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We consider a conservation law perturbed by a linear diffusion and non-positive dispersion

We prove the convergence of the previous solution to the entropy weak solution of the hyperbolic conservation law ut + f (u)x = 0, in both cases n = 1 and n = 2.

Introduction

We consider the initial value problem

u t + f (u) x = εu xx + δg(u xx ) x (1.1) u(x, 0) = u 0 (x), (1.2) 
where ε and δ are small parameters, and g is a non positive function, and we focus on the specific form g(v) = -|v| n ,

where n ≥ 1. Note that if n = 1, g is lipschitz, if 1 < n < 2, g is C 1 and for n ≥ 2, g is C 2 . When δ = 0 we reduce to the viscous (generalized) Burgers equation and the approximate solutions u ε,0 converge to the entropy solution of the hyperbolic equation (called the vanishing viscosity method, see, e.g., Whitham [START_REF] Whitham | Linear and Nonlinear Waves[END_REF] or Kružkov [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF])

u t + f (u) x = 0 (1.3)
u(x, 0) = u 0 (x).

(1.4)

On the other hand, when ε = 0, if we consider the flux function f (u) = u 2 and the linear dispersion δu xxx we obtain the Korteweg-de Vries equation. The approximate solutions u 0,δ do not converge in a strong topology (see Lax-Levermore [START_REF] Lax | The small dispersion limit of the Korteweg-de Vries equation[END_REF]). So, as parameters ε and δ vanish, we are concerned with singular limits and to ensure convergence it is necessary to be in the dominant dissipation regime.

The pioneer study of these singular limits was given by Schonbek [START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF] about the (generalized) Korteweg-de Vries-Burgers equation

u t + f (u) x = ε u xx -δ u xxx .
In the case of a convex flux function f (u), she proved the convergence of the solutions of this perturbed equation to the entropy solution of (1.3), when both ε and δ tend to zero, at least under the condition δ = O(ε 3 ) (depending on the behavior of the flux f ). Also, according to Perthame-Ryzhic [START_REF] Perthame | Moderate Dispersion in Conservation Laws with Convex Fluxes[END_REF], the sharp condition should be δ = o(ε). LeFloch-Natalini [START_REF] Lefloch | Conservation laws with vanishing nonlinear diffusion and dispersion[END_REF] proved the convergence in the case of a nonlinear viscosity function β and linear capillarity

u t + f (u) x = ε β(u x ) x -δ u xxx .
Then, Correia-LeFloch [START_REF] Correia | Nonlinear Diffusive-Dispersive Limits for Multidimensional Conservation Laws[END_REF] improved the estimates in Schonbek [START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF] and LeFloch-Natalini [START_REF] Lefloch | Conservation laws with vanishing nonlinear diffusion and dispersion[END_REF] and for the first time treated the multidimensional equation, but still in the case of a nonlinear viscosity function and linear capillarity. In fact, the dominant dissipation regime is also assured by the nonlinear viscosity. In our case, we consider the reverse situation.

In general for ε = 0, like for the Korteweg-de Vries equation, the divergent behaviour is expected, as we are considering "pure-dispersive equations". But, Brenier-Levy [START_REF] Brenier | Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations[END_REF] considered the fully nonlinear equation

u t + f (u) x = -δ(u 2 xx )
x as a nonlinear generalization of the Korteweg-de Vries equation. Such nonlinear dispersion significantly affects the dispersive behaviour of the solutions that differs completely from the linear case. In particular, Brenier and Levy [START_REF] Brenier | Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations[END_REF] conjectured that for strictly convex flux functions f and for the following perturbed problem

u t + f (u) x = -δg(u xx ) x -ε u xxxx ,
we have convergence when ε and δ tend to zero under the condition ε = o(δ).

The paper is organized as follows. In Section 2, we present the main results of convergence. Section 3 deals with the uniform estimates needed for convergence. Finally, Section 4 is devoted to proving the convergence to the entropy solution of the hyperbolic equation, when both ε and δ go to zero.

Main Results

Two main convergence results are presented. The first one is concerned with g(v) = -|v| (i.e. n = 1) while the second one is devoted to the case g(v) = -v 2 (i.e. n = 2).

Case

f convex, δ > 0 and g(u xx ) = -|u xx |
In this case, we prove the following result.

Theorem 2.1 Let ε > 0, δ = o(ε 2 ), and f : R → R be a convex flux function satisfying f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 3.
Then, setting u = u ε,δ the solution of (1.1) -(1.2), the family solutions (u ε,δ ) converges to the entropy solution of (3) -(4).

In the case of the linear dispersion, i.e. g(u xx ) = u xx treated in [START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF], Schonbek gets for a general flux satisfying f (u) ≤ C, a convergence with rate δ = O(ε 3 ). Also, when f (u) ≤ C(1 + |u|), the author obtain the convergence with the rate δ = O(ε 4 ). The case of g(u xx ) = -|u xx | seems giving a weakly dispersive effects than a classical linear dispersion.

Case

f convex, δ > 0 and g(u xx ) = -u 2 xx
Here function g is regular, and we obtain:

Theorem 2.2 Let ε > 0, δ = o(ε 5/2
), and f : R → R be a convex flux function satisfying

f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 1/2.
Then, setting u = u ε,δ the solution of (1.1) -(1.2), the family solutions (u ε,δ ) converges to the entropy solution of (3) -(4).

The dispersion here is strongly nonlinear but regular, which provides the well-posedness [START_REF] Bedjaoui | Well-posedness of the generalized Korteweg-de Vries-Burgers equation with nonlinear dispersion and nonlinear dissipation[END_REF][START_REF] Bedjaoui | On vanishing dissipative-dispersive perturbations of hyperbolic conservation laws[END_REF]. We can see that comparing to the results in [START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF], the rate are quite similar when the flux is convex and satisfies f (u) ≤ C (δ = o(ε 5/2 ) whereas δ = O(ε 3 ) in [START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF]).

A priori estimates

Assume that η is a regular function and ϕ a function defined by ϕ = η f , and let us multiply (1.1) by η (u). We obtain

η(u) t + ϕ(u) x = ε η (u) u x x -ε η (u) u 2 x (3.1) + δ η (u) g(u xx ) x -δ η (u) u x g(u xx ) .
Integrating over (0, t) × R with η(u) = |u| α+1 , the conservative terms vanish and we obtain the following lemma. x dxds (3.2)

+ (α + 1) α δ t 0 R |u| α-1 u x g(u xx ) dxds = R |u 0 | α+1 dx .
Usually, taking α = 1 in (3.2), we deduce the a priori L 2 first energy estimates. Let us introduce the functions G, and G defined by

G = G = g, i.e, G(u) = - 1 n + 1 |u| n u, and G = - 1 (n + 1)(n + 2) |u| n+2 .
Using the multiplier (q + 2)(|u x | q u x ) x to (1.1), we have

(q + 2) u t |u x | q u x x -(|u x | q+2 ) t = -(q + 2)(q + 1)|u x | q u xx f (u) u x + ε (q + 2)(q + 1) |u x | q u 2 xx + δ (q + 2)(q + 1) |u x | q u xx g (u xx ) u xxx = -(q + 1)(|u x | q+2 ) x f (u) +ε (q + 2)(q + 1) |u x | q u 2 xx +δ (q + 2)(q + 1) n |u x | q G(u xx ) x ,
and we get the estimate

(q + 2) u t |u x | q u x x -(|u x | q+2 ) t = -(q + 1)|u x | q+2 f (u) x (3.3) +(q + 1)|u x | q+2 u x f (u) +ε (q + 2)(q + 1) |u x | q u 2 xx + δ (q + 2)(q + 1) n |u x | q G(u xx ) x -δ (q + 2)(q + 1) q (n + 2) n |u x | q-2 u x G(u xx ).
Similarly, using the multiplier (q + 2)(u q+1 x ) x to (1.1), we can write

(q + 2) u t u q+1 x x -(u q+2 x ) t = -(q + 2)(q + 1) u q+1 x f (u) u xx +ε (q + 2)(q + 1) u q x u 2 xx + δ (q + 2)(q + 1) n u q x G(u xx ) x -δ (q + 2)(q + 1) q (n + 2) n u q-1 x G(u xx ), thus (q + 2) u t u q+1 x x -(u q+2 x ) t = -(q + 1) u q+2 x f (u) x (3.4) +(q + 1) u q+3 x f (u) +ε (q + 2)(q + 1) u q x u 2 xx + δ (q + 2)(q + 1) n u q x G(u xx ) x -δ (q + 2)(q + 1) q (n + 2) n u q-1 x G(u xx ). Integrating (3.3) and (3.4) over R × [0, t] provides R |u x (t)| q+2 dx + ε (q + 2)(q + 1) t 0 R |u x | q u 2 xx dxds (3.5) = R |u 0 | q+2 dx -(q + 1) t 0 R u x |u x | q+2 f (u) dxds +δ (q + 2)(q + 1) q (n + 2) n t 0 R u x |u x | q-2 G(u xx ) dxds , R u x (t) q+2 dx + ε (q + 2)(q + 1) t 0 R u q x u 2 xx dxds (3.6) = R (u 0 ) q+2 dx -(q + 1) t 0 R u q+3 x f (u) dxds +δ (q + 2)(q + 1) q (n + 2) n t 0 R u q-1 x G(u xx ) dxds .
We define now the sets, for t ∈ [0, T ]

U + t = {x ∈ R; u x (x, t) > 0},
and (3.5) for q odd, we obtain: Lemma 3.2 Let q be a odd number. Then, each solution of (1.1) satisfies for t ∈ [0, T ]

U - t = {x ∈ R; u x (x, t) < 0}. Adding (3.6) to
U + t |u x (t)| q+2 dx + ε (q + 2)(q + 1) t 0 U + s |u x | q u 2 xx dxds (3.7)
+δ (q + 2)(q + 1) q (n + 2)

n t 0 U + s |u x | q-1 |G(u xx )| dxds + (q + 1) t 0 U + s |u x | q+3 f (u) dxds = U + 0 |u 0 | q+2 dx ,
where the last left hand-side term can be replaced by

-(q + 2)(q + 1) t 0 Us + |u x | q+1 f (u) u xx dxds . (3.8)
Now, the combination of Lemmas 3.1 and 3.2 gives the following estimate

Proposition 3.3 Let ε, δ > 0, and f : R → R be a convex flux function. The solution u = u ε,δ of (1.1) -(1.2) satisfies the uniform estimate R |u(t)| α+1 dx + ε t 0 R |u| α-1 u 2 x dxds + δ t 0 R |u| α-1 |u x | |u xx | n dxds ≤ C 0 , (3.9) 
for all 5+n 2n+1 ≤ α < 4+n n .

Proof. When g(u) = -|u| n , equality (3.2) writes R |u(t)| α+1 dx + α(α + 1) ε t 0 R |u| α-1 u 2 x dxds = u 0 α+1 α+1 + α(α + 1) δ t 0 R |u| α-1 u x |u xx | n dxds. (3.10)
Also, when f is convex, we can rewrite (3.7) for q ≥ 1 odd as

U + t |u x (t)| q+2 dx + ε t 0 U + s |u x | q u 2 xx dxds (3.11) +δ t 0 U + s |u x | q-1 |u xx | n+2 dxds + t 0 U + s |u x | q+3 f (u) dxds ≤ C 0
However, using the Young inequality, we get

δ t 0 U + s |u| α-1 u x |u xx | n dxds = t 0 U + s 1 c t α-1 α+1 |u| α-1 c t α-1 α+1 |u x | (δ|u xx | n ) dxds ≤ 1 t c α+1 α-1 α -1 α + 1 t 0 U + s |u| α+1 dxds + c k t k α-1 α+1 k t 0 U + s |u x | k dxds + n n + 2 δ 1+ 2 n t 0 U + s |u xx | n+2 dxds, (3.12) 
where c and k are two constants such that c α+1 α-1 = 4α(α -1), and

1 k + n n + 2 + α -1 α + 1 = 1.
Thus,

k = (n + 2)(α + 1) (4 + n) -n α ,
and if 5+n 2n+1 ≤ α < 4+n n , we get k ≥ 3. Now, q is chosen odd such that 2 + q ≥ k to obtain

|u x | k ≤ |u x | 3 + |u x | q+2 .
Using (3.11) with q = 1 and q ≥ k -2 odd, we obtain

t 0 U + s |u x | k dxds + δ t 0 U + s |u xx | n+2 dxds ≤ C 0 . (3.13)
Now, integrating (3.10) over [0, t], we get

t 0 U + s |u| α+1 dxds ≤ t 0 R |u| α+1 dxds ≤ t C 0 + α(α + 1) t δ t 0 U + s |u| α-1 u x |u xx | n dxds. (3.14) 
Thus, injecting (3.13) and (3.14) in (3.12), it comes

δ t 0 U + s |u| α-1 u x |u xx | n dxds ≤ C 0 + 1 4 δ t 0 U + s |u| α-1 u x |u xx | n dxds (3.15)
and we obtain

δ t 0 U + s |u| α-1 u x |u xx | n dxds ≤ C 0 . (3.16)
Finally, injecting (3.16) in (3.10) we obtain (3.9).

Case

f convex, δ > 0 and g(u xx ) = -|u xx |
We are concerned here with the equation

u t + f (u) x = ε u xx -δ |u xx | x .
(3.17) Proposition 3.4 Let ε > 0, and f : R → R be a convex flux function, such that

f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 3.
Then, the solution u = u ε,δ of (3.17) satisfies the estimate

R u x (t) 2 dx + ε t 0 R u 2 xx dxds ≤ C + C δ , (3.18) 
where C > 0 is a constant independent of ε and δ.

In addition, if δ = O(ε 2 ), the estimate (3.9

) with α = 1 is R u(t) 2 dx + ε t 0 R u 2 x dxds + δ t 0 R |u x | |u xx | dxds ≤ C. (3.19)
Proof. On the one hand, (3.5) is rewritten with q = 0 as

R u x (t) 2 dx + 2 ε t 0 R u 2 xx dxds (3.20) = R (u 0 ) 2 dx + 2 t 0 R f (u) u x u xx dxds. Since f satisfies f (u) ≤ C(1 + |u| β ), with 0 ≤ β < 3. Then |f (u) -f (0)| ≤ C(|u| + |u| β+1 ),
where C is a generic constant. Thus,

t 0 R f (u) u x u xx dxds ≤ C t 0 R |u||u x ||u xx | dxds +C t 0 R |u| β+1 |u x ||u xx | dxds. (3.21) 
Applying (3.9) with n = 1, α = 2 and α = β + 2 < 5, we get On the other hand, estimate (3.2), with α = 1 is written as Then, the solution

t 0 R f (u) u x u xx dxds ≤ C δ . ( 3 
R u(t) 2 dx + 2 ε t 0 R u 2 x dxds = u 0 2 2 + 2 δ t 0 R u x |u xx | dxds. (3.23) Then R u(t) 2 dx + 2 ε t 0 R u 2 x dxds ≤ C 0 + 2 δ t 0 R |u x | |u xx | dxds. (3.24) Now, if δ ≤ Kε 2 δ t 0 R |u x | |u xx | dxds ≤ √ δ √ Kε t 0 R √ ε|u x | √ K δ ε|u xx | dxds. ≤ √ δ 2 √ K ε ε t 0 R u 2 x dxds + K δ ε t 0 R u 2 xx dxds ≤ 1 2 ε t 0 R u 2 x dxds + K δ ε t 0 R u 2 xx dxds . ( 3 
u = u ε,δ satisfies (a) {ε u 2 x } is bounded in L 1 ((0, t) × R). (b) {ε u x } → 0 as ε → 0, in L 2 ((0, t) × R). (c) {δ u x |u xx |} → 0 as ε → 0, in L 1 ((0, t) × R). (d) {δ |u xx |} → 0 as ε → 0, in L 2 ((0, t) × R).
Proof. The statements (a), (b) are obtained thanks to (3.19). Now, in the same manner we obtained (3.25), we have

δ t 0 R |u x | |u xx | dxds ≤ √ δ 2ε ε t 0 R u 2 x dxds + δ ε t 0 R u 2 xx dxds ,
and using (3.18) and (3.19) it gets

δ t 0 R |u x | |u xx | dxds ≤ C √ δ ε , (3.26) 
which gives (c) as soon as δ = o(ε 2 ). Finally, (d) is obtained thanks to (3.18) since,

δ 2 t 0 R u 2 xx dxds ≤ δ ε δ ε t 0 R u 2 xx dxds ≤ C 0 δ ε . (3.27) 3.2 Case f convex, δ > 0 and g(u xx ) = -u 2 xx
We are concerned here with the equation 

u t + f (u) x = ε u xx -δ (u 2 xx ) x . ( 3 
If in addition f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 1/2, then the solution u = u ε,δ checks R u x (t) 2 dx + ε t 0 R u 2 xx dxds ≤ C 0 + C 0 δ -1/2 ε -1/4 . (3.30)
Proof. On the one hand, (3.

2) with n = 2, α = 1 is written R u(t) 2 dx + 2 ε t 0 R u 2 x dxds = u 0 2 2 + 2 δ t 0 R u x u 2 xx dxds, (3.31) 
and, from (3.7) with q = 1, we get 

ε t 0 U + s u x u 2 xx dxds ≤ C 0 . ( 3 
|f (u) -f (0)| ≤ C(|u| + |u| β+1 ).
Then, to estimate the last term in (3.20), we procced as in the case n = 1:

| t 0 R f (u) u x u xx dxds| ≤ C t 0 R |u||u x ||u xx | dxds + C t 0 R |u| β+1 |u x ||u xx | dxds ≤ Cδ -1/2 ε -1/4 t 0 R δ 1/2 |u| 1/2 |u x | 1/2 |u xx | |u| 1/2 ε 1/4 |u x | 1/2 dxds + Cδ -1/2 ε -1/4 t 0 R δ 1/2 |u| β+1/2 |u x | 1/2 |u xx | |u| 1/2 ε 1/4 |u x | 1/2 dxds.
Using the Young inequality, it comes

| t 0 R f (u) u x u xx dxds| ≤ Cδ -1/2 ε -1/4 δ 2 t 0 R |u| 2β+1 |u x |u 2 xx dxds + δ 2 t 0 R |u||u x |u 2 xx dxds + 1 2 t 0 R u 2 dxds + ε 2 t 0 R u 2 x dxds . (3.33)
Inequality (3.9) with n = 2, α = 2 and α = 2β + 2 < 3 is written as Then, the solution u = u ε,δ of (3.28) satisfies (a

δ t 0 R |u||u x |u 2 xx dxds + δ t 0 R |u| 2β+1 |u x |u 2 xx dxds ≤ C 0 . ( 3 
| t 0 R f (u) u x u xx dxds| ≤ Cδ -1/2 ε -1/4 . ( 3 
) {ε u 2 x } is bounded in L 1 ((0, t) × R). (b) {ε u x } → 0 as ε → 0, in L 2 ((0, t) × R). (c) {δ u - x u 2 xx }, as u - x = max(0, -u x ), is bounded in L 1 ((0, t) × R). (d) {δ u + x u 2 xx } → 0, as u + x = max(0, u x ) when ε → 0 in L 1 ((0, t) × R). (e) {δ u 2 xx } → 0 as ε → 0, in L 1 ((0, t) × R).
Proof. The statements (a), (b) and (c) are obtained from (3.29). Now, (d) is obtained from (3.7) with q = 1 since

δ t 0 Us + u x u 2 xx dxds ≤ δ ε ε t 0 Us + u x u 2 xx dxds ≤ C δ ε . (3.36)
Finally, (3.30) provides (e) since

δ t 0 R u 2 xx dxds ≤ δ 1 2 ε -5/4 (δ 1 2 ε 5/4 t 0 R u 2 xx dxds) ≤ C δε -5/2 .
(3.37)

Convergence Proof

We now define the measure-valued solutions to the first order Cauchy problem (1.3)-(1.4) as DiPerna [START_REF] Diperna | Measure-Valued Solutions to Conservation Laws[END_REF].

Definition 4.1 Assume that u 0 ∈ L 1 (R) ∩ L q (R) and f ∈ C(R) satisfies the growth condition |f (u)| ≤ O(|u| m ) as |u| → ∞, for some m ∈ [0, q). (4.1)
A Young measure ν is called an entropy measure-valued (e.m.-v.) solution to

(1.3)-(1.4) if ν, |u -k| t + ν, sgn(u -k)(f (u) -f (k)) x ≤ 0, for all k ∈ R, (4.2)
in the sense of distributions on (0, T ) × R, and

lim t→0 + 1 t t 0 K ν (x,s) , |u -u 0 (x)| dxds = 0, for all compact set K ⊆ R. (4.3)
A representation theorem of Young's measures associated with a sequence of uniformly bounded functions of L q is used to link the structure of measure and the strong convergence [START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF]. Lemma 4.2 Let {u n } n∈N be a bounded sequence in L ∞ ((0, T ); L q (R)). Then there exists a subsequence denoted by {ũ n } n∈N and a weakly-measurable mapping ν : R × (0, T ) → Prob(R) such that, for all functions h ∈ C(R) satisfying (4.1), ν (x,t) , h belongs to L ∞ ((0, T ); L q/m loc (R)) and the following limit representation holds:

R×(0,T ) ν (x,t) , h φ(x, t) dxdt = lim n→∞ R×(0,T ) h(ũ n (x, t)) φ(x, t) dxdt, (4.4) 
for all φ ∈ L 1 (R × (0, T )) ∩ L ∞ (R × (0, T )).
Conversely, given ν, there exists a sequence {u n } satisfying the same conditions as above and such that (4.4) holds for any h satisfying (4.1).

Proof of the main results. We begin proving (4.2) by using Proposition 3.3, resp. Proposition-3.5, for n = 1, resp. n = 2, and we apply the Young measure representation theorem in the suitable L q space (4.4) to show that ν satisfies (4.2). Also, we use a standard regularization of sgn(u-k)(f (u)-f (k)) and |u-k| (k ∈ R), since it is sufficient to show that there exists a bounded measure µ ≤ 0 such that

η(u) t + q(u) x -→ µ in D (R × (0, T )) (4.5) 
for an arbitrary convex function η (we assume that η and η are bounded on R). Now, to prove (4.5), we rewrite the formulae (3.1) in the form

η(u) t + q(u) x = µ 1 + µ 2 + µ 3 + µ 4 , (4.6) 
where,

µ 1 : = ε η (u) u x x ; µ 2 : = -ε η (u) u 2 x ; µ 3 : = δ η (u) g(u xx ) x ; µ 4 : = -δ η (u) u x g(u xx ).
We distinguish the case n = 1 from n = 2.

Case n = 1: g(u xx ) = -|u xx |, f convex and δ = o(ε 2 ). We have

| < µ 1 , θ > | ≤ ε T 0 R |θ x η (u) u x | dxds ≤ ε T 0 R |θ x u x | dxds ≤ C||θ x || L 2 ||ε u x || L 2 , (4.7) | < µ 2 , θ > | ≤ ε T 0 R |θ η (u) u 2 x | dxds ≤ C||θ|| L ∞ ||ε u 2 x || L 1 . (4.8) 
Since η is a convex function, we notice for a non negative function θ

< µ 2 , θ > = -ε T 0 R θ η (u) u 2 x dxds ≤ 0. ( 4.9) 
In the same way, we have

| < µ 3 , θ > | ≤ δ T 0 R |θ x η (u) |u xx || dxds ≤ C δ T 0 R |θ x |u xx || dxds ≤ C||θ x || L 2 ||δ |u xx ||| L 2 , (4.10) 
and

| < µ 4 , θ > | ≤ δ T 0 R |θ η (u) u x |u xx || dxds ≤ C δ T 0 R |θ u x |u xx || dxds ≤ C||θ|| L ∞ ||δ u x |u xx ||| L 1 . (4.11) Combining (4.7), (4.8), (4.9), (4.10) and (4.11), with (a), (b), (c), (d) in Proposition 3.3, gives (4.5) 
where µ is non positive bounded measure.

Case n = 2: g(u xx ) = -u 2 xx , f convex and δ = o(ε 5/2 ). Estimates (4.7), (4.8), (4.9) remain true. Concerning µ 3 , we have

| < µ 3 , θ > | ≤ δ T 0 R |θ x η (u) u 2 xx | dxds ≤ C δ T 0 R |θ x u 2 xx | dxds ≤ C||θ x || L ∞ ||δ u 2 xx || L 1 . (4.12)
Now, µ 4 is split as

µ 4 = µ 41 + µ 42 , with 
µ 41 := δ η (u) u + x u 2 xx ; µ 42 := -δ η (u) u - x u 2 xx ,
where u + x = max(0, u x ) and u - x = max(0, -u x ). Then we have

| < µ 41 , θ > | ≤ δ T 0 R |θ η (u) u + x u 2 xx | dxds ≤ C δ T 0 R |θ u + x u 2 xx | dxds ≤ C||θ|| L ∞ ||δ u + x u 2 xx || L 1 , (4.13) 
and

| < µ 42 , θ > | ≤ δ T 0 R |θ η (u) u - x u 2 xx | dxds ≤ C δ T 0 R |θ u - x u 2 xx | dxds ≤ C||θ|| L ∞ ||δ u - x u 2 xx || L 1 . (4.14)
Again, since η ≥ 0, it gets for a non negative function θ

< µ 42 , θ > = -δ T 0 R θ η (u) u - x u 2 xx dxds ≤ 0. (4.15)
Finally, from inequalities (4.7), (4.8), (4.9), (4.12), (4.13), (4.14) and (4.15), combined with (a), (b), (c) and (d) in Proposition 3.5, we obtain (4.5) where µ is non positive bounded measure. Now we will prove (4.3). We follow arguments of DiPerna [START_REF] Diperna | Measure-Valued Solutions to Conservation Laws[END_REF] and Szepessy [START_REF] Szepessy | An Existence Result for Scalar Conservation Laws using Measure-Valued Solutions[END_REF]: we have to check that, for each compact set K of R,

lim t→0+ 1 t t 0 K ν (x,s) , |u -u 0 (x)| dxds = lim t→0+ lim ε→0+ 1 t t 0 K u ε,δ (x, s) -u 0 (x) dxds = 0. By Jensen's inequality 1 t t 0 K u ε,δ (x, s) -u 0 (x) dxds ≤ m(K) 1/2 1 t t 0 K u ε,δ (x, s) -u 0 (x) 2 dxds 1/2
, where m(K) denotes the Lebesgue measure of K. Then we will establish that lim

t→0+ lim ε→0+ 1 t t 0 K u ε,δ (x, s) -u 0 (x) 2 dxds = 0.
Let K i ⊂ K i+1 ( i = 0, 1, ... ) be an increasing sequence of compact sets such that K 0 = K and

∪ i≥0 K i = R. Using the identity u 2 -u 2 0 -2u 0 (u -u 0 ) = (u -u 0 ) 2 ,
we get for all i = 0, 1, . . . 

1 t t 0 K u ε,δ (•, s) -u 0 2 dxds ≤ 1 t t 0 Ki |u ε,δ (•, s)| 2 dx - Ki u 2 0 dx -2 Ki u 0 u ε,δ (•, s) -u 0 dx ds ≤ R\Ki u 2 0 dx + 1 t t 0 R |u ε,δ (•, s)| 2 dx - R u 2 0 dx + 2 t t 0 Ki u 0 u ε,δ (•, s) -u 0 dx ds. ( 4 
R |u ε,δ (•, s)| 2 dx - R u 2 0 dx ≤ C √ δ ε ,
and respectively,

R |u ε,δ (•, s)| 2 dx - R u 2 0 dx ≤ C δ ε .
In both cases, the right hand side of these inequalities tends to zero when ε → 0.

To estimate the last term in the inequality (4.16), we choose

{θ n } n∈N ⊂ C ∞ 0 (R) such that lim n→∞ θ n = u 0 in L 2 (R).
Then, the Cauchy-Schwarz inequality gives

Ki u 0 u ε,δ (•, s) -u 0 dx ≤ Ki |u 0 -θ n | u ε,δ (•, s) -u 0 dx + Ki θ n u ε,δ 0 -u 0 + Ki θ n u ε,δ (•, s) -u ε,δ 0 dx ≤ u 0 -θ n L 2 (R) u ε,δ (•, s) L 2 (R) + u 0 L 2 (R) + θ n L 2 (R) u ε,δ 0 -u 0 L 2 (R) + s 0 Ki θ n ∂ s u ε,δ dxdτ .
In view of (3.19) for n = 1 and respectively (3.29) for n = 2, we have

u 0 -θ n L 2 (R) u ε,δ (•, s) L 2 (R) + u 0 L 2 (R) ≤ ( u 0 L 2 (R) + C) u 0 -θ n L 2 (R) ,
which tends to zero when n → ∞, since lim ε→0+ u ε,δ 0 -u 0 L 2 (R) = 0. Finally, it remains to prove that lim

t→0+ lim ε→0+ 1 t t 0 s 0 Ki θ n ∂ s u ε,δ dxdτ ds = 0.
We have, by (1.1),

s 0 Ki θ n ∂ s u ε,δ dxdτ = s 0 Ki θ n -f (u ε,δ ) x + ε u ε,δ xx + δ g u ε,δ xx x dxdτ ≤ s 0 Ki (θ n ) x f u ε,δ dxdτ + ε s 0 Ki (θ n ) x u ε,δ x dxdτ + δ s 0 Ki (θ n ) x g u ε,δ xx dxdτ := I 1 + I 2 + I 3 .
To compute each quantity I 1 , I 2 and I 3 , we distinguish the cases n = 1 from n = 2.

Case n = 1:

g(u xx ) = -|u xx |, f convex and δ = o(ε 2 ). Since f is such that 0 ≤ f (u) ≤ C(1 + |u| β ), where β < 3. Thus, |f (u)| ≤ C(1 + |u| m ),
where m < 5. Then, Proposition 3.1 implies

s 0 Ki |u ε,δ | m dx dτ ≤ s 0 R |u ε,δ | m dx dτ ≤ C s, (4.17) 
and

I 1 = s 0 Ki |(θ n ) x | f u ε,δ dx dτ ≤ C s 0 Ki |(θ n ) x | dx dτ + C s 0 Ki |(θ n ) x | |u ε,δ | m dx dτ ≤ C s 0 Ki |(θ n ) x | dx dτ + C (θ n ) x L ∞ (R) s 0 Ki |u ε,δ | m dx dτ ≤ C s (θ n ) x L 1 (R) + C s (θ n ) x L ∞ (R) . (4.18) 
Thanks to (3.19), we can write

I 2 = ε s 0 Ki |(θ n ) x | u ε,δ x dx dτ ≤ ε s 0 Ki |(θ n ) x | 2 dxdτ 1 2 ε s 0 Ki u ε,δ x 2 dxdτ 1 2 ≤ C ε 1 2 s 1 2 (θ n ) x L 2 (R) . (4.19) 
Finally for I 3 , using (3.27), we get

I 3 = δ s 0 Ki (θ n ) x g u ε,δ xx dxdτ = s 0 Ki δ |(θ n ) x | u ε,δ xx dxdτ ≤ s 0 Ki |(θ n ) x | 2 dxdτ 1 2 δ 2 s 0 Ki u ε,δ xx 2 dxdτ 1 2 ≤ s 1 2 (θ n ) x L 2 (R) δ 2 s 0 Ki u ε,δ xx 2 dxdτ 1 2
≤ s 

Lemma 3 . 1

 31 Let α ≥ 1 and g : R → R be any dispersion function. Each solution of (1.1) satisfies for t ∈ [0, T ] R |u(t)| α+1 dx + (α + 1) α ε t 0 R |u| α-1 u 2

  .22) Finally, injecting (3.22) in (3.20) provides (3.18).

Proposition 3 . 5

 35 .25) Using (3.18) and injecting (3.25) in (3.24) give (3.19). Let ε > 0,δ = o(ε 2 ), and f : R → R be a convex flux function satisfying f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 3.

Proposition 3 . 6 |u x | u 2

 362 .28) It is noteworthy that the initial value problem associated with (3.28) is well-posed[START_REF] Bedjaoui | Well-posedness of the generalized Korteweg-de Vries-Burgers equation with nonlinear dispersion and nonlinear dissipation[END_REF][START_REF] Bedjaoui | On vanishing dissipative-dispersive perturbations of hyperbolic conservation laws[END_REF]. Let ε > 0, δ = O(ε) and f : R → R be a convex flux function. Then, the solution u = u ε,δ of (3.28) satisfies the estimate (3.9) with α = 1, i.e., xx dxds ≤ C 0 .(3.29)

Proposition 3 . 7

 37 .35) Finally, injecting (3.35) in (3.20) we get the required estimate (3.30). Let ε > 0, δ = o(ε 5/2 ), and f : R → R be a convex flux function satisfying f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 1/2.

. 16 )

 16 For the first term of the right hand side, we clearly have lim i→∞ R\Ki u 2 0 dx = 0. Now, injecting (3.26) in (3.23), in the case n = 1, and respectively (3.36) in (3.31), in the case n = 2, we obtain

2 ( 2 , 0 2 ( 1 2 t 3 2 ( 1 2

 2202121 (θ n ) x L 1 (R) + (θ n ) x L ∞ (R) ) + εand since δ = o(ε 2 ), we obtain the desired conclusion, and Theorem 2.1 is proved.Case n = 2: g(u xx ) = -u 2 xx , f convex and δ = o(ε 5/2 ). Here, f is such that 0 ≤ f (u) ≤ C(1 + |u| β ), where β < 1/2, thus, |f (u)| ≤ C(1 + |u| m ),where m < 5/2. Estimates I 1 and I 2 are obtained in the same manner as n = 1 using (3.29) instead of (3θ n ) x | u ε,δ xx 2 dxdτ ≤ (θ n ) x L ∞ (R) δ s Ki u ε,δ xx 2 dxdτ ≤ δε -5/2 (θ n ) x L ∞ (R)(4.21)Finally, using (4.18), (4.19) and (4.21)(θ n ) x L 1 (R) + (θ n ) x L ∞ (R) ) + ε θ n ) x L 2 (R) +t δε -5/2 (θ n ) x L ∞ (R) . + δε -5/2 ,and since δ = o(ε 5/2 ), we obtain the desired conclusion, and Theorem 2.2 is proved.