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Abstract. An Input Output Symbolic Transition System (IOSTS) spec-
ifies all expected sequences of input and output messages of a reactive
system. Symbolic execution over this IOSTS then allows to generate a
set of test cases that can exercise the various possible behaviors of the
system it represents. In this paper, we extend the IOSTS framework with
explicit program calls, possibly equipped with contracts specifying what
the program is supposed to do. This approach bridges the gap between
a model-based approach in which user-defined programs are abstracted
away and a code-based approach in which small pieces of code are sep-
arately considered regardless of the way they are combined. First, we
extend symbolic execution techniques for IOSTS with programs, in or-
der to re-use classical test case generation algorithms. Second, we explore
how constraints coming from IOSTS symbolic execution can be used to
infer contracts for programs used in the IOSTS.
Keywords: Input Output Symbolic Transition Systems, Program Con-
tracts, Model-based Testing, Symbolic Execution, Feasibility.

1 Introduction

Symbolic transition systems, such as Input Output Symbolic Transition Systems
(IOSTS) [10] are a classical reference modeling framework for model-based test-
ing of reactive systems. They provide a convenient abstraction of the behaviors
of such systems by modeling system state evolution using variable assignments.
The symbolic execution tree of an IOSTS characterizes the different classes of
numeric executions. Each path defines a sequence of symbolic inputs and out-
puts, and a path condition which is a formula constraining the values exchanged
(inputs or outputs) with the environment of the system. It is possible to use
such paths as reference symbolic behaviors to be tested (i.e. as test purposes).
In [10], we have proposed a framework to analyze IOSTS both to extract such
test purposes and to solve the oracle problem thanks to a fully on-line algorithm.
However, this kind of framework is limited by the symbolic treatment of func-
tions. Indeed, IOSTS variables are assigned by terms built on functions. In order
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to be able to reason on the symbolic values assigned to variables, the symbolic
execution engine is equipped with constraint solving techniques able to analyze
those functions. As long as one deals with basic arithmetic or boolean functions,
it is generally tractable, but as soon as one deals with user-defined or ad-hoc
functions, solving techniques may fail to scale, or even, due to undecidability
results, such techniques may not exist. Analyzing such functions (later referred
as ”programs”) may require both to deal with sophisticated data structures and
to explore their (arbitrarily complex) control graph.

In this paper we propose an approach to overcome this limitation by abstract-
ing program behaviors by means of contracts [17]. A contract for a program con-
sists in a collection of couples, also called behaviours, formed of a pre-condition
that specifies constraints that the caller must enforce at the call site, and a
post-condition which is a property guaranteed at the program return. We enrich
the basic IOSTS framework to deal with program calls equipped with contracts.
We show how to extend symbolic execution mechanisms to reason about IOSTS
equipped with program calls by analyzing those calls through their contracts.
Thus, we avoid analyzing the actual behavior of the program and replace it by
abstract constraints on its formal parameters. Our framework allows computing
symbolic paths that can be used as test purposes. It may happen that guards
and contracts are incompatible so that some symbolic paths are infeasible (i.e.
they have no associated trace). In practice it means that there exists no pro-
gram that can both satisfy its associated contracts and compute values allowing
to follow the whole symbolic path. We show how to use symbolic techniques to
check that a given set of symbolic paths is consistent with respect to program
calls.

Moreover, since guards occurring on transitions of an IOSTS interact with
contracts associated to programs, we present an approach to extract new con-
tracts for each of the program exercised. Such contracts reflect constraints on the
program that make the path feasible. As such, they represent new contracts that
can be used at the unitary level, to evaluate the correctness of actual program
used to implement the system under test.

The remaining of the paper is organized as follows. In Section 2, we give ba-
sic definitions about many-typed first order logic. Section 3 presents programs
and their contracts. In Section 4, we introduce IOSTS with programs. Section 5
defines symbolic execution of an IOSTS with programs and the associated fea-
sibility condition. Usage of symbolic execution for testing purposes, including
contract inference for unitary testing is introduced in Section 6. In Section 7, we
give a detailed example of a vending machine modelled by an IOSTS enriched
by program calls: in particular, it includes a program in charge of computing
the giving of change in function of coins inserted by the user and of the machine
reserve.
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2 Preliminaries

For two sets A and B, BA denotes the set of mappings f : A→ B from A to B
and idA is the identity mapping on A. For a mapping f : A→ B, f [ai 7→ bi]i∈1..n
is the mapping associating bi to ai for all i in 1..n and f(a) to a not belonging
to {ai | i ∈ 1..n}. By convention, [ai 7→ bi]i∈1..n stands for idA[ai 7→ bi]i∈1..n.
For two mappings f : A1 → B and g : A2 → B with A1 ∩ A2 = ∅, f ∪ g :
A1 ∪ A2 → B is the mapping defined by: ∀a ∈ A1, (f ∪ g)(a) = f(a) and
∀a ∈ A2, (f ∪g)(a) = g(a). A∗ (resp. A+) denotes the set of words on A provided
with the concatenation operator ’.’ and the empty word ε (resp. deprived of the
empty word ε). For an ordered list l = (a1, . . . , an) of n elements of A, {{l}}
denotes the set {a1, . . . , an} of elements occurring in l.

We use classical multi-typed first order logic to handle data. A data signature
is a pair (S, F ) where S is a set of so-called types and F is a set of functions
provided with a profile s1...sn−1 → sn with each si ∈ S. For V =

∐
s∈S Vs a set

of variables typed in S, the set TF (V ) =
∐
s∈S TF (V )s of so-called functional

terms over V is defined as usual over (S, F ). Moreover, each set Vs contains an
identified subset, denoted V fros , whose elements are called frozen variables and
we denote V fro =

∐
s∈S V

fro
s the subset of V of all frozen variables. The set

SenF (V ) of formulas is built over Boolean constants > and ⊥, equalities t = t′

for t and t′ terms in TF (V ) of same type and usual Boolean connectives (∧, ∨, ¬,
. . . ). Substitutions over V are applications σ : V → TF (V ) that preserve types
and are such that all elements of V fro are frozen for σ (i.e. ∀v ∈ V fro, σ(v) = v).
Thus, as frozen variables cannot be substituted, they may be considered as new
special constants. Substitutions can be canonically extended to TF (V ). For a
term t in TF (V ), for a formula ϕ in SenF (V ), Occ(t) and Occ(ϕ) will denote
the set of variables occurring in respectively t and ϕ.

A F -model is a set of typed variables M =
∐
s∈SMs provided with a func-

tion f : Ms1 × · · · ×Msn−1
→ Msn for each f : s1 · · · sn−1 → sn in F . An

interpretation is an application ν : MV that preserves types and can be canon-
ically extended to TF (V ). The satisfaction of a formula ϕ in SenF (V ) by an
interpretation ν ∈MV , denoted M |=ν ϕ, is defined as usual by considering the
meaning of the equality predicate, Boolean constants and connectives. A formula
ϕ in SenF (V ) is valid if and only if for all interpretations ν : V →M , M |=ν ϕ.
In the sequel, data signature (S, F ) and F -model M are supposed given.

3 Programs and contracts

Programs. User-defined functions, called programs, are identifiers provided with
an interface specifying their formal parameters used to store input and output
data. We only consider here programs with no side effect and one output variable.

Definition 1 (Program). Let X =
∐
s∈S Xs be a set of typed variables. A

program over X is an identifier p provided with:
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– a list InOut(p) = (x1, · · · , xn+1) ∈ Xn+1, called the interface of p, with
n ≥ 1 and ∀i 6= j, xi 6= xj. In(p) (resp. Out(p)) denotes the list (x1 · · ·xn)
(resp. (xn+1)) of input (resp. output) formal parameters of p.

– and a mapping Sem : M{{In(p)}} → M{{InOut(p)}}, called the semantics of p,
verifying the so-called semantic condition:
∀ν ∈M{{In(p)}}, ∀xj ∈ {{In(p)}}, Sem(ν)(xj) = ν(xj).

Depending on the values associated to In(p) through the interpretation ν,
Sem associates a value to the formal parameter xn+1 in Out(p). The semantic
condition ensures that a program call has no effect on its input formal param-
eters. By extrapolation, given a list l = (x1, · · · , xn+1), In(l) and Out(l) will
resp. denote (x1, · · · , xn) and (xn+1).

A signature Σ is a tuple (S, F,X, P ) where (S, F ) is a data signature and P
is a set of programs defined over the set of typed variables X.

Let V =
∐
s∈S V be a set of typed variables. The set TΣ(V ) =

∐
s∈S TΣ(V )s

of typed terms over V contains:

– all functional terms of TF (V )
– all elements p(t1, · · · , tn) with p ∈ P of interface (x1, · · · , xn+1), ∀1 ≤ i ≤
n, xi ∈ Xsi , and ti ∈ TF (V )si . If xn+1 ∈ Vs, p(t1, · · · , tn) ∈ TΣ(V )s.

Any interpretation ν : V →M can be canonically extended on TΣ(V ) as follows:
for any program p in P defined by its interface (x1 · · ·xn+1) and its semantics
Semp, let us consider µpν : {{In(p)}} → M an interpretation such that ∀1 ≤ i ≤
n, µpν(xi) = ν(ti), we have ν(p(t1, · · · , tn)) = Semp(µ

p
ν)(xn+1).

Contracts. Contracts specify what programs are expected to compute, as op-
posed to how they compute their result. They have been introduced in the pio-
neering work of Floyd [9] and Hoare [11], and form a key ingredient of the Eiffel
programming language [17]. In short, a contract describes what a program re-
quires from its caller (the pre-condition) and what it guarantees when it returns
(the post-condition). We use here a slightly refined notion where a contract can
be split in a set of behaviors [2, 4]. In this setting, pre-condition of a behavior
indicates a possible case in which the program may be executed. As before, when
a behavior is active, its post-condition must hold at the end of the execution.

Most of the times, pre and post conditions of a program are simply formulas in
resp. SenF ({{In(p)}}) and SenF ({{InOut(p)}}). However, contracts can involve
other variables representing the global state of the system. The latter will be
frozen variables whose associated values are conditioned by axioms and cannot
be modified. These variables will be useful for inferring contracts from symbolic
execution tree, as shown in Section 6.2.

Definition 2 (Program contract). Let l = (x1, . . . , xn+1) be a list of variables
with ∀i ≤ n+1, xi ∈ X. Let W be a subset of frozen variables verifying X∩W =
∅. A program contract for l and W is a set:

{(Pre1, Post1), . . . , (Prek, Postk)}
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such that ∀ i ≤ k, Prei ∈ SenF ({{In(l)}} ∪W ) and Posti ∈ SenF ({{l}} ∪W ).
A program contract is said to be:

– disjoint if for all i, j ≤ k with i 6= j, the formula ¬(Prei ∧ Prej) is valid.
– complete if the formula

∨
i≤k Prei is valid.

Disjointness requires that at most one behavior of the contract is applicable for
any considered input data, i.e. the pre-conditions are mutually exclusive. For
simplicity purpose, we only consider disjoint contracts in this paper. Complete-
ness indicates that for any input at least one behavior is applicable. In practice,
programs are often partially defined over their input domain. We thus allow
incomplete contracts, rejecting input data outside the scope of preconditions.

Example 1. Let us consider a program Price of interface (x1, x2) where x1 is
of type Drink, an enumerated type with two values {0, 1} and x2 is of type
Integer. x1 is the input parameter indicating the selected beverage and x2 is the
output parameter corresponding to its price. An example of contract for Price
is Cr = {(Pre1, Post1), (Pre2, Post2)} (both disjoint and complete), with:

– Pre1 : x1 = 0, Post1 : x2 ≥ 100 ∧ x2 ≤ 200
– Pre2 : x1 = 1, Post2 : x2 ≥ 200 ∧ x2 ≤ 300

Definition 3 (Contract satisfaction). Let l = (x1, · · · , xn+1) be an interface,
W a set of frozen variables provided with Ax ⊆ SenF (W ) and C a contract for
l and W . Let us consider an interpretation ν ∈MW such that M |=ν Ax and a
mapping Sem : M{{In(l)}} →M{{l}} satisfying the semantic condition.

Sem satisfies C up to ν, denoted Sem |=ν C, if and only if:

∀(Pre, Post) ∈ C,∀µ ∈M{{In(l)}},M |=ν∪µ Pre⇒M |=ν∪Sem(µ) Post

Semν(C) = {Sem : M{{In(l)}} → M{{l}} | Sem |=ν C} denotes the set of
semantics satisfying C up to ν.

For each interface l, we consider the trivial contract C∅,l = {}, simply denoted
C∅, defined on l that does not restrict behaviors of programs, that is p ∈ Sem(C∅)
for all programs p of interface l. Similarly, we consider the contract C>,l =
{(>,>)}, simply denoted C>, defined on l that requires that the program is
defined for every well-typed input data tuple.

Given a signature Σ = (S, F,X, P ), a set of frozen variables W with its set
of axioms Ax ⊆ SenF (W ), and an interpretation ν ∈ MW verifying M |=ν

Ax, we consider families C = (Cp)p∈P of contracts indexed by P , in particular
C∅ = (C∅)p∈P and C> = (C>)p∈P . Modν(C) is the set of all families Sem =
(Semp)p∈P such that ∀p ∈ P, Semp |=ν Cp. Sem is then called a P -model.

4 IOSTS

Input Output Symbolic Transition Systems (IOSTS) represent behaviors of re-
active systems as sequences of emissions or receptions of values through com-
munication channels conditioned by guards expressed on some attribute values.
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An IOSTS-signature Γ is a couple (A,Ch), where A =
∐
s∈S As is a set of types

variables, called attribute variables, such that for all s in S, As ∩ Xs = ∅ and
where Ch is a set of communication channel names.

An IOSTS communicates with its environment through communication ac-
tions. The set of symbolic actions over Γ , denoted Act(Γ ), is I(Γ )∪O(Γ )∪ {τ}
where: I(Γ ) = {c?x|x ∈ A, c ∈ Ch} is the set of inputs, O(Γ ) = {c!t|t ∈
TΣ(A), c ∈ Ch} is the set of outputs and τ is an internal action.

Values of attribute variables can be modified in two ways: by receiving a
value from the environment or by assigning a value from some internal process.

Definition 4 (IOSTS). An IOSTS (Q, q0, T r) over Σ and Γ = (A,Ch) is
a triple where Q is a set of states, q0 ∈ Q is the initial state and Tr ⊆
Q × SenF (A) × Act(Γ ) × TΣ(A)A × Q is a set of transitions tr of the form
(q, ψ, act, ρ, q′) where:

– q and q′ are resp. the source (source(tr)) and target state (target(tr)) of tr,
– ψ ∈ SenF (A) is a guard
– act ∈ Act(Γ ) is a communication action;
– ρ ∈ TΣ(A)A is a substitution associating a term to attribute variables;

Remark 1. We can always consider an IOSTS in which guards only contain con-
junctions. If not, for a transition tr of guard ψ, it suffices to use a disjunctive
normal form

∨n
i=1 ψi equivalent to ψ and to split the transition into n transitions

having the same source, target and communication action as tr and ψi as guard.

Example 2 (Drink vending machine). We consider a very simple drink vending
machine. Its behavior is specified by the IOSTS in Fig. 4. An initialization step
(q → q0) sets the amount to zero. Then, in q0, the machine waits for an amount
(x) of coins introduced by the user, and updates the amount m. The user then
chooses his/her beverage (0 or 1 for ”Tea” or ”Coffee”). The choice is stored in
variable B. In the transition q2 → q3, the program Price computes the price of
the chosen drink. Two cases are possible here. If the introduced amount is lower
than the price (m < p), then a message ”Add” appears on the screen and the
machine returns to q0. Otherwise (m ≥ p), the drink is delivered, the amount
is reinitialized to zero and the machine goes back to q0. Note that transitions
outgoing from q3 constrain the value (p) computed by Price (p ≥ 150∧p ≤ 200).

For a transition tr = (q, ψ, act, ρ, q′) ∈ Tr and a P -model Sem, the semantics
of tr, denoted as Run(tr,Sem) ⊆MA×ActM (Γ )×MA, is defined as the set of
triple (νi, actM , νf ) verifying:

– if act is of the form c!t (resp. τ), then M |=νi ψ, νf = νi◦ρ and actM = c!νi(t)
(resp. actM = τ)

– if act is of the form c?x, thenM |=νi ψ, there exists νa such that νa(z) = νi(z)
for every z 6= x, νf = νa ◦ ρ and actM = c?νa(x),

Note that the definition of semantics of transitions is very classical and does
not explicitly refers to Sem. In fact, semantics of programs are taken into account
when defining νf from the extensions of νi or νa to TΣ(A) as defined in Section 3.



Model-based Testing with Program Contracts 7

q q0 q1 q2 q3
coins?x

m 7→ m+ x
p 7→ Price(B)

m 7→ 0

drink?B

m < p ∧ p ≥ 150 ∧ p ≤ 200
screen!”Add”

m ≥ p ∧ p ≥ 150 ∧ p ≤ 200
drink!B
m 7→ 0

Signature:

S = {Integer,Boolean,Drink}, F = {+, <,>=}
P = {Price}, X = {x1, x2}
A = {x,m,B, p}, Ch = {coins, drink, screen}

Fig. 1: IOSTS of the drink vending machine.

For a run r = (νi, actM , νf ), we note source(r), act(r) and target(r) resp.
for νi, actM and νf . νi and νf are the interpretation of attribute variables resp.
before and after executing the transition. Let us observe that, given a transition
tr and an interpretation νi, the set Run(tr,Sem) does not necessarily contain a
run of the form (νi, actM , νf ) due to the fact that νi may not satisfy ψ.

The set of paths of an IOSTS G = (Q, q0, T r), denoted Path(G), are all
finite sequences tr1. · · · .trn of transitions with source(tr1) = q0 and ∀i, 1 ≤ i <
n, target(tri) = source(tri+1). The set of runs of a path pa = tr1. · · · .trn in
Path(G), denoted as Run(pa,Sem), are sequences r1. · · · .rn such that ∀i ≤ n,
ri ∈ Run(tri,Sem) and ∀i < n, target(ri) = source(ri+1). Similarly, the set of
traces Traces(pa,Sem) of pa is the set of sequences act(r1). · · · .act(rn) for all
r1. · · · .rn ∈ Run(pa,Sem), act(r) being equal to ε if act(r) = τ .

In general, it is not guaranteed that there exists at least a run for a given
path pa, as it depends on the semantics associated to programs involved in pa.

Definition 5 (Path feasibility condition). Let G = (Q, q0, T r) be an IOSTS
over Γ = (A,Ch) and pa a path of G. pa is a feasible path if and only if:

∃ Sem ∈Mod(C∅), T races(pa,Sem) 6= ∅

Let W be a set of frozen variables provided with Ax ⊆ SenF (W ) and ν ∈MW

an interpretation satisfying M |=ν Ax. Let us consider C = (Cp)p∈P a family of
contracts indexed by P . pa is a feasible path up to (ν,C) if and only if:

∃Sem ∈Modν(C), T races(pa,Sem) 6= ∅

5 Symbolic Execution and path feasibility condition

Symbolic execution consists in executing an IOSTS for symbolic values (taken
from a dedicated set of frozen variables Fr =

∐
s∈S Frs) rather than numerical
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ones, and computing constraints on those values for all possible IOSTS execu-
tions. The main novelties with respect to [10] are twofold: substitutions occurring
in transitions may include program calls and a renaming mechanism ensures that
a given frozen variable can not appear in two distinct paths.

To store information concerning an execution, we use structures called sym-
bolic states. A symbolic state is a tuple of the form (q, π, λ, κ) where q ∈ Q,
π ∈ SenF (Fr), λ : A → TF (Fr) is an application preserving types and κ ⊂
P × TF (Fr)∗ × Fr. For a symbolic state η = (q, π, λ, κ), q (or q(η)) denotes
the state reached after an execution leading to η, π (or π(η)) is a constraint on
variables in Fr called path condition that should be satisfied for the execution to
reach η, λ (or λ(η)) denotes terms over variables in Fr that are assigned to vari-
ables of A and κ (or κ(η)) denotes the set of tuples of the form (p, (t1, · · · , tn), x)
indicating that a program call has been performed for the program p with the
arguments (t1, · · · , tn) and that its result is stored in the variable x in Fr.

In our approach we do not have the code of programs. Instead, we reason
on their contracts. Since the input formal parameters associated to a call are
represented symbolically by functional terms t1, · · · , tn, different pre-conditions
may hold depending on the way those terms will be interpreted. At the symbolic
execution level, we thus consider a sub-case for each of those pre-conditions. More
precisely, the symbolic execution of a transition tr from a given symbolic state
η will consist in a set of symbolic transitions, one for each possible combination
of pre-conditions for all program calls occurring in tr. We now introduce some
notations aiming at tracing program calls: for a substitution ρ : A→ TΣ(A) and
for p ∈ P , Res(p, ρ) is the set of variables y ∈ A such that ρ(y) is of the form
p(t1, · · · , tn) and for such an y, Arg(y, ρ) is then (t1, · · · , tn) and Prog(y, ρ) = p.
We also denote Res(ρ) for

⋃
p∈P Res(p, ρ).

Definition 6 (Symbolic execution of transitions). Let G = (Q, q0, T r) be
an IOSTS over Σ and Γ = (A,Ch), tr = (q, ψ, act, ρ, q′) ∈ Tr be a transition
and η = (q, π, λ, κ) be a symbolic state over G.

If act is of the form c?x, λi = λ[x 7→ f ], f fresh in Fr. Otherwise, λi = λ.
λ′ is the substitution such that for all y ∈ Res(ρ), λ′(y) is a fresh variable of

Fr and for all y ∈ A \Res(ρ), λ′(y) = λi ◦ ρ(y).
The symbolic execution SE(tr, η) of tr from η is the set defined as follows:

– if Res(ρ) = ∅ then SE(tr, η) = {(η, λi(act), η′)} with η′ = (q′, π∧λ(ψ), λ′, κ).
– if Res(ρ) 6= ∅, for any mapping Beh : Res(ρ) →

⋃
p∈P Cp such that for

y ∈ Res(p, ρ), Beh(y) = (Prey, Posty) ∈ Cp.
For y ∈ Res(p, ρ) with InOut(p) = (x1, · · · , xn, xn+1) and Arg(y, ρ) =
(t1, · · · , tn), we have (η, λi(act), η

′) ∈ SE(tr, η) with
• η′ the symbolic state (q′, π ∧ λ(ψ) ∧

∧
y∈Res(ρ)∆(y), λ′, κ′)

• ∆(y) = (Prey ∧ Posty)[x1 7→ λi(t1) · · ·xn 7→ λi(tn), xn+1 7→ λ′(x)]
• κ′ the set κ ∪

⋃
y∈Res(ρ){(Prog(y, ρ), (λi(t1), · · · , λi(tn)), λ′(y))}

Elements of SE(tr, η) are called symbolic transitions. We denote Fr(η′) the set
of all fresh variables of Fr occurring in its definition.
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Example 3. In order to illustrate Definition 6, let us consider a transition tr
of the form (q, ψ, c?x, ρ, q′) with ρ = [y 7→ p1(t1, t2), z 7→ t′1 + t′2] with p1 a
program and t1, t2, t

′
1, t
′
2 functional terms. Let us observe that Res(p1, ρ) = {y},

Arg(y, p1) = (t1, t2), Prog(y, ρ) = p1 and Res(ρ) = {y}.
Let η = (q, π, λ, κ) be a symbolic state. Let us suppose that the program p1 is

provided with an interface (x1, x2, x3) and with a behavior (Pre1, Post1). Then
SE(tr, η) contains the symbolic transition (η, c?f1, η

′) with f1 a fresh variable
of Fr and η′ the symbolic state defined as:

( q′,
π ∧ λ(ψ) ∧ (Pre1 ∧ Post1)[x1 7→ λ[x 7→ f1](t1), x2 7→ λ[x 7→ f1](t2), x3 7→ f2]
[x 7→ f1, y 7→ f2, z 7→ λ[x 7→ f1](t′1 + t′2)],
κ ∪ {(p1, (λ[x 7→ f1](t1), λ[x 7→ f1](t2)), f2})

Fr(η′) is then {f1, f2}.

Definition 7 (IOSTS symbolic execution). Given an IOSTS G, the sym-
bolic execution SE(G) = (Init, ST ) of G is minimally defined by:

– Init = (q0, Ax, λ0) with ∀x ∈ A, λ0(x) ∈ Fr and ∀x 6= y ∈ A, λ0(x) 6= λ0(y),
– for tr ∈ Tr and η symbolic state with source(tr) = q(η), SE(tr, η) ⊆ ST .
– for any distinct SE(tr1, η1) SE(tr2, η2) that are defined, Fr(SE(tr1, η1)) ∩
Fr(SE(tr2, η2)) = ∅.

Definition 8 (Paths and distinguished paths). The set Paths(SE(G)) of
paths of SE(G) is the set of all sequences tr1 · · · trn with ∀i ∈ 1..n, tri ∈ ST such
that source(tr1) = Init and for any j < n, q(target(trj)) = q(source(trj+1)).

For a non-empty sequence δ = tr1 · · · trn, we note End(δ) = target(trn) and
Fr(δ) = ∪i∈1..nFr(target(tri)). By convention, End(ε) = Init and Fr(ε) = ∅.

Given a finite subset ∆ of Paths(SE(G)), DPaths(∆) is a set of paths δ∗

such that there exists an unique path δ in ∆ such that δ and δ∗ are isomorphic
up to a renaming of variables of Fr and such that for two distinct paths δ∗1 and
δ∗2 in DPaths(∆), Fr(δ∗1) ∩ Fr(δ∗2) = ∅.

We say that DPaths(∆) is a set of distinguished paths issued from SE(G).

Generally speaking, a set ∆ of Paths(SE(G)) represents a tree whose tran-
sitions issued from the root Init can be shared by several paths of ∆ while
DPaths(∆) consists in applying a variable renaming mechanism in order to du-
plicate shared transitions to completely separate paths. Distinguished paths can
still share common variables, namely those in W .

Example 4. The drink vending machine of Fig. 4 has two possible paths from q
to q0 with exactly one cycle on q0. They share a transition with a call to program
Price defined by its contract Cr as seen in Ex. 1. We thus get 4 distinguished
paths shown in Fig. 5. Associated path conditions are the following:

pc1 : B1 = 0 ∧ p1 ≥ 100 ∧ p1 ≤ 200 ∧ v1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200
pc2 : B2 = 0 ∧ p2 ≥ 100 ∧ p2 ≤ 200 ∧ v2 ≥ p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200
pc3 : B3 = 1 ∧ p3 ≥ 200 ∧ p3 ≤ 300 ∧ v3 < p3 ∧ p3 ≥ 150 ∧ p3 ≤ 200
pc4 : B4 = 1 ∧ p4 ≥ 200 ∧ p4 ≤ 300 ∧ v4 ≥ p4 ∧ p4 ≥ 150 ∧ p4 ≤ 200
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Init1

η11

η12

η13

η14

η15

screen!”Add”

τ

drink?B1

coins?v1

τ

Init2

η21

η22

η23

η24

η25

drink!B2

τ

drink?B2

coins?v2

τ

Init3

η31

η32

η33

η34

η35

screen!”Add”

τ

drink?B3

coins?v3

τ

Init4

η41

η42

η43

η44

η45

drink!B4

τ

drink?B4

coins?v4

τ

Fig. 2: Symbolic paths.

A path condition is a formula over the frozen variables built by accumulating
constraints from the guards of the IOSTS transitions and from constraints of
called programs contracts. The path is infeasible if its path condition is not
satisfiable. In addition, this feasibility depends on the fact that if a program
is called twice with the same arguments, it returns the same value (semantic
condition of Definition 1). Since this is not enforced by the path condition alone,
we consider another set of constraints accounting for this condition:

Definition 9 (Feasibility of a set of paths). Let G be an IOSTS over Γ =
(A,Ch) and let ∆∗ be a set of distinguished paths issued from SE(G).

For any program p of interface (x1, · · · , xn, xn+1), for (p, (t1, · · · , tn), f) and
(p, (t′1, · · · , t′n), f ′) two distinct elements of ∪δ∗∈∆∗ κ(End(δ∗)) we introduce the
deterministic program condition relating to these two program calls as the for-
mula φ{f,f ′} defined by

∧n
i=1 ti = t′i ⇒ f = f ′.

The deterministic program condition related to ∆∗ is then Φp =
∧
φ{f,f ′},

for all f and f ′ appearing as return variable of a call of p in ∆∗.
Finally, the feasibility condition of ∆∗ is∧

δ∗∈∆∗
π(End(δ∗)) ∧

∧
p∈P

Φp

If this feasibility condition holds, it is possible to implement the programs
occurring in the IOSTS so that all paths of ∆∗ will complete successfully. Note
that the contracts of the programs are taken into account in the path condition,
and have thus an impact on the paths that are feasible or not.

Example 5. In the context of the drink vending machine, we now want to check
the feasibility condition of the distinguished paths associated to the paths de-
scribed in Ex. 4 according to two distinct contracts for Price, denoted resp. Cw
and Cr (in Example 1). Both Cw and Cr include two behaviors resulting in 4
distinguished paths. Path conditions are given in Tab. 2.

– With the contract Cw, no distinguished path is feasible because of contradic-
tions between guards of the IOSTS transitions and post-conditions of Cw.

– With the contract Cr, all distinguished paths are feasible. Price can return
anything between 150 and 200 for an argument equal to 0 and must return
200 for an argument equal to 1.
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Cw : {(x1 = 0, x2 ≥ 0∧x2 ≤ 100), (x1 =
1, x2 ≥ 250)}
pc1 : B1 = 0 ∧ p1 ≥ 0 ∧ p1 ≤ 100 ∧ v1 <
p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200

pc2 : B2 = 0 ∧ p2 ≥ 0 ∧ p2 ≤ 100 ∧ v2 ≥
p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200

pc3 : B3 = 1∧ p3 ≥ 250∧ v3 < p3 ∧ p3 ≥
150 ∧ p3 ≤ 200

pc4 : B4 = 1∧ p4 ≥ 250∧ v4 ≥ p4 ∧ p4 ≥
150 ∧ p4 ≤ 200

φ{p1,p2} : B1 = B2 ⇒ p1 = p2
φ{p1,p3} : B1 = B3 ⇒ p1 = p3
φ{p1,p4} : B1 = B4 ⇒ p1 = p4
φ{p2,p3} : B2 = B3 ⇒ p2 = p3
φ{p2,p4} : B2 = B4 ⇒ p2 = p4
φ{p3,p4} : B3 = B4 ⇒ p3 = p4
Feasibility: No

Cr : {(x1 = 0, x2 ≥ 100 ∧ x2 ≤
200), (x1 = 1, x2 ≥ 200 ∧ x2 ≤ 300)}
pc1 : B1 = 0∧p1 ≥ 100∧p1 ≤ 200∧v1 <
p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200

pc2 : B2 = 0∧p2 ≥ 100∧p2 ≤ 200∧v2 ≥
p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200

pc3 : B3 = 1∧p3 ≥ 200∧p3 ≤ 300∧v3 <
p3 ∧ p3 ≥ 150 ∧ p3 ≤ 200

pc4 : B4 = 1∧p4 ≥ 200∧p4 ≤ 300∧v4 ≥
p4 ∧ p4 ≥ 150 ∧ p4 ≤ 200

φ{p1,p2} : B1 = B2 ⇒ p1 = p2
φ{p1,p3} : B1 = B3 ⇒ p1 = p3
φ{p1,p4} : B1 = B4 ⇒ p1 = p4
φ{p2,p3} : B2 = B3 ⇒ p2 = p3
φ{p2,p4} : B2 = B4 ⇒ p2 = p4
φ{p3,p4} : B3 = B4 ⇒ p3 = p4
Feasibility: Yes

Table 1: Feasibility according to different contracts

6 Testing

6.1 Model-based testing of IOSTS with program calls and contracts

In a previous work [10], we have proposed an online testing algorithm to test
Systems Under Test (SUT ) with respect to a basic IOSTS (without program
calls). The algorithm is based on the ioco conformance relation [20] and on the
use of test purposes (TP ) to select some behaviors to be tested. A TP is a finite
sub-tree of the symbolic execution structure (SES) derived from the IOSTS of
reference so that any execution trace constructed by interacting with SUT and
leading to a leaf of TP will be considered as covering TP . The testing process is
implemented as a simultaneous traversal of both SES and TP . Verdicts depend
on whether the observed execution trace does or does not belong to TP and
SES: WeakPASS when the execution trace covers TP and belongs to at least
one path of SES which does not end at a leaf of TP , PASS when the execution
trace covers TP and does not belong to another path of SES, INCONC (for
inconclusive) when the execution trace belongs to SES but does not cover TP ,
FAIL when the execution trace does not cover TP and goes outside SES.

In Section 5, we have associated to any IOSTS with contracts a symbolic tree
structure in order to be able to use it both as the SES input of the algorithm
given in [10] and as a carrier to extract a finite sub-tree to play the role of TP .
We can use the work described in [10] with the following slight modifications:

– Unlike [10], we allow unobservable τ transitions. Under the assumption that
there does not exist a cycle of τ transitions, we can replace any sequence of
consecutive τ transitions by a transition carrying the input/output action
just located at the end of the τ sequence. Furthermore, in [10], quiescence
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conditions are expressed by enriching the reference IOSTS with transitions
carrying the special label δ denoting the intended absence of reaction. Be-
cause the presence of τ transitions makes such a direct enrichment tricky,
it becomes more appropriate to perform this enrichment at the level of the
τ -reduced symbolic execution itself. Once the operations of τ -reduction and
δ-enrichment are applied to the symbolic execution of the IOSTS with con-
tracts, we can then apply the algorithm of [10] for free.

– In [10], path conditions for paths that are part of test purposes are satisfi-
able by construction. In our setting, we have to take into account the notion
of feasibility, i.e, the existence or not of programs that meet their associ-
ated contracts and that are compatible with considered paths. Indeed, if the
considered set of distinguished paths constituting the test purpose is unfea-
sible, then the application of algorithm is meaningless. In other words, the
feasibility of the targeted set of paths plays the role of a testing hypothesis.

6.2 Contracts Inference

As we have seen in Section 5, the feasibility condition checks whether a given
program contract preserves the feasibility of a symbolic path or not. In this
section, we focus on the inference of contracts based on path conditions. Such
contracts can then be used to define unit tests for the programs. More precisely,
we start with an IOSTS G calling programs without associated contract. We then
show that we can infer contracts such that feasible paths of G are guaranteed
to verify the feasibility condition of the IOSTS augmented with contracts. The
generated contract for a program p contains one behavior per call to p in SE(G).
For that, we use the parts of the final condition of the path on which the call
occurs that are related to the return variable and to the arguments.

Given a formula F , we define inductively the set RelF (X) of variables related
to a set X of variables, as the smallest set satisfying the following conditions

– X ⊂ RelF (X)
– Occ(t1 = t2) ∩Relt1=t2(X) 6= ∅ ⇒ Occ(t1 = t2) ⊂ Relt1=t2(X)
– RelF1

(X) ∪RelF2
(X) = RelF1∧F2

(X) = RelF1∨F2
(X)

– RelF (X) = Rel¬F (X)

Similarly, for a formula F and a set of variables X, CleanX(F ) is defined as
follows. As noted in remark 1, we can assume that the path condition only has
conjunctions, and is in negation-normal form.

– CleanX(>) = >
– CleanX(⊥) = ⊥
– CleanX(t1 = t2) = t1 = t2 if Occ(t1 = t2) ∩X 6= ∅
– CleanX(t1 = t2) = > if Occ(t1 = t2) ∩X = ∅
– CleanX(¬t1 = t2) = ¬t1 = t2 if Occ(t1 = t2) ∩X 6= ∅
– CleanX(¬t1 = t2) = > if Occ(t1 = t2) ∩X = ∅
– CleanX(F1 ∧ F2) = CleanX(F1) ∧ CleanX(F2)
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Remark 2. If F is satisfiable, then CleanX(F ) is also satisfiable, as we only
remove atomic propositions from the conjunction.

Definition 10 (Contract inference). Let G be an IOSTS , ∆∗ a set of dis-
tinguished paths from SE(G). We note κ(∆∗) = ∪δ∗∈∆∗κ(End(δ∗)).

For any f such that (p, (t1, · · · , tn), f) ∈ κ(∆∗), with In(p) = (x1, ..., xn)
and Out(p) = xn+1, we define a behavior (Pref , Postf ) for p, as well as a set
of frozen variables Gf and axioms Axf .

We pose φ = π(End(δ∗)) the final condition for the path containing the call
and Y = Occ(t1, · · · , tn) ∪ {f} the variables occurring in the call. Then

– Gf is Relφ(Y )

– Axf is CleanRelφ(Y )(φ)

– Pref is
∧n
i=1 xi = ti

– Postf is xn+1 = f

Finally, the inferred contracts for ∆∗ are defined as follows.

– G is
⋃

(p,(t1,··· ,tn),f)∈κ(∆∗)Gf
– Ax is

∧
(p,(t1,··· ,tn),f)∈κ(∆∗)Axf

– ∀p ∈ P,Cp = ((Pref , Postf ))(p,(t1,··· ,tn),f)∈κ(∆∗)

Example 6. Let us consider here a symbolic path δ∗ of our drink vending ma-
chine’s specification (Figure 6) that calls twice the program Price of interface
(x1, x2). The first call leads to the appearance of a message ”Add” on the screen
and the second call permits the drink delivery, such that:
π(End(δ∗)) : v1 < p1∧p1 ≥ 150∧p1 ≤ 200∧ (v1 +v2) ≥ p2∧p2 ≥ 150∧p2 ≤ 200
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Init η1 η2 η3 η4 η5 η6 η7 η8 η9

Fig. 3: Symbolic path.

From the path condition φ = π(End(δ∗)), two behaviors will be generated
according to Def. 10. For p1 the result of the first call (Price, (B1), p1) we have:

Y : {B1, p1}
Gp1 : {B1, p1, v1, p2, v2}
Axp1 : v1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200 ∧ (v1 + v2) ≥ p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200
Prep1 : x1 = B1

Postp1 : x2 = p1
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For p2 the result of the second call (Price, (B2), p2) we have:

Y : {B2, p2}
Gp2 : {B2, p2, v1, p1, v2}
Axp2 : v1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200 ∧ (v1 + v2) ≥ p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200
Prep2 : x1 = B2

Postp2 : x2 = p2

Finally, the inferred contract for our program Price in δ∗ is:

– G = Gp1 ∪Gp2
– Ax = Axp1 ∧Axp2
– C = ((Prep1 , Postp1), (Prep2 , Postp2))

We can now define the IOSTS G′ with the same signature and transitions
than G and equipped with the inferred contracts for the programs in P . Then,
for every path δ∗ in ∆∗ that is feasible, there exist paths δ∗ in G′ similar to δ∗

except that the path conditions π are augmented with axioms and behaviors.
For each (p, (t1, ..., tn), f) ∈ κ(End(δ∗)), Axf is satisfiable by remark 2 and the
behavior (Pref , Postf ) becomes trivially true: one of the behaviors of p makes
the corresponding transition feasible. Since this is true for any call in δ∗, there
exists thus a path in δ∗ that is feasible. This leads to the following theorem.

Theorem 1 (Feasibility preservation). Let G be an IOSTS, ∆∗ a set of
feasible distinguished symbolic paths of G. G′ is the IOSTS obtained by adding
to G the inferred contracts of Definition 10. For any path δ∗ in ∆∗, there exists a
symbolic path δ∗′ for G′ having the same transitions as δ∗ and which is feasible.

7 A detailed example of a vending machine with a
program call for giving the change

In this section, we consider a more realistic drink vending machine example in
order to introduce a rather complex user-defined program. The program call will
help us to calculate the giving of change according to the coins inserted by the
user and to the machine reserve.

The machine allows the user to order a coffee or a tea and returns money.
The machine accepts only three different types of coins: e0.20, e0.50 and e1.

A counter (variablem) is used for calculating the total amount inserted by the
user in the machine. According to the drink chosen by the user, as for Example 2,
the price of the selected drink is given by the program Price of interface (x1, x2)
where x1 is of type Drink, an enumerated type with two values {0, 1} and x2 is
of type Integer. x1 is the input parameter indicating the selected beverage and
x2 is the output parameter corresponding to its price. An example of contract
for Price is Cr = {(Pre1, Post1), (Pre2, Post2)} (two behaviors both disjoint
and complete), with:

– Pre1 : x1 = 0, Post1 : x2 ≥ 100 ∧ x2 ≤ 200
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– Pre2 : x1 = 1, Post2 : x2 ≥ 200 ∧ x2 ≤ 300

When the desired amount is inserted, the selected beverage will be delivered
to the user. If the inserted amount is more than the beverage’s cost and if the
reserve contains enough change, the drink will be delivered to the user and the
extra change will be returned to him. If the reserve does not contain enough
change, the inserted coins will be returned to the user and he/she will be asked
to top up the amount. The inserted money is specified as an array C (has three
cases C[0], C[1] and C[2]) that contains respectively the number of e0.20, e0.50
and e1 coins. More precisely, we consider four such arrays, C for storing the cu-
mulated amount inserted by the user, X for storing the current inserted amount
(that the user is likefy to top up if the amount is not sufficient for covering the
beverage price), E for storing the giving of change and R for storing the machine
reserve.

If the cumulated inserted amount 20∗C[0]+50∗C[1]+100∗C[2] is greater than
the cost and the reserve has enough change, then a program Return calculates
the extra change to be returned to the user as an array (E). The program Return
of interface (x′1, x

′
2, x
′
3, x
′
4) where

– x′1 represents the beverage price (positive integer),
– x′2 represents the amount (positive integer) ,
– x′3 represents the reserve (as an array storing separately the number of e0.20,
e0.50 and e1 coins),

– and x′4 is the program output variable (an array that contains the number
of different coins to be returned to the user)

We associate with the Return program a contract: (Pre, Post) such that:

– Pre: x′1 > 0 ∧ x′2 ≥ x′1
– Post: (((x′4[0]∗20+x′4[1]∗50+x′4[2]∗100) = x′2−x′1)∧x′4[0] ≤ x′3[0]∧x′4[1] ≤
x′3[1] ∧ x′4[2] ≤ x′3[2]).

The contract specifies that under the conditions that the beverage price (x′1)
is strictly positive and that the cumulated inserted amount (x′2) is greater that
the beverage price (x′1), then the amount (x′4[0] ∗ 20 + x′4[1] ∗ 50 + x′4[2] ∗ 100)
represented by the output variable (x′4) is equal to the difference (x′2−x′1) and the
array variable (x′4) is less than or equal to the reserve, component by component.

Let us notice than the considered contract cannot be achieved in any situa-
tion: in particular, if the difference is equal to 20 and if x′3[0] is equal to 0, there
is no way to give back an array x′4 making the postcondition true.

The machine’s behavior is specified by the IOSTS in Figure 4. An initializa-
tion step (q → q0) sets C cases and the amount m to zero. Then, in state q0, the
machine waits for coins (X) introduced by the user, updates C and the amount
m. The user then chooses his/her beverage (0 or 1 for ”Tea” or ”Coffee”). The
choice is stored in the variable B. In the transition q2 → q3, the program Price of
interface (x1, x2) computes the price of the chosen drink. Four cases are possible
here:
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q

q0

q1

q2

q3

q4 q5

E[0] ∗ 20 + E[1] ∗ 50 + E[2] ∗ 100 = m− p
coins!E

R[0] 7→ R[0]− E[0] + C[0]
R[1] 7→ R[1]− E[1] + C[1]
R[2] 7→ R[2]− E[2] + C[2]

m 7→ 0, C[0] 7→ 0
C[1] 7→ 0, C[2] 7→ 0

coins!C
m 7→ 0
C[0] 7→ 0
C[1] 7→ 0
C[2] 7→ 0

coins?X
C[0] 7→ C[0] +X[0]
C[1] 7→ C[1] +X[1]
C[2] 7→ C[2] +X[2]
m 7→ m+ C[0] ∗ 20

+C[1] ∗ 50
+C[2] ∗ 100

m > p ∧ p ≥ 150
∧p ≤ 200 ∧ ¬φ
screen!”topup”

m > p ∧ p ≥ 150
∧p ≤ 200 ∧ φ
drink!B

E 7→ Return(p,m,R)

m = p ∧ p ≥ 150
∧p ≤ 200
drink!B

R[0] 7→ R[0] + C[0]
R[1] 7→ R[1] + C[1]
R[2] 7→ R[2] + C[2]
m 7→ 0, C[0] 7→ 0
C[1] 7→ 0, C[2] 7→ 0

m < p
∧p ≥ 150
∧p ≤ 200

screen!”Add”

Such that φ is ∃n1, n2, n3, 0 ≤ n1 ≤ R[0] ∧ 0 ≤ n2 ≤ R[1]∧
0 ≤ n3 ≤ R[2] ∧m− p = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100

m 7→ 0
C[0] 7→ 0, C[1] 7→ 0, C[2] 7→ 0
R[0] 7→ 0, R[1] 7→ 0, R[2] 7→ 0

drink?B

p 7→ Price(B)

Signature:

S = {Integer,Boolean,Drink,Array}, F = {+,−, <,>,=}
P = {Price, Return}, X = {x1, x2, x

′
1, x
′
2, x
′
3, x
′
4}

A = {X,C,R,E,m,B, p}, Ch = {coins, drink, screen}

Fig. 4: IOSTS of the drink vending machine.

– If the introduced amount is lower than the price (m < p), then a message
”Add” appears on the screen and the machine returns to q0;

– if the user has introduced exactly an amount equal to the price (m = p),
the drink is delivered, the reserve is updated, the amount and C cases are
reinitialized to zero and the machine goes back to q0;

– if the user has introduced an amount strictly greater than the beverage price
and if the reserve has enough change (m > p∧φ), then the program Return
calculates the extra change to be returned to the user and the machine goes
to the state q4 in order to return extra coins, set up the reserve and initialize
m and C. The formula φ defined as:

∃n1, n2, n3, 0 ≤ n1 ≤ R[0] ∧ 0 ≤ n2 ≤ R[1] ∧ 0 ≤ n3 ≤ R[2]∧

m− p = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100

specifies that with the current reserve (R), there is at least a possibility of
giving the expected change (m− p).
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– otherwise (the user has introduced an amount strictly greater than the bev-
erage price and the reserve does not permit to return back the extra to the
user (m > p ∧ ¬φ)), the user is asked to refill the machine (if possible, with
the exact amount) and from the state q5, the introduced coins are returned
to the user.

Note that to be triggered, guards on transitions outgoing from q3 to q4 and
q5 contain the φ formula that checks the reserve’s availability. The φ formula
expresses that there is at least a combination of coins among the coin reserve
that permits to give back to the user a correct change. Note also that the φ
formula is stronger than the postcondition Post previously associated to the
program Return: in particular, φ makes explicit that giving change is possible,
without explaining how it is calculated.

7.1 Symbolic execution: distinguished paths

The drink vending machine of Figure 4 has 4 possible paths from the state q
to state q0 with exactly one cycle on q0, with a common transition (q0 → q1)
including a call to the program Price defined by its contract Cr that has two
behaviors (coffee or tea). The symbolic execution of the IOSTS gives rise to
a set of 8 distinguished paths. They are shown in Figure 5, taken into account
the renaming mechanism ensuring that fresh variables occurring in two distinct
paths are distinct.

screen!”Add” drink!b2 screen!”Add” drink!b4 screen!”topup”drink!b6 screen!”topup”
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coins?c1
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τ
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η31
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η33
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η35

τ

drink?b3

coins?c3

τ
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η41
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η43
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η45

τ

drink?b4
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τ

Init5

η51
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η55

η56

coins!c5

τ

drink?b5
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τ

Init6

η61
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η64

η65

η66

coins!e1

τ

drink?b6

coins?c6

τ

Init7

η71

η72
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η76

coins!c7

τ

drink?b7
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τ

Init8

η81

η82

η83
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η85
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coins!e2

drink!b8

τ

drink?b8

coins?c8

τ

Fig. 5: Symbolic paths.
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The associated path conditions are the following:

pc1 : b1 = 0 ∧ p1 ≥ 100 ∧ p1 ≤ 200 ∧m1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200
pc2 : b2 = 0 ∧ p2 ≥ 100 ∧ p2 ≤ 200 ∧m2 = p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200
pc3 : b3 = 1 ∧ p3 ≥ 200 ∧ p3 ≤ 300 ∧m3 < p3 ∧ p3 ≥ 150 ∧ p3 ≤ 200
pc4 : b4 = 1 ∧ p4 ≥ 200 ∧ p4 ≤ 300 ∧m4 = p4 ∧ p4 ≥ 150 ∧ p4 ≤ 200
pc5 : b5 = 0 ∧ p5 ≥ 100 ∧ p5 ≤ 200 ∧m5 > p5 ∧ ¬(∃n1, n2, n3/ 0 ≤ n1 ≤ r5[0]
∧0 ≤ n2 ≤ r5[1] ∧ 0 ≤ n3 ≤ r5[2] ∧m5 − p5 = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100)
∧p5 ≥ 150 ∧ p5 ≤ 200
pc6 : b6 = 0 ∧ p6 ≥ 100 ∧ p6 ≤ 200 ∧m6 > p6 ∧ ∃n1, n2, n3/ 0 ≤ n1 ≤ r6[0]
∧0 ≤ n2 ≤ r6[1] ∧ 0 ≤ n3 ≤ r6[2] ∧m6 − p6 = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100
∧p6 > 0 ∧m6 > p6 ∧ ((e1[0] ∗ 20 + e1[1] ∗ 50 + e1[2] ∗ 100) = m6 − p6)
∧e1[0] ≥ r6[0] ∧ e1[1] ≥ r6[1] ∧ e1[2] ≥ r6[2] ∧ p6 ≥ 150 ∧ p6 ≤ 200
pc7 : b7 = 1 ∧ p7 ≥ 200 ∧ p7 ≤ 300 ∧m7 > p7 ∧ ¬(∃n1, n2, n3/ 0 ≤ n1 ≤ r7[0]
∧0 ≤ n2 ≤ r7[1] ∧ 0 ≤ n3 ≤ r7[2] ∧m7 − p7 = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100)
∧p7 ≥ 150 ∧ p7 ≤ 200
pc8 : b8 = 1 ∧ p8 ≥ 200 ∧ p8 ≤ 300 ∧m8 > p8 ∧ ∃n1, n2, n3/ 0 ≤ n1 ≤ r8[0]
∧0 ≤ n2 ≤ r8[1] ∧ 0 ≤ n3 ≤ r8[2] ∧m8 − p8 = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100
∧p8 > 0 ∧m8 > p8 ∧ ((e2[0] ∗ 20 + e2[1] ∗ 50 + e2[2] ∗ 100) = m8 − p8)
∧e2[0] ≥ r8[0] ∧ e2[1] ≥ r8[1] ∧ e2[2] ≥ r8[2] ∧ p8 ≥ 150 ∧ p8 ≤ 200

The four path conditions (from pc1 to pc4) are associated with paths when the inserted
amount is lower than the price and when the introduced amount equal to the price (for
different choices of drink: coffee or tea). pc5 and pc7 are associated with symbolic paths
issued from the numeric path where the reserve is not enough to return change. pc6
and pc8 are resulted from the symbolic execution of the path that contain the program
Return

7.2 Feasibility

In the context of the drink vending machine, we now want to check the feasibility con-
dition of a set of distinguished paths ∆∗ having {pc1, pc2, pc3, pc4} as path conditions,
the first four paths described in Figure 5, according to two distinct contracts for Price,
denoted respectively Cw and Cr and already discussed in Example 5 . Both Cw and
Cr include two behaviors resulting in 4 distinguished paths. Path conditions and the
feasibility decision are given in Tab. 2.

– With the contract Cw, no distinguished path of ∆∗ is feasible because of contra-
dictions between guards of the IOSTS transitions and post-conditions of Cw.

– With the contract Cr, all distinguished paths are feasible. Price can return any-
thing between 150 and 200 for an argument equal to 0 and must return 200 for an
argument equal to 1.

7.3 Contract Inference

Let us consider here a symbolic path δ∗ of our drink vending machine’s specification
(Figure 6) that calls twice the program Price of interface (x1, x2) and the program
Return of interface (x′1, x

′
2, x
′
3, x
′
4) without associating contracts with programs. The

first call of Price leads to the appearance of a message ”Add” on the screen and the
second call permits the drink delivery and the return of the extra, such that:
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Cw : {(x1 = 0, x2 ≥ 0∧x2 ≤ 100), (x1 =
1, x2 ≥ 250)}
pc1 : b1 = 0 ∧ p1 ≥ 0 ∧ p1 ≤ 100 ∧m1 <
p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200

pc2 : b2 = 0 ∧ p2 ≥ 0 ∧ p2 ≤ 100 ∧m2 =
p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200

pc3 : b3 = 1∧ p3 ≥ 250∧m3 < p3 ∧ p3 ≥
150 ∧ p3 ≤ 200

pc4 : b4 = 1∧ p4 ≥ 250∧m4 = p4 ∧ p4 ≥
150 ∧ p4 ≤ 200

φ{p1,p2} : b1 = b2 ⇒ p1 = p2
φ{p1,p3} : b1 = b3 ⇒ p1 = p3
φ{p1,p4} : b1 = b4 ⇒ p1 = p4
φ{p2,p3} : b2 = b3 ⇒ p2 = p3
φ{p2,p4} : b2 = b4 ⇒ p2 = p4
φ{p3,p4} : b3 = b4 ⇒ p3 = p4
Feasibility: No

Cr : {(x1 = 0, x2 ≥ 100 ∧ x2 ≤
200), (x1 = 1, x2 ≥ 200 ∧ x2 ≤ 300)}
pc1 : b1 = 0∧p1 ≥ 100∧p1 ≤ 200∧m1 <
p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200

pc2 : b2 = 0∧p2 ≥ 100∧p2 ≤ 200∧m2 =
p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200

pc3 : b3 = 1∧p3 ≥ 200∧p3 ≤ 300∧m3 <
p3 ∧ p3 ≥ 150 ∧ p3 ≤ 200

pc4 : b4 = 1∧p4 ≥ 200∧p4 ≤ 300∧m4 =
p4 ∧ p4 ≥ 150 ∧ p4 ≤ 200

φ{p1,p3} : b1 = b3 ⇒ p1 = p3
φ{p1,p4} : b1 = b4 ⇒ p1 = p4
φ{p2,p3} : b2 = b3 ⇒ p2 = p3
φ{p2,p4} : b2 = b4 ⇒ p2 = p4
φ{p3,p4} : b3 = b4 ⇒ p3 = p4
Feasibility: Yes

Table 2: Feasibility according to different contracts

π(End(δ∗)) : m1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200 ∧ (m1 + m2) > p2 ∧ p2 ≥ 150 ∧ p2 ≤
200 ∧ ∃n1, n2, n3/ 0 ≤ n1 ≤ r[0] ∧ 0 ≤ n2 ≤ r[1] ∧ 0 ≤ n3 ≤ r[2] ∧ (m1 + m2) − p2 =
n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100 ∧ ((e1[0] ∗ 20 + e1[1] ∗ 50 + e1[2] ∗ 100) = (m1 +m2)− p2)
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Fig. 6: Symbolic path.

From the path condition φ = π(End(δ∗)), we will generate a contract for the
Return program and Price program according to3 Definition 10. For e1 the result of

3 In fact, Definition 10, and in particular the function Clean, should be adapted to
take into account the case of quantifier in formulas.
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the program call (Return, (p2,m1 +m2, r), e1) we have:

Y : {p2,m1 +m2, r, e1}
Ge1 : {e1,m1,m2, p2, r, p1}
Axe1 : m1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200 ∧ (m1 +m2) > p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200

∧∃n1, n2, n3, 0 ≤ n1 ≤ r[0] ∧ 0 ≤ n2 ≤ r[1] ∧ 0 ≤ n3 ≤ r[2]
∧(m1 +m2)− p2 = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100 ∧ ((e1[0] ∗ 20 + e1[1] ∗ 50
+e1[2] ∗ 100) = (m1 +m2)− p2)

Pree1 : x′1 = p2 ∧ x′2 = m1 +m2 ∧ x′3 = r
Poste1 : x′4 = e1

The inferred contract for our program Return in δ∗ is C = (Pree1 , Poste1).
In the same way, from φ = π(End(δ∗)), two behaviors (a behavior par call) will

be generated for the Price program according to our inference Definition. For p1 the
result of the first call (Price, (b1), p1) we have:

Y : {b1, p1}
Gp1 : {b1, p1,m1, p2,m2, r, e1}
Axp1 : m1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200 ∧ (m1 +m2) > p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200

∧∃n1, n2, n3, 0 ≤ n1 ≤ r[0] ∧ 0 ≤ n2 ≤ r[1] ∧ 0 ≤ n3 ≤ r[2]
∧(m1 +m2)− p2 = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100 ∧ ((e1[0] ∗ 20 + e1[1] ∗ 50
+e1[2] ∗ 100) = (m1 +m2)− p2)

Prep1 : x1 = b1
Postp1 : x2 = p1

For p2 the result of the second call (Price, (b2), p2) we have:

Y : {b2, p2}
Gp2 : {b2, p2,m1, p1,m2, r, e1}
Axp2 : m1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200 ∧ (m1 +m2) > p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200

∧∃n1, n2, n3, 0 ≤ n1 ≤ r[0] ∧ 0 ≤ n2 ≤ r[1] ∧ 0 ≤ n3 ≤ r[2]
∧(m1 +m2)− p2 = n1 ∗ 20 + n2 ∗ 50 + n3 ∗ 100 ∧ ((e1[0] ∗ 20 + e1[1] ∗ 50
+e1[2] ∗ 100) = (m1 +m2)− p2)

Prep2 : x1 = b2
Postp2 : x2 = p2

Finally, the inferred contract for our program Price in δ∗ is:

– G = Gp1 ∪Gp2

– Ax = Axp1 ∧Axp2
– C = ((Prep1 , Postp1), (Prep2 , Postp2))

8 Related Work

In the context of reactive systems verification, IOSTS and symbolic execution have
been used in many works [1,10,13] for different purposes. They use IOSTS with atomic
actions and substitutions whereas, in our case, we enrich IOSTS with programs specified
by contracts. Our purpose is to define an integration framework and analyze in one
hand the impact of programs contracts on a whole system and in the other hand elicit
accurate contracts for our programs.
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Our work is quite close to [12], that augments a SOA’s BPEL business model with
pre- and post-condition contracts defining essential component traits, and derive a suite
of feasible test cases, taking into account contracts that are provided for some of the
opaque components of their system. On the other hand, they do not infer contracts
from the constraints expressed directly in the BPEL model as is done in section 6.2.

The use of symbolic execution and path feasibility analysis are studied in [3,21] but
this is limited to the analysis of programs themselves and does not take in consideration
as we do the impact of the program calls on the feasibility of the system as a whole.
Similarly, symbolic execution techniques over the code have been used to infer program
annotations. More specifically, such approaches concentrate on generating invariants.
This is for instance the case in the KeY verification framework [19], for the DySy
tool [6], or for the iDiscovery tool [23]. Those invariants are meant to help the formal
verification of the code against its specification, while we are aiming at generating a
specification that the programs must meet in order to be usable in the context of the
system under test.

The problem of inferring contracts for programs has been studied differently in other
works that do not rely on symbolic execution. In particular, [5] derives pre-conditions
from assertions already present in the code using abstract interpretation. [22] uses dy-
namic analysis to augment simple programmer-written contracts with candidate post-
conditions that describes precisely what the code is doing, building upon techniques
developed initially in the Daikon tool [8] for proposing likely invariants. This kind of
inference is dual to ours, in the sense that we infer contracts in a top-down approach, in
order to express what conditions individual components should fulfill inside a broader
system, while the works mentioned above are bottom-up, encapsulating the behavior
of actual code in contracts in order to check whether callers can use this particular
implementation. The same can be said of works that aim at generating transition sys-
tems modeling the behavior of programs, either as message sequence charts as in [15],
or as scenarios expressed under the form of live sequence charts, as in [16].

9 Conclusion

In this work, we extended the IOSTS framework with programs which are specified
with contracts and we adapted symbolic execution techniques to deal with them. This
gives rise to two main results. First, we study how contracts impact path conditions and
describe the feasibility condition of the entire symbolic execution tree. Second, we show
that path conditions can be used to infer contracts for programs in order to specify
what these programs should do in the context of the system under test. Such contracts
can then be used for unitary testing purposes, while feasibility preservation theorem
gives some guarantees that program calls will not get in the way during integration
testing. Implementation of the technique presented in this paper is currently under
development in the Diversity [7] symbolic execution tool and the Frama-C [14] C code
analysis framework using the ACSL specification language [2] as target for contract
inference.

Future work include in particular integrating programs and contracts into vari-
ous IOSTS extensions. From an implementation point of view, UML Sequence Dia-
grams [18], a widely used formalism for describing transition systems, would be a good
input language from a practical point of view. Sequence diagrams are already sup-
ported by Diversity, but program calls and contracts need to be added to the UML
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subset supported by Diversity. On a more theoretical level, we have so far examined pro-
gram and contracts in one single component. IOSTS are nevertheless meant to model
whole systems consisting in various components interacting with each other through
communication actions. Path conditions can then be projected on the internal state of
a single component to define constraints on this component. It would be interesting to
examine how to compose such projections with contract inference.
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