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1 Introduction

We consider the initial value problem

w4 f(u)e = tige + 69 (Ue) o (1.1)
u(z,0) = up(x),

where ¢ and § are small parameters, and g is a non positive function, and we focus on the specific
form

g(v) = —v[",
where n > 1. Note that if n = 1, g is lipschitz, if 1 < n < 2, g is C! and for n > 2, g is C?.
When 6 = 0 we reduce to the viscous (generalized) Burgers equation and the approximate

solutions u= converge to the entropy solution of the hyperbolic equation (called the vanishing
viscosity method, see, e.g., Whitham [21] or Kruzkov [9])

ug + f(u)z =0 (1.3)
u(z,0) = uo(x). (1.4)

On the other hand, when e = 0, if we consider the flux function f(u) = u? and the linear dispersion
OUpes We obtain the Korteweg-de Vries equation. The approximate solutions % do not converge
in a strong topology (see Lax-Levermore [11]). So, as parameters € and § vanish, we are concerned
with singular limits and to ensure convergence it is necessary to be in the dominant dissipation
regime.



The pioneer study of these singular limits was given by Schonbek [16] about the (generalized)
Korteweg-de Vries-Burgers equation

us + f(u)x = E&Ugy — 5uxazzr

In the case of a convex flux function f(u), she proved the convergence of the solutions of this
perturbed equation to the entropy solution of (1.3), when both € and ¢ tend to zero, at least under
the condition § = O(&?) (depending on the behavior of the flux f). Also, according to Perthame-
Ryzhic [15], the sharp condition should be § = o(¢). LeFloch-Natalini [13] proved the convergence
in the case of a nonlinear viscosity function 5 and linear capillarity

Then, Correia-LeFloch [5] improved the estimates in Schonbek [16] and LeFloch-Natalini [13]
and for the first time treated the multidimensional equation, but still in the case of a nonlinear
viscosity function and linear capillarity. In fact, the dominant dissipation regime is also assured
by the nonlinear viscosity. In our case, we consider the reverse situation.

In general for € = 0, like for the Korteweg-de Vries equation, the divergent behaviour is ex-
pected, as we are considering ”pure-dispersive equations”. But, Brenier-Levy [3] considered the
fully nonlinear equation

ue + f(u)e = =0(uZ,)s

as a nonlinear generalization of the Korteweg-de Vries equation. Such nonlinear dispersion signifi-
cantly affects the dispersive behaviour of the solutions that differs completely from the linear case.
In particular, Brenier and Levy [3] conjectured that for strictly convex flux functions f and for the
following perturbed problem

up + f(u>1 = _6g(ua::r)m — EUggax,

we have convergence when ¢ and ¢ tend to zero under the condition € = 0(9).

The paper is organized as follows. In Section 2, we present the main results of convergence.
Section 3 deals with the uniform estimates needed for convergence. Finally, Section 4 is devoted
to proving the convergence to the entropy solution of the hyperbolic equation, when both € and §
go to zero.

2 Main Results

Two main convergence results are presented. The first one is concerned with g(v) = —|v| (i.e.
n = 1) while the second one is devoted to the case g(v) = —v? (i.e. n = 2).
2.1 Case f convex, 6 >0 and g(uz;) = —|uzy]

In this case, we prove the following result.

Theorem 2.1 Lete >0, § = o(e?), and f : R — R be a conver flux function satisfying
f(u) < CQA+ |ul?), where 0 < B < 3.

Then, setting u = ue s the solution of (1.1) — (1.2), the family solutions (ues) converges to the
entropy solution of (3) — (4).

In the case of the linear dispersion, i.e. g(uzy) = Uz, treated in [16], Schonbek gets for a general
flux satisfying f”(u) < C, a convergence with rate § = O(g3). Also, when f”(u) < C(1 + |u|), the
author obtain the convergence with the rate § = O(e*). The case of g(uz,) = —|ugs| seems giving
a weakly dispersive effects than a classical linear dispersion.
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2.2 Case f convex, 0 > 0 and g(u,,) = —u

Here function g is regular, and we obtain:
Theorem 2.2 Lete >0, § = 0(55/2), and f: R — R be a convex flux function satisfying
f(u) < CA+ |ul?), where 0 < < 1/2.

Then, setting u = ue s the solution of (1.1) — (1.2), the family solutions (ues) converges to the
entropy solution of (3) — (4).

The dispersion here is strongly nonlinear but regular, which provides the well-posedness [1, 2].
We can see that comparing to the results in [16], the rate are quite similar when the flux is convex
and satisfies f”(u) < C (6 = o(e®/?) whereas § = O(£%) in [16]).

3 A priori estimates

Assume that 7 is a regular function and ¢ a function defined by ¢’ = 7' f’, and let us multiply
(1.1) by n'(u). We obtain

N +ews = &0(Wus), — en’(w)u; (3.1)
+0 (' (w) 9(uae)), — 0 1" (1) s 9(tag) -

Integrating over (0,¢) x R with n(u) = |u|*"!, the conservative terms vanish and we obtain the
following lemma.

Lemma 3.1 Let a > 1 and g : R — R be any dispersion function. Each solution of (1.1) satisfies
fort e [0,T]

t
/|u(t)|“+1dx + (a+1)ae//\u|a—1u§dxds (3.2)
R 0 JR

+

¢
(a+1)a5//|u\a_1umg(um)d;pds
0o JR

— / luo|* T daz .
R

Usually, taking o = 1 in (3.2), we deduce the a priori L? first energy estimates.
Let us introduce the functions G, and G defined by G = G’ = g, i.e,

1 1
G —— n d — n+2.
() = =gl and = —Fm=rr s lul

Using the multiplier (¢ + 2)(Juz|%us). to (1.1), we have

((q+2) w [ue|Tus) , — (Jual ™) = —(g42)(q + 1)ua|? taw f' () s
+e(g+2)(g+1) Jug|?u,
+0(q+2)(q+ 1) |[uz]? Uzw 9 (Uza) Uraa

= —(g+ D(|ua|™?)s f'(u)
+e(g+2)(g+ 1) |ug| w2,
+0 (¢ +2)(q+ 1) n|ug|?! G(use)a,



and we get the estimate

((q+2) s Jue|Tuz) , — (Jue| ™) = —((q+ Dua| 2 f (),
(g + D)fug| 7 ug f(u)
+e (g +2)(g +1) Jue|Tul,
+(6 (g +2)(q + 1) n fug|? Glura)),

—6(g+2)(g+1)g(n+2)n |uac|qi2 Uy G(Ugz )

Similarly, using the multiplier (¢ + 2)(ud™!), to (1.1), we can write

((g+2)wud™) —(ui*®), = —(Q+2)(Q+1)Uq+1f/( ) Usa
+e(¢+2)(q+ 1) uf uy,
+(6(g+2)(g+ 1) nud Gluse)),
—0(q+2)(g+ 1) q(n+2)nul™" G(usa),

thus

-l = —((g+ 1) ulf'(v),
g+ 1) ud™ 7 (u)
+e(g+2)(g+ D ulul,
+(0 (g +2)(g+)nud G(um))x
—0(g+2)(g+1)q(n+2)nul " Glug,).

((q + 2) Ut ungl)

Integrating (3.3) and (3.4) over R x [0, ] provides

t
/ o (B2 dr + ¢ (g + 2)(q + 1) / / g |9 2, duds
R 0 JR
t
= [l ae =+ 1) [ [ a2 ) dods
R 0 JR

t
+6(q+2)(q+1)q(n+2)n/ /uqc 2|97 G (U ) dads
0 Jr

/u )2 dr +e(q+2)(g+1) //uqu dxds
R

- / (u) 1+ dz — (g + 1) / / Wt f(u) deds

—|—5(q—|—2)(q+1)q(n—|—2)n/0 /Rugqfl G(ugy) dzds .

We define now the sets, for ¢t € [0, T
Ut = {r € R; uy(z,t) > 0},

and
U; ={z € R; uy(z,t) < 0}.

Adding (3.6) to (3.5) for ¢ odd, we obtain:

(3.3)

(3.5)



Lemma 3.2 Let g be a odd number. Then, each solution of (1.1) satisfies for t € [0,T]

t
| e ae v+ 20+ ) | / a2, dads (3.7)
ut

+6(¢+2)(¢g+1)g(n+2) // [z |71 |G (Upe)| dds

t
tat D) [l ) dds
0 JU;
N /Z/{Jr |u6|q+2 dr,

0

where the last left hand-side term can be replaced by

—(g+2)(¢+ 1)/0 /u § [tz |77 ' (u) U deds . (3.8)

Now, the combination of Lemmas 3.1 and 3.2 gives the following estimate

Proposition 3.3 Lete,6 >0, and f : R = R be a convezx flur function. The solution u = u. s of
(1.1) — (1.2) satisfies the uniform estimate

t t
/ lu(t)|*T da + 5/ / lu|* "t u? deds + 6/ / [u| ! [ug| [t |™ drds < Co, (3.9)
R 0 Jr 0o Jr

for all 25+f1 <a< 4+"

Proof. When g(u) = —|u|™, equality (3.2) writes

/|u ot de + a4+ 1) //\u|0‘ Y2 deds =

||u0||g¢}+a<a+1)5/ / [ 1 [t | dds. (3.10)
0 JR

Also, when f is convex, we can rewrite (3.7) for ¢ > 1 odd as

/ g (¢ \q+2dx+£// [ug|? u2, dads (3.11)
¢
_H;// |Um‘q_1|umj|n+2d$d8+// |Um‘q+3f/l(u)d$d8§00
o Jut o Juf

However, using the Young inequality, we get

t
6// [u|* ™ g [t |™ dads
o Jus
- uo‘_l) ctaF uy|) (Oluge|™) drds
//u(t| (ct3# usl) (Bluel")
k ul
< )( )// |u|0‘+1dxds—|— t ! // |t | dads
tca 1 a+1

+?61+%// g |2 dads, (3.12)
n 0 Jut




where ¢ and k are two constants such that
a+1

co—1T =da(a —1),

and
1+ n +a—1_
kEk n+2 a+1

Thus,
(n+2)(a+1)
4d4+n)—na

)

and if S <o < A2 we get k> 3.
Now, ¢ is chosen odd such that 2 4+ ¢ > k to obtain

|ur|k < |uz|3 + |uz|q+2~

Using (3.11) with ¢ = 1 and ¢ > k — 2 odd, we obtain

t t
/ / u|® deds + 6 / / [tge|" T2 dxds < Cy.
+ +

Now, integrating (3.10) over [0, ¢], we get

// |u|°‘+1dxds<//|u\a+1da:ds
Z/{+

t
<tCo+ ala+ 1)t5/ / [u|* ™ g Uy |™ drds.
0 Jut

Thus, injecting (3.13) and (3.14) in (3.12), it comes

t t
1
(5// |u|a_1uw|um|"dxdsSCO—i—f(S// [u| ™ g [t |™ dads
o Jud 4 Jo Jur

and we obtain
5/ / || g [t |™ dzds < Cy.

Finally, injecting (3.16) in (3.10) we obtain (3.9).

3.1 Case f convex, 0 >0 and g(uz,) = — |t
We are concerned here with the equation
up + f(u)y = € Ugr — 0 [Uga|s.
Proposition 3.4 Lete >0, and f : R — R be a convez flur function, such that
f(u) < CQA+ |ul?), where 0 < < 3.
Then, the solution u = uc s of (3.17) satisfies the estimate

¢
/uz(t)zdere//uizda:dsgCJrg,
R 0 JR 0

where C' > 0 is a constant independent of € and §.
In addition, if § = O(g?), the estimate (3.9) with a =1 is

t t
/u(t)2 dsr:—|—5/ /ui dxds—|—5/ / [tg| |tge | dxds < C.
R 0 JR 0 JR

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)



Proof. On the one hand, (3.5) is rewritten with ¢ = 0 as

t
/ux(t)2dx—|—25/ /uimdxds
R 0 JR

:A(ug)de+2AtAf'(u) o U A,

Since f satisfies f”(u) < C(1 + |u|?), with 0 < 3 < 3. Then

|f'(w) = £/(0)] < Cful + [u]™*),

t
§C//|u||uz|\um\dxds
o Jr

t
+0 [ [ 1l el s,
0 JR

Applying (3.9) withn =1, a =2 and a = 4+ 2 < 5, we get

/ot/]R I (w) Uy Ugy drds

Finally, injecting (3.22) in (3.20) provides (3.18).
On the other hand, estimate (3.2), with a = 1 is written as

where C is a generic constant. Thus,

/ot/R I (u) ug Upy dods

C
< —.
)

t t
/u(t)2 d$+25/ /uidmds: ||u0||§+26/ /uz |ttpe | dxds.
R 0o Jr 0o Jr

Then

t t
/u(t)de+2€/ /ui dxdsSCo—i—Zé/ / [tz | |tize | dds.
R 0 Jr 0 Jr

Now, if § < Ke?

A

o [ [l s < Vo [ eluel) (VRS ezl s

VKe

\/g < /t/ ) t
< € Uy d:z:ds+K§5/ /uix da:ds)
WK e o Jr o Jr
t t
L (s/ /uida:ds—&—K(Ss/ /uixdmds>
2 0o JR 0o JR

IN

Using (3.18) and injecting (3.25) in (3.24) give (3.19).

Proposition 3.5 Let ¢ > 0,0 = o(¢?), and f : R — R be a convex flur function satisfying

f"(u) < C(+ |ul?), where 0 < B < 3.

Then, the solution u = u. s satisfies
(a) {eu2} is bounded in L'((0,t) x R).
(b) {euz} — 0 as e — 0, in L?((0,t) x R).
(c) {8 uy |uze|} — 0 ase — 0, in LY((0,t) x R).
(d) {5 |ugz|} — 0 as e — 0, in L2((0,t) x R).

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



Proof. The statements (a), (b) are obtained thanks to (3.19).
Now, in the same manner we obtained (3.25), we have

¢ 5 ¢ ¢
5//|uz\|um|dajds§ £ (e/ /uidxderé{—:/ /uixdasds),
2e ’
0 JR 0 JR 0 JR

and using (3.18) and (3.19) it gets

t
(5/ / |tg| [tgs| dzds < C’ﬁ7 (3.26)
0 JR €

which gives (c) as soon as § = o(g?).
Finally, (d) is obtained thanks to (3.18) since,

t t
52/ /uiz dxds < g ((55/ /uiz dmds) <y é (3.27)
0 JR € 0 JR €

O
3.2 Case f convex, § >0 and g(u,) = —u?,
We are concerned here with the equation
Ut + f(u)T =EUgy — 6 (Uix)r (328)

It is noteworthy that the initial value problem associated with (3.28) is well-posed [1, 2].

Proposition 3.6 Lete > 0,0 = O(e) and f : R = R be a convez flux function. Then, the solution
u = us s of (3.28) satisfies the estimate (3.9) with a =1, i.e.,

t t
/u(t)2d3:—|—6/ /uidxds—k(s// |ug | u2, deds < Cj. (3.29)
R 0 Jr 0 Jr

f(u) < CA+ |ul?), where 0 < < 1/2,

If in addition
then the solution u = u. s checks
t
/ Uy (8)? dx + e/ / u?, drds < Co+ Co 6127 1/4, (3.30)
R o JR
Proof. On the one hand, (3.2) with n = 2, a = 1 is written

t t
/u(t)de—i—Zs/ /ui dxds = HU0H§+25/ /umuir dxds, (3.31)
i 0 Jr 0 Jr

and, from (3.7) with ¢ = 1, we get

t
{—:/ / Uy uix dxds < Cy. (3.32)
o JuF

Thus, if 6 < (ke), (3.32) and (3.31) give (3.29).
On the other hand, assuming f”(u) < C(1 + |u|?), with 0 < 8 < 1/2, we have

|f'(w) = £1(0)] < C(Jul + [u™*h).



Then, to estimate the last term in (3.20), we procced as in the case n = 1:

t t ¢
|//f’(u)uTumdxds| < C’//|u||uz||um|dxds+0//|u\3+1\um||um|dzds
0 JR 0 JR 0 JR

t
§C5_1/25_1/4// S22y [V |y a2 (/4 u,V2) dads
(82l ) (') (el 2)
t
+C§71/2€71/4//(51/2|u|6+1/2|ux|1/2|Um|) (|u|1/2) (61/4|ux|1/2) deds.
0o Jr

Using the Young inequality, it comes

t 5 t
|//f'(u) Uy Ugy dxds| < C5— 1214 (/ / |u|2ﬁ+1|uf,3|u'2m dxds
0o JR 2 Jo Jr

5 [ 2 I 2 e [ 2
+- |ul|uguz, deds + = u” dxds + — uydxds | . (3.33)
2 Jo Jr 2Jo Jr 2 Jo Jr

Inequality (3.9) with n =2, « =2 and o = 28 + 2 < 3 is written as

t t
(5/ / ||y [u2, dmds+6/ / [u?P T u, [u?, deds < Cy. (3.34)
0o Jr 0 Jr

Now, injecting (3.34) and (3.29) in (3.33), we obtain

t
I/O /Rf’(u) Ug Ugy drds| < C5H/2e71/4, (3.35)

Finally, injecting (3.35) in (3.20) we get the required estimate (3.30). O

Proposition 3.7 Let e >0, § = 0(¢%/2), and f : R — R be a convex fluzx function satisfying
f(u) < C(1+ [ul?), where 0 < B < 1/2.

Then, the solution u = uc s of (3.28) satisfies
(a) {eu2} is bounded in L'((0,t) x R).
(b) {euz} — 0 ase— 0, in L?((0,t) x R).
(c) {duy u2,}, as uy = max(0,—u,), is bounded in L*((0,t) x R).
(d) {dufu2,} — 0, as uf = max(0,u,) when ¢ — 0 in L1((0,t) x R).
(e) {5u2,} — 0 ase— 0, in L'((0,t) x R).

Proof. The statements (a), (b) and (c) are obtained from (3.29).
Now, (d) is obtained from (3.7) with ¢ = 1 since

¢ ¢
5/ / Uy u2, drds < 0 (E/ / Uy U2, dxds) <C é (3.36)
0 T e 0 T IS

Finally, (3.30) provides (e) since

t t
5/ /ufm dads < 67 e /453 a5/4/ /uiw dzds) < CV/6e5/2, (3.37)
0 JR 0 JR



4 Convergence Proof

We now define the measure-valued solutions to the first order Cauchy problem (1.3)-(1.4) as
DiPerna [7].

Definition 4.1 Assume that ug € L*(R) N LY(R) and f € C(R) satisfies the growth condition
|f(w)] < Oul™) as |u| — oo, for some m € [0, q). (4.1)
A Young measure v is called an entropy measure-valued (e.m.-v.) solution to (1.3)-(1.4) if
(v, Ju— k)¢ + (v,sgn(u — k) (f(u) — f(k)))s <0, forallk eR, (4.2)

in the sense of distributions on (0,T) x R, and

lim - // V(z,s)s [u—uo(z)]) dxds =0,  for all compact set K C R. (4.3)

A representation theorem of Young’s measures associated with a sequence of uniformly bounded
functions of L7 is used to link the structure of measure and the strong convergence [16].

Lemma 4.2 Let {u,}nen be a bounded sequence in L*°((0,T); L1(R)). Then there exists a sub-
sequence denoted by {ly}nen and a weakly-x measurable mapping v : R x (0,T) — Prob(R) such

that, for all functions h € C(R) satisfying (4.1), (V(z,+), h) belongs to L>((0,T); L?O/Cm( R)) and the
following limit representation holds:

/ / Vo, h) B t) dedt = lim / / h(iin (2, 1)) & 1) dacdt, (4.4)
Rx(0,T) o0 ) JRx(0,T)

for all ¢ € LY(R x (0,T)) N L=(R x (0,T)).
Conversely, given v, there exists a sequence {un} satisfying the same conditions as above and
such that (4.4) holds for any h satisfying (4.1).

Proof of the main results. We begin proving (4.2) by using Proposition 3.3, resp. Proposition-
3.5, for n = 1, resp. n = 2, and we apply the Young measure representation theorem in the
suitable L? space (4.4) to show that v satisfies (4.2). Also, we use a standard regularization of
sgn(u—k)(f(u)— f(k)) and |u—k| (k € R), since it is sufficient to show that there exists a bounded
measure p < 0 such that

N+ q(u)e — p in D'(R x (0,7)) (4.5)

for an arbitrary convex function n (we assume that 1’ and n” are bounded on R).
Now, to prove (4.5), we rewrite the formulae (3.1) in the form

n(w)e + q(u)e = p1 + p2 + pz + pa, (4.6)
where,
p: = e(n'(u) um)m;
pat = —en(u)ul
ps s = 6 (n'(u) g(uax)),;
Mgt = — o 77//(”) Ug g(uxm)

We distinguish the case n =1 from n = 2.

10



Case n = 1: g(uzy) = —|ugs|, f convex and 6 = o(e?). We have

T T
| < p1,0>] < 5/ /|9$n’(u)um\dwd8§s/ /\quz|d;vds§C|\0m||L2HsuI\|L2,(4.7)
0o Jr 0o Jr

T
(<m0>| < e [ [ 100" dods < Cllo| L~ e (48)
0 R

Since n is a convex function, we notice for a non negative function 6

T
< pg,0> = —5/ /Qn"(u)uidscdsgo. (4.9)
0o Jr

In the same way, we have

IN

T T
5/ / 101 (u) |tz || dzds < 05/ / |0 ||| dxds
o Jr o Jr

O110 112116 e 2. (4.10)

|<H’370>|

IN

and

T T
| < pa,0>1] < 6/ /\Hn"(u)ux\udexdsgCé/ /|9uz|um||d:cds
o Jr o Jr
< OOl 1 el )

Combining (4.7), (4.8), (4.9), (4.10) and (4.11), with (a), (b), (c¢), (d) in Proposition 3.3, gives
(4.5) where p is non positive bounded measure.

Case n = 2: g(u,,) = —u?,, f convex and § = 0(¢%/2). Estimates (4.7), (4.8), (4.9) remain true.
Concerning p3, we have

T T
| <ps,0>] < (5/ /|91n’(u)uiw|d$ds§06/ /|0wuix|dazd5
o Jr o Jr
< Ollballz=lld uZyll s (4.12)
Now, g4 is split as
Ha = 41 + [42,
with
par = 0" (w)uf ul,;
paz = =0 " (u)uy iw,
where u} = max(0,u;) and u,; = max(0, —u,). Then we have
T
| < par,0 > < 5/0 /]R|977”(u : m|dxds<06/ /|9u 2 | dxds
< Clfllzellduy uz,ller, (4.13)
and
T T
| < paz,0>1] < 5/ /|9n”(u)u;um|dxds§05/ /|9u;uim\dmds
o Jr o Jr
< Ollfllpel8ug ulyll s (4.14)
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Again, since n” > 0, it gets for a non negative function 6
gait, n y 1L & g

T
< pa2,0 > = 75/ /On/’(u) uy u?, deds < 0. (4.15)
0o Jr
Finally, from inequalities (4.7), (4.8), (4.9), (4.12), (4.13), (4.14) and (4.15), combined with (a),
(b), (c¢) and (d) in Proposition 3.5, we obtain (4.5) where p is non positive bounded measure.

Now we will prove (4.3). We follow arguments of DiPerna [7] and Szepessy [18]: we have to
check that, for each compact set K of R,

I 1 [f
lim */0 K<V(3:,s)7 lu — uo(x)]) drds = tl_i>r51+ El_iglJr ;/0 /K [u™®(z, 5) — ug(z)| dwds = 0.

By Jensen’s inequality

1/01"/}( [u? (2, 5) — ug ()| dads < m(K)"/? (1 /Of/K (45 (2, 5) — uo(x))” dmds)1/27

where m(K') denotes the Lebesgue measure of K. Then we will establish that

1 t
lim lim 7/ / (ue"s(w,s) - uo(x))2 dxds = 0.
t=0+e=0+ ¢ Jo JK

Let K; C K;11 (i = 0,1,...) be an increasing sequence of compact sets such that Ky = K and
U;>0K; = R. Using the identity u? — u? — 2ug(u — up) = (u — ug)?, we get for all i =0, 1,...

1/t 2
E// (u=0(-,8) —uo)~ dzds
0 JK
t
< 1/ (/ |u575(-,3)\2da:—/ u% dx—2/ U (ue,c?(.7s)—uo) dx) ds
t Jo K; K

K;
1 t
§/ ud dx + 7/ (/ |u5’5(.,s)|2dx—/u(2) d:c)
R\K; tJo \Ur R
¢

+2/ / U (u5’6(~,s)—u0) dz
tJo |k,

For the first term of the right hand side, we clearly have

ds. (4.16)

lim ud dx = 0.
1—00 ]R\Ki

Now, injecting (3.26) in (3.23), in the case n = 1, and respectively (3.36) in (3.31), in the case

n = 2, we obtain
)
/ \us";(-,s)|2dx - / u% dx < C’i,
R R €

6
/|u6’5(~,5)\2dzf/u(2) de < C-.
R R €

In both cases, the right hand side of these inequalities tends to zero when & — 0.
To estimate the last term in the inequality (4.16), we choose {0, }nen C C3°(R) such that

and respectively,

lim 6, =uy in L3*(R).

n— oo

12



Then, the Cauchy-Schwarz inequality gives
‘/ Ug (ug"S(' s) —up) da| < / |ug — 6, |u6’5(~, s) — ug| da
K; K;

’/ - uo> + /K 0, <u57‘5(-,s) - ug’é) dx

<o = OnllL2(w) (||U (92 + lluoll 2 r))

// 0,, Osu® dxdr| .
0 JK;

In view of (3.19) for n = 1 and respectively (3.29) for n = 2, we have

)
H0nll L2y llug® — woll L2y +

uo — Onll2®) (1u= (- 8) |l L2y + l[uollz2®)) < (luollr2) + C) lluo — Onllr2(w)

which tends to zero when n — oo, since lim. oy ||u(5]"S —ug||2(r) = 0. Finally, it remains to prove
that

lim lim = 0 Au®? dzdr| d

=0.
t—0+ e—0+ ¢

We have, by (1.1),

#)eteugy +9g(usy),) dedr

// u*?)| dadr + a// ), us’| dedr
+5// us?)| ddr

I +1p +Ig.

/ 0,, Osus® dudr
K.

IN

To compute each quantity I, Is and I3, we distinguish the cases n = 1 from n = 2.

Case n = 1: g(uzy) = —|uze|, f convex and § = o(e?). Since f is such that
0< f"(w) <C+ul?),

where 8 < 3. Thus,
)] < O+ [ul™),

where m < 5. Then, Proposition 3.1 implies

S S
/ / [u®°|™ da dr g/ /|u5’5|mdxd7 <Cs, (4.17)
0 JK; 0 JR

// ). I ( Eé)’dwdr
<C// \dxdT+C// ), | 0™ da dr
<c// ), | dedr+ C| (6 nm@// ™ da dr

<Csl (@ n)r i@ + Csll(0n), L) (4.18)

and

13



Thanks to (3.19), we can write

([ [ o) (o[ e )

< Ce? st (0n), llr2m)- (4.19)

Finally for I3, using (3.27), we get

I —5//| |dmdr—//6| )| [uS?| dedr

< ( / / dxdr) (52 / / |us? dde)
< 5 (60), llece (52// fus? dxdr)
= (5) 160, 2o (4.20)

Now, from (4.18), (4.19) and (4.20), we deduce

1 t S
lim lim 7/ / 0, u? dedr
t=0+e=0+ 1t Jo |Jo JK,

C 1.3
< t1_1>%1+ 81_1}51+ 7 <t2 (11 (0n), 1wy + 1 (On), oo @) + €282 || (On), lL2(r)

1
3 (02
+t (2) e, L2<R>.>
and since § = o(g?), we obtain the desired conclusion, and Theorem 2.1 is proved.

ds

Nl

)
< lim lim C<t+ £3t3 4¢3 <>

T t—=04+e—0+ e

Case n = 2: g(uz,) = —u2,, f convex and § = o(¢%/?). Here, f is such that
0< f"(u) < CA+ |ul?),

where § < 1/2, thus,
[f(w)] < O+ [ul™),

where m < 5/2.
Estimates I; and I3 are obtained in the same manner as n = 1 using (3.29) instead of (3.18).

From (3.37) we obtain

hoo=s [l st [ 510002 asir
<16, i~ (5 [ [t dm)
0 JK;

S V32| (6n), I~ (4.21)

14



Finally, using (4.18), (4.19) and (4.21), we obtain

1 t s
lim lim 7/ // 0, us? dxdr
t—0+e—0+ ¢ 0 0 JK,

. . C 1 3
< Jim tim = (8 (16a), Nl + 16n), lle) + 2363 1 0n), i

V32| (0), Nl )

< lim lim C<t+ £3t3 4 55—5/2),

ds

t—0+ e—0+

and since § = 0(55/ 2), we obtain the desired conclusion, and Theorem 2.2 is proved.
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