

[(
β − α

2

)(
t− ψ − ξ+(x)

)]
+

ι(β − α) cos

[(
β + α

2

)(
t− ψ − ξ−(x)

)]
sinc

[(
β − α

2

)(
t− ψ − ξ−(x)

)]
, (17)

which represents two more or less-wide pulses whose amplitudes are extremal at t = t+ = ψ + ξ+

and t = t− = ψ + ξ−. As previously, the pulse associated with the scattered wave arrives later (or
at the same time) as the pulse associated with the incident wave at the point (x, y ≤ y1).
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4 Travel-time inversion (TTI) for the retrieval of c0 from the signal
recorded at a single sensor

Again, we assume c0 is real. We saw, in the previous two sections, that the signal recorded at a
single sensor located at (x0, y0) consists of two pulses whose extrema are located at t+ and t− given
by

t± =
x0 sin θ

i ± (y0 − y1) cos θ
i

c0
, (18)

We assume that this signal (an amplitude versus time recording) is actually measured, and from this
signal we are able to accurately pinpoint the instants t+ and t− at which the signal is extremal.
Furthermore, we assume that the depth y0 of the sensor is accurately known as is the angle of
incidence θi. On the contrary, we have no knowledge of either x0, ι and ψ, but, as we shall see,
this is of no consequence. Therefore, the data for the TTI is t+ and t−, supplemented by the
supposedly-known parameters y0, and θ

i.

As before, we find (14) from which it follows that c0 = 2(y1−y0) cos θi
t−−t+ which shows that putting

the sensor on the stress-free surface leads to trouble in this TTI scheme. An acceptable alternative
is to bury the sensor at y0 = y1 − ε, with ε > 0 a supposedly-known quantity, whence c0 =

2ε cos θi

t−−t+ .
This is (an admittedly-primitive, due to the simplicity of the assumed geophysical configuration)
TTI result for the retrieval of c0, but has the virtue of showing that the accuracy of the retrieval
of c0 depends very much on the error of the data t− − t+ and somewhat on the error of y0 (or ε)
and θi.

5 Relation of the SPRCFI and SIRCFI cost functions

The drawbacks of (linear) TTI, in connection with the retrieval of the geometrical and mechanical
parameters of more-typical geophysical configurations, are well-documented [16, 1]: inadequacy of
models such as multilayers with plane-parallel interfaces, travel-time picking errors due amongst
other factors to wave dispersion, the fact that arrivals with the lowest signal-to-noise ratio are
not picked, etc. This (among other reasons) has led to the development of (nonlinear), frequency-
domain [17, 16, 12, 3, 19, 14, 22] and time-domain [20, 21, 22, 8, 13] (so-called) full-waveform
inversion (FWI) techniques [22]. The advantages and drawbacks of the two techniques are compared
in [5]. A refreshing critique of FWI is given in [23].

Recall that, in the present investigation, the data is not actually measured, but rather simu-
lated. This requires a data simulation model which we choose to be mathematically identical to the
parameter retrieval model.

Let p be the set of true parameters involved in the data simulation model. The set p, like its
counterpart P of the retrieval model, is composed of two subsets: r comprising the to-be-retrieved
parameters and q the remaining parameters. p is implicit in real (measured) data and explicit
in (i.e., required to generate) simulated data. This means that the cost functional, employed to
retrieve R ⊂ P, is blind to r ⊂ p and q, since it only sees the response data (be it measured or
simulated).

The present study is mostly concerned with the case in which r = {r1}, and r1 is the real
part of the phase velocity of shear waves in the underground. Moreover, the set Q of the retrieval
model (analogous to the set q of the data simulation model) is composed of the parameters (called
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priors or nuisance parameters) that are fixed during the inversion and considered to be known,
although with some uncertainty, for one or all of them. This uncertainty accounts for the fact that,
in general, we are not committing the inverse crime (a situation that arises when all the priors in
the retrieval model are identical to their counterparts in the data-simulation model and the two
models are mathematically-identical) even though we are employing a parameter retrieval model
that is mathematically-identical to the data simulation model [25].

Let the (measured or simulated) space-frequency data be u(r,q, ω) for ω in some interval (to
be consistent with the term FWI, this frequency interval should be infinite). The limits of this
interval, as well as the coordinates of the sensor(s) are parameters, amongst others, of the set q.
The corresponding parameter retrieval model involves U(R,Q, ω) for ω in some interval, and sensor
locations, that are usually different (due to the previously-mentioned uncertainty) from those of
the true data.

Let the (true) space-time data be u(r,q, t) for t in some interval (to be consistent with the
term FWI, this temporal interval should be infinite). The limits of this interval, as well as the
coordinates of the sensor(s) are parameters, amongst others, of the set q. The corresponding
parameter retrieval model involves U(R,Q, t) for t in some interval, and sensor locations, that are
usually different (due to the previously-mentioned uncertainty) from those of the true data.

The SIRCFI cost functional is

C(R,Q) =

∫ ∞

−∞
∥U(R,Q, t)− u(r,q, t)∥2dt , (19)

and the aim is to obtain, by minimization of C, a set of values R̃ which is as close as possible to
the true set r. Note that, owing to the fact that the space-time fields are real, the ∥ ∥ sign can be
replaced by ( ).

The SPRCFI cost functional is

K(R,Q) =

∫ ∞

−∞
∥U(R,Q, ω)− u(r,q, ω)∥2dω , (20)

and the aim is to obtain, by minimization of K, a set of values R̃ which is as close as possible to
the true set r. Note that U and u are complex functions of ω.

The question is: how does (19) relate to (20)? Recall that the signals U, u are related to their
spectra U, u respectively via the Fourier transforms

U(R,Q, t) =

∫ ∞

−∞
U(R,Q, ω) exp(−iωt)dω , u(r,q, t) =

∫ ∞

−∞
u(r,q, ω) exp(−iωt)dω . (21)

After inserting (21) into (19), changing the orders of integration, making use of∫ ∞

−∞
dt e−i(ω−ω

′)t = 2πδ(ω − ω′) , (22)

and of the sifting property of the Dirac distribution, we obtain

C(R,Q) = 2πK(R,Q) , (23)

which is an expression of Parseval’s theorem [12, 22].
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It follows immediately that if the cost functional C exhibits deep minima, thenK will exhibit the
same amount and locations of deep minima. Thus, least squares cost functions involving response
spectra give the same inversion result as least squares cost functions involving response signals.

This authorizes us to replace the SIRCFI method by the SPRCFI method to solve the inverse
problem (via the cost functional K). The enormous advantage of doing so makes itself felt in the
case in which the data is a (space-time) signal (as is usual) and the retrieval model is of the space-
frequency variety [17, 16, 3, 19, 14, 22]. In this case, we must make a single (for the single sets r,q)
Fourier transform to obtain the spectrum of the true data in the SPRCFI method, whereas in the
SIRCFI method we would have to make many Fourier transforms of U(R,Q, ω) for the set R that
is varied during the construction of the cost function.

6 Theoretical aspects of the SPRCFI method for single sensor
data

6.1 Definition of the SPRCFI cost functional for single sensor data

We now assume that the data is registered at a single point-like sensor located at (x0, y0) beneath
or on the ground and adopt the shorthand notation: K = K(R,Q), U(ω) = U0(R,Q, ω), u(ω) =
u0(r,q, ω), v

±(ω) = v±(x0, y0, ω) = exp(iωξ±), ξ± = ξ±(x0, y0). We saw that

u(ω) = s(ω)v(ω) = s(ω)v+(ω) + s(ω)v−(ω) , (24)

so that, employing a similar retrieval model, we have

U(ω) = S(ω)V (ω) = S(ω)V +(ω) + S(ω)V −(ω) , (25)

wherein (again for the homogeneous underground bounded by the stress-free ground at y = Y1
solicited by a plane wave)

V ±(ω) = exp(iωΞ±) , Ξ± =
X0 sinΘ

i ± (Y0 − Y1) cosΘ
i

C0
. (26)

The normalized SPRCFI cost functional for single sensor data is

κ =

∫∞
−∞ ∥u(ω)− U(ω)∥2dω∫∞

−∞ ∥u(ω)∥2dω
. (27)

6.2 The case of a rectangular excitation spectrum

If the spectrum s(ω) of u is assumed to be of finite bandwidth [α, β], it is reasonable to assume
that the spectrum S(ω) of U is also of finite (but not necessarily the same) bandwidth [A,B], so
that the integrals in the previous expression are necessarily over the finite bandwidth [ωb, ωe], the
issue of the relation of ωb to α, A and of ωe to β, B being considered further on. Consequently,

κ =

∫ ωe

ωb
∥u(ω)− U(ω)∥2dω∫ ωe

ωb
∥u(ω)∥2dω

=
K

K1
. (28)
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Owing to (24)-(25), we obtain

K =

∫ ωe

ωb

∥s(ω)v(ω)− S(ω)V (ω)∥2dω = K1 +K2 +K3 +K4 +K5 +K6 . (29)

wherein (with ∥s(ω)∥2 = ∥ι exp(iψω)∥2 = ι2, ∥S(ω)∥2 = ∥I exp(iΨω)∥2 = I2, s(ω)S∗(ω) =
ιIei(ψ−Ψ)):

K1 = ι2
∫ ωe

ωb

[
∥v+(ω)∥2 + 2ℜ

(
v+(ω)v−∗(ω)

)
+ ∥v−(ω)∥2

]
dω , (30)

K2 = −2ιIℜ
(
ei(ψ−Ψ)

∫ ωe

ωb

v+(ω)V +∗(ω)dω

)
, K3 = −2ιIℜ

(
ei(ψ−Ψ)

∫ ωe

ωb

v+(ω)V −∗(ω)dω

)
,

(31)

K4 = −2ιIℜ
(
ei(ψ−Ψ)

∫ ωe

ωb

v−(ω)V +∗(ω)dω

)
, K5 = −2ℜ

(
ιIei(ψ−Ψ)

∫ ωe

ωb

v−(ω)V −∗(ω)dω

)
,

(32)

K6 = I2

∫ ωe

ωb

[
∥V +(ω)∥2 + 2ℜ

(
V +(ω)V −∗(ω)

)
+ ∥V −(ω)∥2

]
dω . (33)

We can write
K1 = K11 +K12 +K13 , (34)

wherein, since there is no ambiguity as to the fact that in K1, [ωb, ωe] = [α, β]:

K11 = ι2
∫ β

α
∥v+(ω)∥2dω , K12 = 2ι2ℜ

∫ β

α
v+(ω)v−∗(ω)dω , K13 = ι2

∫ β

α
∥v−(ω)∥2dω . (35)

6.3 Cost functional relative to the homogeneous underground bounded by a
stress-free ground problem

Recalling the definitions of v±(ω) and V ±(ω), enables us to find, via (16):

K11 = ι2(β − α) cos

[(
β + α

2

)
(ξ+ − ξ+∗)

]
sinc

[(
β − α

2

)
(ξ+ − ξ+∗)

]
,

K12 = 2ι2(β − α) cos

[(
β + α

2

)
(ξ+ − ξ−∗)

]
sinc

[(
β − α

2

)
(ξ+ − ξ−∗)

]
,

K13 = ι2(β − α) cos

[(
β + α

2

)
(ξ− − ξ−∗)

]
sinc

[(
β − α

2

)
(ξ− − ξ−∗)

]
. (36)

We can also write
K6 = K61 +K62 +K63 , (37)

wherein, due to there being no ambiguity as to the fact that in K6, [ωb, ωe] = [A,B]:

K61 = I2

∫ B

A
∥V +(ω)∥2dω , K62 = 2I2ℜ

∫ B

A
V +(ω)V −∗(ω)dω , K13 = I2

∫ B

A
∥V −(ω)∥2dω ,

(38)

11



so that by proceeding as previously, we find

K61 = I2(B −A) cos

[(
B +A

2

)
(Ξ+ − Ξ+∗)

]
sinc

[(
B −A

2

)
(Ξ+ − Ξ+∗)

]
,

K62 = 2I2(B −A) cos

[(
B +A

2

)
(Ξ+ − Ξ−∗)

]
sinc

[(
B −A

2

)
(Ξ+ − Ξ−∗)

]
,

K63 = I2(B −A) cos

[(
B +A

2

)
(Ξ− − Ξ−∗)

]
sinc

[(
B −A

2

)
(Ξ− − Ξ−∗)

]
. (39)

We now turn to the terms involving the product of u+0 = sv+ and U−∗
0 = S∗V −∗ or u+∗

0 = s∗v+∗

and U−
0 = SV −, the question being how to relate ωb to α, A and ωe to β, B. Recall that β > α

and B > A. We assume, as is reasonable, that B > α and A < β. Then, only four situations are
possible: 1) A ≥ α and B ≤ α, 2) A ≥ α and B ≥ α, 3) A ≤ α and B ≤ α, 4) A ≤ α and B ≥ α.
In the first situation, S = s = 0 for ω < A and S = s = 0 for ω > B so that the only interval in
which the product sS∗ is non-zero is [A,B], whence ωb = A and ωe = B. In the second situation,
S = s = 0 for ω < A and S = s = 0 for ω > β so that the only interval in which the product
sS∗ is non-zero is [A, β], whence ωb = A and ωe = β. In the third situation, S = s = 0 for ω < α
and S = s = 0 for ω > B so that the only interval in which the product sS∗ is non-zero is [α,B],
whence ωb = α and ωe = B. In the fourth situation, S = s = 0 for ω < α and S = s = 0 for ω > β
so that the only interval in which the product sS∗ is non-zero is [α, β], whence ωb = α and ωe = β.

With this in mind, we find:

K2 = −2ιIℜ
(
ei(ψ−Ψ)

∫ ωe

ωb

eiω(ξ
+−Ξ+∗)dω

)
, K3 = −2ιIℜ

(
ei(ψ−Ψ)

∫ ωe

ωb

eiω(ξ
+−Ξ−∗)dω

)
,

K4 = −2ιIℜ
(
ei(ψ−Ψ)

∫ ωe

ωb

eiω(ξ
−−Ξ+∗)dω

)
, K5 = −2ℜιI

(
ei(ψ−Ψ)

∫ ωe

ωb

eiω(ξ
−−Ξ−∗)dω

)
, (40)

and again make use of (16) to obtain

K2 = −2ιI(ωe − ωb)ℜ
(
ei(ψ−Ψ) cos

[(
ωe + ωb

2

)
(ξ+ − Ξ+∗)

]
sinc

[(
ωe − ωb

2

)
(ξ+ − Ξ+∗)

])
,

K3 = −2ιI(ωe − ωb)ℜ
(
ei(ψ−Ψ) cos

[(
ωe + ωb

2

)
(ξ+ − Ξ−∗)

]
sinc

[(
ωe − ωb

2

)
(ξ+ − Ξ−∗)

])
,

K4 = −2ιI(ωe − ωb)ℜ
(
ei(ψ−Ψ) cos

[(
ωe + ωb

2

)
(ξ− − Ξ+∗)

]
sinc

[(
ωe − ωb

2

)
(ξ− − Ξ+∗)

])
,

K5 = −2ιI(ωe − ωb)ℜ
(
ei(ψ−Ψ) cos

[(
ωe + ωb

2

)
(ξ− − Ξ−∗)

]
sinc

[(
ωe − ωb

2

)
(ξ− − Ξ−∗)

])
.

(41)

6.4 Properties of the sinc function

Consider the function

σ(χ) = sinc(k−χ) =
sin(k−χ)

k−χ
, (42)
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wherein k− = ϖ−

c and χ are supposed to be real and ϖ− is one-half of a bandwidth (in our prob-
lem). This function:

1- is oscillatory, but its envelope decays as (k−χ)−1,
2- attains its maximal positive value = 1 at k−χ = 0,
3- attains its maximal negative value σ(k

−
χ) = −(3π2 )−1 at k−χ = ±3π

2 , i.e., at χ = ± 3π
2k− .

Consequently, σ(χ) is of the form of a (so-called main) pulse for χ ∈ [− 3π
2k− ,

3π
2k− ] and the width

of this pulse is all the smaller, the larger is k−. In other words, the sharpness of the main pulse
(its height/width) increases with increasing k−, or increasing ϖ−, the latter being one half the
bandwidth of the excitation spectrum.

6.5 Properties of the sinc cos product

Consider the function
υ(χ) = sinc(k−χ) cos(k+χ) , (43)

wherein k+ = ϖ+

c and ϖ+ is the mean frequency of the excitation spectrum. The cos term, which
modulates the sinc term, has maxima at χ = 2nπ

k+
; n ∈ Z, or, in other words, the frequency (in

terms of χ) of the cos term increases with k+. If account is not taken of this modulation, the main
pulse associated with υ(χ) becomes sharper with increasing k− and/or k+. Note that υ(0) = 1.

An interesting situation arises when k− ≈ 0 which we call the case of near-monochromaticity;
then sinc ≈ 1 which means that υ ≈ cos(k+χ) and the variation of this function (whose minima
≈ −1) is all the more rapid the larger is k+. This unfavorable situation, which is synonymous
with the occurrence of multiple deep minima in the cost function, can be avoided by increasing
the bandwidth k− of the excitation spectrum. The recognition of this fact is one of our principal
contributions to the (re-) introduction of the SPRCFI method.

Another interesting situation arises when k+ ≈ k− = k, which occurs for ωe >> ωb. Then υ ≈
sinc(2kχ) which represents an unmodulated signal the main pulse of which is twice as wide as the
previous modulated sinc function. Thus, by having the lower frequency of the excitation spectrum as
small as possible compared to the upper frequency, one is able to eliminate the annoying modulation-
induced secondary minima in the main pulse, but at the expense of reducing the sharpness of this
pulse. We shall see further on that this is the situation of the excitation spectra of typical moderate-
amplitude seismic signals.

6.6 Cost functional relative to the homogeneous, elastic underground bounded
by a stress-free ground problem of the retrieval of C0

The fact that the underground is elastic means that c0 (the parameter we wish to retrieve) is real
(i.e., c0 = c′0). Thus, we consider C0 likewise to be real (i.e., C0 = C ′

0). This is assumed in all that
follows and entails ξ±∗ = ξ± , Ξ±∗ = Ξ±. We define the new variables:

γ = β + α , η = β − α , (44)

which can be recognized as twice the central frequency and bandwidth respectively of the excitation
spectrum. The corresponding priors are G = B + A and E = B − A, whence (on account of the
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material in sects. 6.4 and 6.5)

K1(c0) = 2ι2η
(
1 + cos

[(γ
2

)
(ξ+ − ξ−)

]
sinc

[(η
2

)
(ξ+ − ξ−)

])
, (45)

K6(C0) = 2I2E
(
1 + cos

[(
G
2

)
(Ξ+ − Ξ−)

]
sinc

[(
E
2

)
(Ξ+ − Ξ−)

])
, (46)

K2(C0) = −2ιI(ωe − ωb) cos(ψ −Ψ) cos

[(
ωe + ωb

2

)
(ξ+ − Ξ+)

]
sinc

[(
ωe − ωb

2

)
(ξ+ − Ξ+)

]
,

K3(C0) = −2ιI(ωe − ωb) cos(ψ −Ψ) cos

[(
ωe + ωb

2

)
(ξ+ − Ξ−)

]
sinc

[(
ωe − ωb

2

)
(ξ+ − Ξ−)

]
,

K4(C0) = −2ιI(ωe − ωb) cos(ψ −Ψ) cos

[(
ωe + ωb

2

)
(ξ− − Ξ+)

]
sinc

[(
ωe − ωb

2

)
(ξ− − Ξ+)

]
,

K5(C0) = −2ιI(ωe − ωb) cos(ψ −Ψ) cos

[(
ωe + ωb

2

)
(ξ− − Ξ−)

]
sinc

[(
ωe − ωb

2

)
(ξ− − Ξ−)

]
.

(47)

We observe that:

1- K1 > 0 and K6 > 0 for reasonably-small |ξ+ − ξ−| and |Ξ+ − Ξ−|,
2- K1 does not depend on C0,
3- K2 < 0, K3 < 0, K4 < 0 and K5 < 0, if it assumed (as is reasonable) that ι and I have the same
signs and Ψ is not too different from ψ, and for reasonably-small |ξ+ − Ξ+|, |ξ+ − Ξ−|, |ξ− − Ξ+|,
|ξ− − Ξ−|.

This means that the establishment of a minimum in the global cost functional κ can only be the
result of one or all of the K2, K3, K4, K5 attaining their minimum negative value= −2ιI(ωe−ωb).
This occurs, as concerns K2, when ξ

+ − Ξ+ = 0, or for

C0 = C
(2)
0 = c0

(
X0 sinΘ

i + (Y0 − Y1) cosΘ
i

x0 sin θi + (y0 − y1) cos θi

)
. (48)

It occurs, as concerns K3, when ξ
+ − Ξ− = 0, or for

C0 = C
(3)
0 = c0

(
X0 sinΘ

i − (Y0 − Y1) cosΘ
i

x0 sin θi + (y0 − y1) cos θi

)
. (49)

It occurs, as concerns K4, when ξ
− − Ξ+ = 0, or for

C0 = C
(4)
0 = c0

(
X0 sinΘ

i + (Y0 − Y1) cosΘ
i

x0 sin θi − (y0 − y1) cos θi

)
. (50)

It occurs, as concerns K5, when ξ
− − Ξ− = 0, or for

C0 = C
(5)
0 = c0

(
X0 sinΘ

i − (Y0 − Y1) cosΘ
i

x0 sin θi − (y0 − y1) cos θi

)
. (51)
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These, and the previous, formulae enable us to predict several notable features of the cost function:

A- The single deepest minimum of the global cost functional should occur when all four C
(j)
0

are equal, and this happens when y0 = y1 and Y0 = Y1. Thus the deepest minimum occurs at

C
(1)
0 when the true sensor is on the stress-free surface (i.e., y0 = y1) and the prior Y1 is certain

(i.e., Y1 = y1). This happens, regardless of the uncertainty of X0 and Θi, but the accuracy of the
retrieval of C0 does depend on the uncertainty of X0 and Θi.
B- When, however, the true sensor is below the free surface (i.e., y0 < y1), and X0, Y0, Y1 and
Θi are certain, two deep minima of the component cost functionals occur at the same location

C
(2)
0 = C

(5)
0 = c0, with the (possibly-observable) occurrence of two other deep minima not located

at C0 = c0; this points to the possibility of the non-uniqueness of the parameter-retrieval problem
even in an inverse crime situation.
C- When any one of the priors X0, Y0, Y1 and Θi are uncertain, the gloabl cost functional may
exhibit multiple deep minima, none of which are at C0 = c0 or the cost functional may exhibit a
single deep minimum which is not at C0 = c0, this meaning that prior uncertainties generally have
the effect of producing non-unique retrievals or retrievals that are inaccurate.
D- To the question of how the central frequency and bandwidth of the excitation spectrum affects
the multiplicity of deep minima in the global cost functional, we refer the reader to the material in
sect. 6.5
E- It proves to be advantageous to plot (and look for the location of the minimum of this functional)
K versus 1/C0 rather than K versus C0 due to the fact that arguments of the sinc cos functions in
K depend on 1/C0 rather than on C0 .
F- K6 is a constant with respect to C0 whenever the sensor is on the stress-free surface (because
Y0 = Y1 ⇒ Ξ+ = Ξ−.
G- Although we are here studying one of the simplest seismic inverse problems, the number of
involved, non-linearly-related, parameters is considerable: ten true parameters forming the set p =
{x0, y0, c′0, c′′0, y1, θi, ι, ψ, α, β} and nine parameters forming the setQ = {X0, Y0, C

′′
0 , Y1,Θ

i, I,Ψ,A,B}.
H- To further simplify the problem, we suppose henceforth that C ′′

0 = c′′0 = 0 and that there is no
uncertainty on the priors Y1 and Ψ.

7 Numerical results for the SPRCFI method employing data reg-
istered at one sensor on the ground in a realistic geophysical
situation

The following results apply to a rectangular excitation spectrum and to the true parameter set:
x0 = 100 m, y0 = 100 m, c′0 = 3000 m/s, c′′0 = 0 km/s, y1 = 100 m, θi = 60◦, ι = 10−4 m, unless
specified otherwise.

Each of the following figures is composed of six panels. Let κj =
Kj

K1
. Then, the upper left,

middle and right panels depict the component costs κ2, κ3, κ4 respectively as a function of the
slowness 1/C0 whereas the lower left, middle and right panels depict κ5, κ6 and the total cost
κ respectively. The dashed vertical line in these panels indicates the target value 1/c0, with the
understanding that c0 = c′0 and C0 = C ′

0. The boldfaced numbers in the captions indicate which
numbers are changing from one figure to the next in a given set of figures.
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7.1 The inverse crime situation

The parameters corresponding to this inverse crime situation are: δx0 = X0−x0
x0

= 0, δy0 = Y0−y0
y0

=

0, δy1 = Y1−y1
y1

= 0, δθi =
Θi−θi
θi

= 0, δι =
I−ι
ι = 0, δψ = Ψ−ψ

ψ = 0, δγ = G−γ
γ = 0 and δη =

E−η
η = 0.
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7.1.1 Variable γ
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Figure 2: (a): θi = 60◦, η=60 Hz, γ=60.1 Hz (——), 70.1 Hz (-.-.-.-), 80.1 Hz (......). The global
minimum is at 2998 m/s for all three values of γ (3000 m/s for more samples along the 1/C0 axis.
(b): θi = 60◦, η=60 Hz, γ=150.1 Hz (——), 160.1 Hz (-.-.-.-), 170.1 Hz (......). The global
minimum is at 2998 m/s for all three values of γ.

In fig. 2, we observe, in agreement with the theoretical prediction in sect. 6.5, that increasing γ
increases the amount of secondary minima. Since we are in the inverse crime situation, the retrievals
(via the position of the global minimum) are nose-on to the target, and all the component cost
functionals are identical except κ6 which is constant with respect to 1/C0 due to property F in
sect. 6.6. This feature is common to all the following results pertaining to a sensor located on the
free surface.
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7.1.2 Variable η
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Figure 3: (a): θi = 60◦, γ=60.1 Hz, η = 20 Hz (——), 40 Hz (-.-.-.-), 60 Hz (......). The global
minimum is at 2998 m/s for all three values of η.
(b): θi = 60◦. γ=60.1 Hz. η = 6 Hz (——), 12 Hz (-.-.-.-), 18 Hz (......). The global minimum is
at 2998 m/s for all three values of η.

In fig. 3, we observe, in agreement with the theoretical prediction in sect. 6.5, that decreasing
η produces the effect of increasing the depth of the troughs of the secondary minima. For the
smallest η, one is in the situation of near-monochromaticity whereby it becomes nearly-impossible
to distinguish the global minimum from the secondary minima. This fact constitutes one of the
principal findings of this investigation. It suggests the recommendation that to promote uniqueness
of retrievals (i.e., to tend towards the situation of a single deep minimum), one should choose (if
this is feasible) data obtained from probe radiation whose spectrum is as wide as possible.
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7.1.3 Variable θi
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Figure 4: θi = 60◦ (——), 70◦ (-.-.-.-), 80◦ (......). γ=60.1 Hz. η = 60 Hz. The target (- - - -) is at
3000 m/s, whereas the global minimum is at 2998 m/s for all three values of θi.

Fig. 4 shows that the aspect of the component and total cost functions is relatively insensitive
to θi, this being largely due to the facts that: we are in an inverse crime situation, the sensor is on
the ground and both γ and η are small.
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7.1.4 Variable x0
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Figure 5: x0 = 100 m (——), 200 m (-.-.-.-), 300 m (......). θi = 60◦. γ=60.1 Hz. η = 60 Hz. The
target (- - - -) is at 3000 m/s, whereas the global minimum is at 2998 m/s for all three values of x0.

Fig. 5 shows that the increasing x0 produces an effect (i.e., increasing the number of secondary
minima) on the cost functions that is similar to that of increasing γ.

7.2 The (usual) situation in which one or more priors are uncertain

The parameters corresponding to this inverse crime situation are: δx0 ̸= 0 and/or δy0 ̸= 0 and/or
δθi ̸= 0 and/or δι ̸= 0 and/or δγ ̸= 0 and/or δη ̸= 0.
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7.2.1 The only uncertain prior is Θi. Variable γ

0 1 2 3 4

x 10
−3

−0.6

−0.4

−0.2

0

0.2

0.4

1/C
0

κ 2

0 1 2 3 4

x 10
−3

−0.6

−0.4

−0.2

0

0.2

0.4

1/C
0

κ 3

0 1 2 3 4

x 10
−3

−0.6

−0.4

−0.2

0

0.2

0.4

1/C
0

κ 4

0 1 2 3 4

x 10
−3

−0.6

−0.4

−0.2

0

0.2

0.4

1/C
0

κ 5

0 1 2 3 4

x 10
−3

0

0.2

0.4

0.6

0.8

1

1/C
0

κ 6

0 1 2 3 4

x 10
−3

0

0.5

1

1.5

2

2.5

3

1/C
0

κ

(a)

0 1 2 3 4

x 10
−3

−0.6

−0.4

−0.2

0

0.2

0.4

1/C
0

κ 2

0 1 2 3 4

x 10
−3

−0.6

−0.4

−0.2

0

0.2

0.4

1/C
0

κ 3

0 1 2 3 4

x 10
−3

−0.6

−0.4

−0.2

0

0.2

0.4

1/C
0

κ 4

0 1 2 3 4

x 10
−3

−0.6

−0.4

−0.2

0

0.2

0.4

1/C
0

κ 5

0 1 2 3 4

x 10
−3

0

0.2

0.4

0.6

0.8

1

1/C
0

κ 6

0 1 2 3 4

x 10
−3

0

0.5

1

1.5

2

2.5

3

3.5

1/C
0

κ

(b)

Figure 6: (a): θi = 60◦, δθi = 0.13333, γ=60.1 Hz (——), 70.1 Hz (-.-.-.-), 80.1 Hz (......). η=60
Hz. The global minimum is at 3211 m/s for all three values of γ.
(b): θi = 60◦, δθi = 0.13333, γ=90.1 Hz (——), 100.1 Hz (-.-.-.-), 110.1 Hz (......). η=60 Hz. The
global minimum is at 3211 m/s for all three values of γ.

In fig. 6 we see that, due to the relatively-small uncertainty in Θi, the overall behavior of the
cost functions with respect to 1/C0 and changes of γ is similar to what was found in the inverse
crime situation. However, the retrieval of the velocity is somewhat off-target (as manifested by a
small shift of the position of the global minimum) due to the fact that Θi ̸= θi.
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7.2.2 The only uncertain prior is Θi. Variable η
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Figure 7: θi = 60◦. δθi = 0.13333. γ=60.1 Hz. η = 20 Hz (——), 40 Hz (-.-.-.-), 60 Hz (......). The
target (- - - -) is at 3000 m/s, whereas the global minimum is at 3211 m/s for all three values of γ.

The result, In fig. 7, together with the one in fig.6, show, in agreement with the theoretical
prediction A of sect. 6.6, that the position of the global minimum is independent of γ and ν, but
dependent on the discrepancy between Θi and θi.
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7.2.3 The only uncertain prior is G. Variable η
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Figure 8: (a): θi = 60◦, δγ = 0.1, γ = 60.1 Hz, η = 20 Hz (——), 40 Hz (-.-.-.-), 60 Hz (......). The
global minimum is at 2998 m/s for all three values of η.
(b): θi = 60◦, δγ = 0.1, γ = 60.1 Hz, η = 6 Hz (——), 12 Hz (-.-.-.-), 18 Hz (......). The global
minimum is at 2998 m/s for all three values of η.

The results in fig. 8 show, in agreement with the theoretical prediction A of sect. 6.6, that
the position of the global minimum is independent of η and δγ . However, the shape of the cost
functional does depend on these parameters, with (as in the inverse crime situation) the secondary
minima becoming deeper as η is decreased, which fact again underlines the necessity of employing
probe radiation whose bandwidth is as large as possible. Since, in this case, there is no discrepancy
between Θi and θi, the retrieval is nose-on the target.
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7.2.4 The only uncertain prior is E. Variable η
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Figure 9: (a): θi = 60◦, δη = 0.1, γ = 60.1 Hz, η = 20 Hz (——), 40 Hz (-.-.-.-), 60 Hz (......). The
global minimum is at 2998 m/s for all three values of η.
(b): θi = 60◦, δη = 0.1. γ = 60.1 Hz, η = 6 Hz (——), 12 Hz (-.-.-.-), 18 Hz (......). The global
minimum is at 2998 m/s for all three values of η.

The results in fig. 9 show, in agreement with the theoretical prediction A of sect. 6.6, that the
position of the global minimum is independent of η and δη. The same remarks as in the previous
section hold here as well.
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7.2.5 The only uncertain prior is I. Variable ι
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Figure 10: θi = 60◦. δι = 0.1. γ = 60.1 Hz. η = 60 Hz. ι = 1× 10−4 m (——), 2× 10−4 m
(-.-.-.-), 3× 10−4 m (......). The target (- - - -) is at 3000 m/s, whereas the global minimum is at
2998 m/s for all three values of I.

The result in fig. 10 shows, in agreement with the theoretical prediction A of sect. 6.6, that
the position of the global minimum is independent of ι and δι. This property also applies to the
shape of the cost function.
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7.2.6 The only uncertain prior is Θi. Variable θi
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Figure 11: δθi = 0.1. γ = 60.1 Hz. η = 60 Hz. θi = 60◦ (——), 65◦ (-.-.-.-), 70◦ (......). The target
(- - - -) is at 3000 m/s, whereas the global minimum is at 3164 m/s, 3140 m/s and 3111 m/s, for
the three values of θi respectively.

The result in fig. 11 shows, in agreement with the theoretical prediction A of sect. 6.6, that the
position of the global minimum is weakly-independent on θi and (for reasonably-small) δθi . This
weak dependence is also true as concerns the shape of the component and total cost functions.
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7.2.7 The only uncertain prior is X0. Variable x0
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Figure 12: δx0 = 0.1. γ = 60.1 Hz. η = 60 Hz. x0 = 100 m (——), 200 m (-.-.-.-), 300 m (......).
The target (- - - -) is at 3000 m/s, whereas the global minimum is at 3300 m/s for all three values
of x0.

The result in fig. 12, relative to a situation in which δθi = 0, shows, in agreement with the
theoretical prediction A of sect. 6.6, that the position of the global minimum is independent of x0
but dependent on δx0 . However, increasing x0 increases the number of secondary minima without
an effect of deepening the latter.
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8 Numerical results for the SPRCFI method employing data reg-
istered at one sensor below the ground in a realistic geophysical
situation

The following results, relative to a buried sensor, apply to a rectangular excitation spectrum and
to the true parameter set: c′0 = 3000 m/s, c′′0 = 0 km/s, y1 = 100 m, θi = 60◦, ι = 10−4 m, unless
specified otherwise.

8.1 The inverse crime situation

The parameters corresponding to this situation are: δx0 = 0, δy0 = 0, δy1 = 0, δθi = 0, δι = 0,
δα = 0 and δβ = 0.

8.1.1 Variable y0, relatively-large bandwidth
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Figure 13: (a): γ = 60.1 Hz, η = 60 Hz, y0 = 50 m (——), 75 m (-.-.-.-), 100 m (......). The global
minimum is at 2998 m/s for all three values of y0 (3000 m/s for more samples along the 1/C0 axis).
(b): γ = 60.1 Hz, η = 60 Hz, y0 = 0 m (——), 10 m (-.-.-.-), 20 m (......). The global minimum is
at 2998 m/s for all three values of y0.

The first observation concerning fig. 13, is, in agreement with the predictions of sect. 6.6, that
the component cost functions κ2, κ3, κ4, κ5 (and, in particular, the location of their principal
minima) are now generally different one from the other (κ6 always is different from the other
component cost functions), this being true in all the following results pertaining to a buried sensor.
This has the effect of introducing supplementary, potentially deep, secondary minima in the total
cost function, even in situations in which previously there were no, or few, secondary minima in κ.
The results in these two figures show that this effect is all the more pronounced the deeper is the
sensor. Note that this is not a consequence of prior uncertainty since we are here in the inverse
crime situation.
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8.1.2 Variable y0, relatively-small bandwidth
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Figure 14: (a): γ = 60.1 Hz, η = 6 Hz, y0 = 50 m (——), 75 m (-.-.-.-), 100 m (......). The global
minimum is at 2998 m/s for all three values of y0 (3000 m/s for more samples along the 1/C0 axis).
(b): γ = 60.1 Hz, η = 6 Hz, y0 = 0 m (——), 10 m (-.-.-.-), 20 m (......). The global minimum is
at 2998 m/s for all three values of y0.

Fig. 14, shares with fig. 13 the characteristic that the component cost functions κ2, κ3, κ4, κ5, κ6
(and, in particular, the location of their principal minima) are now generally different one from the
other. This again has the effect of introducing supplementary, potentially deep, secondary minima,
an effect that is all the more pronounced the deeper is the sensor, so that for the deepest sensor
we nearly obtain a situation in which the global minimum can be located far from 1/c0. Note that
this is not a consequence of prior uncertainty since we are here in the inverse crime situation, but
rather one of sensor burial and near-monochromaticity of the excitation spectrum.
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8.2 The (usual) situation in which one or more priors are uncertain

The parameters corresponding to this situation are: δx0 ̸= 0 and/or δy0 ̸= 0 and/or δy1 ̸= 0 and/or
δθi ̸= 0 and/or δι ̸= 0 and/or δα ̸= 0 and/or and δβ ̸= 0.

8.2.1 Uncertainty on Y0. Variable y0
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Figure 15: (a): δy0 = 0.1, γ = 60.1 Hz, η = 60 Hz, y0 = 50 m (——), 75 m (-.-.-.-), 100 m (......).
The global minimum is at 2998 m/s for all three values of y0.
(b): δy0 = 0.1, γ = 60.1 Hz, η = 60 Hz, y0 = −25 m (——), 0 m (-.-.-.-), 25 m (......). The global
minimum is at 2998 m/s for all three values of y0.

The results in fig. 15, concerning both the component and total cost functions, follow essentially
the same pattern of shape changes, and the retrievals occur at the same value c0, as in sect. 8.1.1
due to the relative smallness of δy0 .
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8.2.2 Uncertainty on Θi. Variable y0
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Figure 16: (a): δθi = 0.1, γ = 60.1 Hz, η = 60 Hz, y0 = −25 m (——), 0 m (-.-.-.-), 25 m (......).
The global minimum is at 2916 m/s, 3069 m/s and 3134 m/s for the three values of y0 respectively.
(b): δθi = 0.1, γ = 60.1 Hz, η = 60 Hz, y0 = 50 m (——), 75 m (-.-.-.-), 100 m (......). The global
minimum is at 3158 m/s, 3164 m/s and 3164 m/s for the three values of y0 respectively.

The results in fig. 16, concerning both the component and total cost functions, follow essentially
the same pattern of shape changes as in sect. 8.1.1. The retrievals occur at values of C0 that are
not very far from c0 due to the relative smallness of δθi .
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8.2.3 Fixed uncertainty of Θi, variable uncertainty of I for two search intervals.

We now turn to the issue of the influence of the choice of search interval. In the preceding figures
we deliberately chose this interval of C0 to be large (in fact: [3× 102, 3× 104] m/s encompassing
the target c0 = 3×103 m/s) because we assumed that very little was known a priori as to the actual
value of the wavespeed, and even less so as to what value of C0 would correspond to the global
minimum of the cost functional in the presence of prior uncertainties. Choosing a wide search
interval is a penalizing operation from at least two points of view: 1) it increases the cost of finding
the global minimum of the cost functional κ, and 2) it increases the risk of encountering secondary
minima that are generally-annoying features of κ. On the other hand, if the search interval is chosen
to be relatively-narrow, we run the risk of either finding no minimum whatsoever (see an example
of this in [13]) or simply a local minimum of κ. In either case, the choice of search interval is a
crucial aspect of parameter retrieval inverse problems. To illustrate this, we plot, in the following
figures, and then in sect. 9, the retrieved value C̃0 of C0 (as obtained from the position of the
global minimum in the chosen search interval) versus one of the uncertain priors, for two search
intervals.
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Figure 17: (a): X0 = x0 = 100 m, Y0 = y0 = 50 m, Y1 = y1 = 100 m, θi = 60◦, Θi = 50◦,
ι = 1 × 10−4, G = γ = 0.05 Hz, E = η = 40 Hz. The target (- - - -) is at 3000 m/s. (——-)
corresponds to the search interval C ′

0 ∈ [3 × 10
2
, 3 × 10

4
] m/s. (-.-.-.-.) corresponds to the search

interval C ′
0 ∈ [1× 103, 4× 103] m/s.

(b): X0 = x0 = 100 m, Y0 = y0 = 50 m, Y1 = y1 = 100 m, θi = 60◦, Θi = 70◦, ι = .5 × 10−4,
G = γ = 0.05 Hz, E = η = 40 Hz. The target (- - - -) is at 3000 m/s. (——-) corresponds
to the search interval C ′

0 ∈ [3 × 10
2
, 3 × 10

4
] m/s. (-.-.-.-.) corresponds to the search interval

C ′
0 ∈ [1× 103, 4× 103] m/s.

In fig. 17, we observe that the retrievals are indifferent to the choices of search interval, the reason
for this being simply that the global minimum of κ is included in both search intervals. The small
difference of the two curves is due to the fact that we chose the same number of discrete samples
(in terms of C0) of κ for the large as for the small search interval. Incidentally, this figure illustrates
the fact that the impact of I uncertainty varies significantly with the uncertainty of Θi.
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8.2.4 Variable uncertainty of Θi for two search intervals. No uncertainty on the other
priors. Sensors at three depths.
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Figure 18: X0 = x0 = 100 m. Y0 = y0 = 70 m. Y1 = y1 = 100 m. θi = 60◦. I = ι = 1 × 10−4.
G = γ = 0.05 Hz. E = η = 40 Hz. The target (- - - -) is at 3000 m/s. (——-) corresponds
to the search interval C ′

0 ∈ [3 × 10
2
, 3 × 10

4
] m/s. (-.-.-.-.) corresponds to the search interval

C ′
0 ∈ [1× 103, 4× 103] m/s. The same curves are obtained for Y0 = y0 = 90 m and Y0 = y0 = 100

m.

In fig. 18, we observe once again that the retrievals are indifferent to the choices of search
interval, the reason for this being simply that the global minimum of κ is included in both search
intervals. Incidentally, this figure (together with two others not shown here) illustrates the fact
that the retrievals vary significantly with the uncertainty of Θi, but not at all with Y0 = y0.
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8.2.5 Variable uncertainty of G for two search intervals. Two fixed uncertainties on
Θi. No uncertainty on the other priors.
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Figure 19: (a): X0 = x0 = 100 m, Y0 = y0 = 100 m, Y1 = y1 = 100 m, θi = 60◦, Θi = 40◦,
I = ι = 1 × 10−4, γ = 0.05 Hz, E = η = 40 Hz. The target (- - - -) is at 3000 m/s. (——-)
corresponds to the search interval C ′

0 ∈ [3 × 10
2
, 3 × 10

4
] m/s. (-.-.-.-.) corresponds to the search

interval C ′
0 ∈ [1× 103, 4× 103] m/s.

(b): X0 = x0 = 100 m, Y0 = y0 = 100 m, Y1 = y1 = 100 m, θi = 60◦, Θi = 80◦, I = ι = 1× 10−4,
γ = 0.05 Hz, E = η = 40 Hz. (——-) corresponds to the search interval C ′

0 ∈ [3× 10
2
, 3× 10

4
] m/s.

(-.-.-.-.) corresponds to the search interval C ′
0 ∈ [1× 103, 4× 103] m/s.

In fig. 19, the retrievals are found, once again, to be indifferent to the choices of search interval,
the reason for this being simply that the global minimum of κ is included in both search intervals.
Incidentally, this figure illustrates the fact that the retrievals do not vary at all with the uncertainty
of G, be it for one, or for the other values of Θi ̸= θi.
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8.2.6 Variable uncertainty of E for two search intervals. Fixed uncertainty on Θi. No
uncertainty on the other priors. Sensors at three depths.
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Figure 20: (a): X0 = x0 = 100 m, Y0 = y0 = 100 m, Y1 = y1 = 100 m, θi = 60◦, Θi = 80◦,
I = ι = 1 × 10−4, I = 1 × 10−4, G = γ = 0.05 Hz, η = 40 Hz. (——-) corresponds to the search
interval C ′

0 ∈ [3×10
2
, 3×10

4
] m/s. (-.-.-.-.) corresponds to the search interval C ′

0 ∈ [1×103, 4×103]
m/s.
(b): X0 = x0 = 100 m, Y0 = y0 = 70 m, Y1 = y1 = 100 m, θi = 60◦, Θi = 80◦, I = ι = 1 × 10−4,
I = 1 × 10−4, G = γ = 0.05 Hz, η = 40 Hz. (——-) corresponds to the search interval C ′

0 ∈
[3× 10

2
, 3× 10

4
] m/s. (-.-.-.-.) corresponds to the search interval C ′

0 ∈ [1× 103, 4× 103] m/s.
(c): X0 = x0 = 100 m, Y0 = y0 = 10 m, Y1 = y1 = 100 m, θi = 60◦, Θi = 80◦, I = ι = 1 × 10−4,
I = 1 × 10−4, G = γ = 0.05 Hz, η = 40 Hz. (——-) corresponds to the search interval C ′

0 ∈
[3× 10

2
, 3× 10

4
] m/s. (-.-.-.-.) corresponds to the search interval C ′

0 ∈ [1× 103, 4× 103] m/s.

In fig. 20, once again, the retrievals are found to be indifferent to the choices of search interval,
the reason for this being simply that the global minimum of κ is included in both search intervals.
Incidentally, these figures illustrate the fact that the retrievals do not vary at all with the uncertainty
of E as long as the sensor is on or near (but below) the ground, but do vary somewhat with E as
soon as Y0 = y0 = 10 m.

Lest we be fooled by these results pointing to the apparent independence of the retrievals on
the choices of search interval, we now turn to a case in which the situation is entirely different.
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9 Numerical results for the SPRCFI method employing data reg-
istered at one sensor below the ground in a less-realistic (high-
frequency) geophysical situation

The results here apply to a rectangular, but now relatively-high frequency excitation spectrum, not
usually encountered in natural seismic signals, but chosen to illustrate some pathological features
of cost functions that can be encountered when the underground is probed by radiation from non-
natural (e.g., vibrator [24]) sources. Again, the true parameter set is: c′0 = 3000 m/s, c′′0 = 0 km/s,
y1 = 100 m, θi = 60◦, ι = 10−4 m, unless specified otherwise.

9.1 The (usual) situation in which one or more priors are uncertain

The parameters corresponding to this situation are: δx0 ̸= 0 and/or δy0 ̸= 0 and/or δθi ̸= 0 and/or
δι ̸= 0 and/or δα ̸= 0 and/or and δβ ̸= 0.

9.1.1 Uncertainty on Y0. Variable y0
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Figure 21: (a): δθi = 0.13333, δy0 = 0.1, γ = 380 Hz, η = 180 Hz, y0 = 50 m (——), 57.5 m (-.-.-.-),
65 m (......). The global minimum is at 2735 m/s, 2865 m/s, 3140 m/s, for the three values of y0
respectively.
(b): δθi = 0.13333, δy0 = 0.2, γ = 380 Hz, η = 180 Hz, y0 = 50 m (——), 57.5 m (-.-.-.-), 65
m (......). The global minimum is at 2602 m/s, 1220 m/s, 3161 m/s, for the three values of y0
respectively.
(c): δθi = 0.13333, δy0 = 0.3, γ = 380 Hz, η = 180 Hz, y0 = 50 m (——), 57.5 m (-.-.-.-), 65
m (......). The global minimum is at 1199 m/s, 1208 m/s, 3185 m/s, for the three values of y0
respectively.

With regard to fig. 21, we are now in the situation in which each of the component cost
functions is dominated by the principal pulse of the sinc function whose position is rather well
separated from one component to the other. This has the effect of producing four to five (related
to the number of component cost functions) deep minima in the total cost functional κ. As the
uncertainty concerning the depth of the sensor, as well as the depth itself, are varied, the way these
component cost functions combine varies also, so as to promote (i.e., increase the depth of) one
of these component troughs at the expense of the others. As the location of the extrema of the
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various sinc functions can be rather far-removed from 1/c0, the retrievals, corresponding to the
global minimum of κ, can turn out to be (as observed) far-removed from the target. Note should
also be taken of the important influence of the deep trough of κ6 in shaping the total cost functional
κ.

9.1.2 Uncertainty of Θi. The effect of changing the search interval.

In figs. 22-23, we change the pictorial organization. The top panel corresponds to the component
cost functions κ1, κ2, κ3, κ4, κ5, κ6 as a function of 1/C0, whereas the bottom panel corresponds
to κ as a function of 1/C0. Each figure concerns only a single choice of true and prior parameters
as well as a single choice of search interval. The last figure in this section, i.e., fig. 24, depicts the
retrievals as a function of a prior for two choices of search intervals.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

−4

−2

0

2

4

6

1/C
0

κ j

 

 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

2

4

6

8

10

1/C
0

κ

κ
1

κ
2

κ
3

κ
4

κ
5

κ
6

Figure 22: X0 = x0 = 100 m. Y0 = y0 = 60 m. Y1 = y1 = 100 m. θi = 60◦, Θi = 76◦. I = ι = 10−4

m. γ = 380 Hz. η = 180 Hz. (——-) corresponds to the search interval C ′
0 ∈ [3× 10

2
,3× 10

4
]

m/s. The target is at 3000 m/s.
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Figure 23: X0 = x0 = 100 m. Y0 = y0 = 60 m. Y1 = y1 = 100 m. θi = 60◦, Θi = 76◦. I = ι = 10−4

m. γ = 380 Hz. η = 180 Hz. (——-) corresponds to the search interval C ′
0 ∈ [2× 10

3
,4× 10

3
]

m/s. The target is at 3000 m/s.
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Figure 24: Location of the global minimum as a function of Θi. X0 = x0 = 100 m. Y0 = y0 = 60 m.
Y1 = y1 = 100 m. θi = 60◦. I = ι = 10−4 m. γ = 380 Hz. η = 180 Hz. (——-) corresponds to the
search interval C ′

0 ∈ [3× 10
2
,3× 10

4
] m/s (first of two preceding graphs). (-.-.-.-.) corresponds

to the search interval C ′
0 ∈ [2× 103,4× 103] m/s (second of two preceding graphs). The target is

at 3000 m/s (- - - -).

In fig. 22, we observe that, due to the presence of the deep trough in κ6, the global minimum
is at 1270 m/s, which is very far from the target. However, there also exists a deep, secondary
minimum, much closer to the target. Fig. 23 differs from fig. 22 by the fact that the search interval
is much smaller, the effect being to eliminate the candidate minimum at 1270 m/s in favor of the
(formerly secondary, now global) minimum at 3185 m/s, which is reasonably near the target. In
figs. 22-23, the value of the prior Θi was fixed, whereas in fig. 24, it is varied and the position of the
global minimum of κ is recorded as obtained for the two different search intervals of the two previous
figures. The notable feature is the staircase-like behavior of the curve (—–), relative to the larger
search interval, which is another manifestation of prior uncertainty− induced retrieval instability
previously discovered in [18].

We now consider whether the employment of multi-sensor data enables to resolve this non-
uniqueness issue.

10 Theoretical aspects of the SPRCFI method for multisensor
data

10.1 Definition of the SPRCFI cost functional for single sensor data and rect-
angular excitation spectrum

We now assume that the data is registered at several point-like sensors located at (x01, y01),
(x012, y02),...,(x0N , y0N ) beneath or on the ground. We include the coordinates x0n within the
set qn and their perhaps-uncertain equivalents X0n within the set Qn. We adopt the shorthand
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notation: K = K(R,Qn), Un(ω) = U0(R,Qn, ω), un(ω) = u0(r,qn, ω). Eqs. (24)-(26) still apply,
but the definition of the normalized cost functional (formerly (52)) is now

κ =

∑N
n=1

∫∞
−∞ ∥un(ω)− Un(ω)∥2dω∑N
n=1

∫∞
−∞ ∥un(ω)∥2dω

. (52)

Since the spectrum s(ω) of u was assumed to be of finite bandwidth [α, β], it is reasonable to assume
that the spectrum S(ω) of U be also of finite (but not necessarily the same) bandwidth [A,B], so
that the integrals in the previous expression are necessarily over the finite bandwidth [ωb, ωe], the
issue of the relation of ωb to α, A and of ωe to β, B being as previously. Consequently,

κ =

∑N
n=1

∫ ωe

ωb
∥un(ω)− Un(ω)∥2dω∑N

n=1

∫ ωe

ωb
∥un(ω)∥2dω

. (53)

The sums in this expression makes it difficult to analyze the cost functional in the manner pre-
viously adopted for the single-sensor situation, so that we shall content ourselves with numerical
illustrations of the hoped-for property that multisensor data has the beneficial effect of deepening
the already deepest trough, while leveling out the other troughs, of the single-sensor cost function.

40



11 Numerical results for the SPRCFI method employing data reg-
istered at several sensors on the ground in a realistic geophys-
ical situation

The following results again apply to a rectangular excitation spectrum and to the true parameter
set: c′0 = 3000 m/s, c′′0 = 0 km/s, y1 = 100 m, θi = 60◦, ι = 10−4 m, α = .05 Hz, β = 40 Hz, unless
specified otherwise.

11.1 Inverse crime situation

The parameters corresponding to this situation are: X0 = x0, Y0 = y0, Θ
i = θi, A = α and B = β.

11.1.1 Variable number of sensors.
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Figure 25: (a): One sensor at x0 = 100 m. The target is at 3000 m/s, whereas the global minimum
is at 3001 m/s (3000 m/s for more sampling points along 1/C0 axis).
(b): Three sensors at x0 = 100, 200, 300 m. The global minimum is at 3001 m/s.
(c): Five sensors at x0 = 100, 200, 300, 400, 500 m. The global minimum is at 3001 m/s.

The results in fig. 25, , once again relative to a low-frequency situation, now of several equally-
spaced sensors on the ground whose positions are certain, show that increasing the number of
sensors has the favorable effect of narrowing and deepening the principal trough of κ while rendering
relatively-less deep the secondary minimum.. This effect is obtained without affecting the quality
of the retrieval, i.e., the position of the global minimum of κ is c0 whatever the number of sensors.
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11.2 Non-inverse crime situation

The parameters corresponding to this situation are: X0n ̸= x0 and/or Θi ̸= θi, Y0 = y0, A = α and
B = β.

11.2.1 Variable number of sensors. X0n = x0 + 10 m, Θi = θi, I = ι.
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Figure 26: (a): One sensor at x0 = 100 m. The global minimum is at 3301 m/s.
(b): Three sensors at x0 = 100, 200, 300 m. The global minimum is at 3129 m/s.
(c): Five sensors at x0 = 100, 200, 300, 400, 500 m. The global minimum is at 3083 m/s.

Fig. 26 is relative to an increasing number of sensors on the ground and low-frequency probe
radiation. Now, the positions of the sensors are uncertain by a fixed amount. We see that the
previously-found beneficial effects of increasing the number of sensors is maintained, but with
retrievals that depend on the uncertainty of the positions of the sensors. However, the retrieval
error does seem to diminish with the increase of the number of sensors.
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11.2.2 Variable number of sensors. X0 = x0, Θ
i = 68◦, I = ι.
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Figure 27: (a): One sensor at x0 = 100 m. The target is at 3000 m/s, whereas the global minimum
is at 3211 m/s.
(b): Three sensors at x0 = 100, 200, 300 m. The global minimum is at 3211 m/s.
(c): Five sensors at x0 = 100, 200, 300, 400, 500 m. The global minimum is at 3211 m/s.

Fig. 27, which is for increasing number of sensors on the ground and low-frequency probe
radiation, applies now to the case in which Θi is the uncertain prior. We saw previously (for one
sensor) that this produces a shift in the location of the global minimum of κ; here we see that the
beneficial effects of increasing the number of sensors is maintained without affecting the amount
of this shift. Thus, by comparison with fig. 26, the changing position of the global minimum is a
consequence of the uncertainty of the positions of the sensors, not of the uncertainty of Θi.
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11.2.3 Variable number of sensors. I = ι. Uncertain priors X0n = x0 + 10 m and
Θi = 68◦.
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Figure 28: (a): One sensor at x0 = 100 m. The global minimum is at 3534 m/s.
(b): Three sensors at x0 = 100, 200, 300 m. The global minimum is at 3351 m/s.
(c): Five sensors at x0 = 100, 200, 300, 400, 500 m. The global minimum is at 3301 m/s.

Fig. 28 applies to an increasing number of equally-spaced sensors on the ground for fixed
uncertainty on the X0 of each sensor and fixed uncertainty on Θi. Once again, it is seen that
increasing the number of sensors has the favorable effect of narrowing and deepening the principal
trough of κ, gradually shifting and stabilizing the position of the global minimum, while rendering
relatively-less deep the secondary minimum of K.
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12 Numerical results for the SPRCFI method employing data reg-
istered at several sensors below the ground in a high-frequency
situation

The following results again apply to several sensors below the ground, a high-frequency rectangular
excitation spectrum and to the true parameter set: c′0 = 3000 m/s, c′′0 = 0 km/s, y1 = 100 m,
θi = 60◦, ι = 10−4 m, α = 100 Hz, β = 280 Hz, unless specified otherwise.

12.1 Non-inverse crime situation

The parameters corresponding to this situation are: X0 = x0, Y0 ̸= x0 and/or Θi ̸= θi, Y1 = y1,
A = α and B = β.

12.1.1 Variation of the number of vertical sensors for fixed prior uncertainties on Y0j
m at each sensor and Θi.
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Figure 29: (a): θi = 60◦, Θi = 68◦, Y0 = y0 + 15 m. One sensor at X0 = x0 = 100 m, y0 = 30 m.
The global minimum is at 1691 m/s.
(b): θi = 60◦, Θi = 68◦, Y0 = y0 + 15 m. Two sensors at X0 = x0 = 100 m, Y0 = y0 + 15 m.
y0 = 30,40 m. The global minimum is at 1703 m/s.
(c): θi = 60◦, Θi = 68◦, Y0 = y0 + 15 m. Four sensors at X0 = x0 = 100 m, y0 = 30,40,50,60 m.
The global minimum is at 1680 m/s.
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Figure 30: (a): θi = 60◦, Θi = 68◦, Y0 = y0 + 15 m. Five sensors at X0 = x0 = 100 m,
y0 = 30,40,50,60,70 m. The global minimum is at 2879 m/s.
(b): θi = 60◦, Θi = 68◦, Y0 = y0+15 m. Six sensors atX0 = x0 = 100 m, y0 = 30,40,50,60,70,80
m. The global minimum is at 3028 m/s.
(c): θi = 60◦, Θi = 68◦, Y0 = y0 + 15 m. Seven sensors at X0 = x0 = 100 m, y0 =
30,40,50,60,70,80,90 m. The global minimum is at 3100 m/s.

The results in figs. 29-30 apply to the situation in which the number of sensors, equally-spaced
along a vertical line, is varied and the vertical position prior of each sensor is uncertain by the
amount of 15 m. We observe that, for up to four sensors, the position of the global minimum of the
cost functional K is far-removed from the target value c0. For five sensors, the situation changes
radically since the position of the global minimum is near the target value. For six or more sensors,
the position of the global minimum gradually converges to what appears to be the right location
(considering that the incident angle is uncertain).

13 Conclusion

This investigation, devoted to one of the simplest seismic inverse problems (IP) concerning the
retrieval of a single parameter from noise-free data, showed, above all, that the issues of what form
the cost functional takes (i.e., number of minima and depth of the primary and secondary minima
in the chosen search interval, optimal choice of search interval, dependence on the central frequency
and bandwidth of the excitation spectrum) and where its global minimum is located (as a function
of the search interval, the ten true parameters and the nine priors with varying uncertainty) is far
from being simple.

More precisely, the following was accomplished.
1- We (re-)introduced the spectral response (frequency domain) cost functional inversion (SPRCFI)
method as a useful alternative to the signal response (time domain) (SIRCFI) method (both being
variants of the full-waveform inversion (FWI) technique) for solving typical seismic parameter re-
trieval problems.
2- We (re-)demonstrated the theoretical equivalence of the SPRCFI and SIRCFI methods.
3- We showed that the SPRCFI (and thus the SIRCFI) cost function(s) can exhibit multiple deep
minima, even when the inverse crime is committed, and more often when the inverse crime is not
committed.
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4- We explained why these multiple minima can occur, notably due to the occurrence of deep min-
ima in the component cost functions.
5- We found algebraic expressions for the location, but unfortunately not the depth, of the prin-
cipal minima of the component cost functions (related in generally-complex manner to that of the
total cost function) as a (nonlinear) function of the true and nuisance parameters of the retrieval
problem,
6- We explained why some parameter retrieval problems seem to lead to single-minimum cost func-
tions (this being essentially due to low-frequency probe radiation and/or relatively-narrow search
intervals), in apparent contradiction with the notoriously ill-posed nature of IP,
7- We showed that multiple-minima cost functions are at least partly the result of small bandwidth
and/or high central frequency probe radiation (when such high frequencies are available)
8- We explained how retrieval error depends on the uncertainty of the parameters of the spectrum
and spatial aspects of the probe radiation as well as on the positions of the sensors (we qualify a
parameter as being uncertain by the fact that its assigned value, resulting from experiment, guess-
ing or borrowing from a published result, is incorrect in a sense akin to systematic measurement
error).
9- We discussed how to deal with multiple-minima cost functions (either in the inverse crime or
non-inverse crime situations), notably by increasing the number of sensors and properly choosing
their locations.
10- We discussed the issue of whether the global minimum of a cost functional always indicates the
”best” solution of the IP, notably in the presence of prior uncertainty.
11- We discussed the related issue of how the choice of search interval affects the existence, unique-
ness and stability of the retrieval.

The results obtained herein suggest that if more-complicated, more realistic, seismic inverse prob-
lems (involving many parameters, a host of which are priors) be treated by FWI techniques, then:
1) it is probable that the recommendations obtained for our simpler problem as to the interest of
employing relatively low central frequency, wide bandwidth probe radiation (notably when these
parameters can be chosen such as with non-natural sources), more than one sensors placed on the
ground rather than underground, and search spaces that are neither too large, nor too narrow, may
still be appropriate;
2) efforts should be devoted to taking into account prior uncertainties, notably to avoid commit-
ting the inverse crime when employing synthetic data, to estimate the effect of prior uncertainty
on retrieval error, and to widen the search space for prior uncertainties that are larger;
3) it would be useful to depict, if possible, either mathematically or graphically (as we have done),
the cost functionals that are generated during the inversion process in order to reduce the risk of
obtaining retrievals that either correspond to secondary minima or to global minima of the cost
functional that are badly-located due to the choice of an improper search space.
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