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A coherence theorem for pseudonatural transformations

Maxime LUCAS*

Abstract

We prove coherence theorems for bicategories, pseudofunctors and pseudonatural transformations.
These theorems boil down to proving the coherence of some free (4,2)-categories. In the case of
bicategories and pseudofunctors, existing rewriting techniques based on Squier’s Theorem allow us
to conclude. In the case of pseudonatural transformations this approach only proves the coherence
of part of the structure, and we use a new rewriting result to conclude. To this end, we introduce
the notions of white-categories and partial coherence.
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Introduction

An overview of coherence theorems

A mathematical structure, such as the notion of monoid or algebra, is often defined in terms of some data
satisfying relations. In the case of monoids, the data is a set and a binary application, and the relations are
the associativity and the unit axioms. In category theory, one often considers relations that only hold up
to isomorphism. One of the simplest example of such a structure is that of monoidal categories, in which
the product is not associative, but instead there exist isomorphisms ag pc : (A®B)®C — A®(B®C).
This additional data must also satisfy some relation, known as Mac-Lane’s pentagon:

(0%

(A® (B® () ABCD A (B C)® D)
QW WD
(A®B)®C)® ® (B® (C® D))
(A® B) ® (C @ D)

The intended purpose of this relation is that, between any two bracketings of A1 ®A2®...QA,_1®A,,
there exists a unique isomorphism constructed from the isomorphisms a4, p,c. This statement was made
precise and proved by Mac Lane in the case of monoidal categories [12]. In general a coherence theorem
contains a description of a certain class of diagrams that are to commute. Coherence theorems exist for
various other structures, e.g. bicategories [13], or V-natural transformations for a symmetric monoidal
closed category V' [10].

Coherence results are often a consequence of (arguably more essential [9]) strictification theorems. A
strictification theorem states that a “weak” structure is equivalent to a “strict” (or at least “stricter”) one.
For example any bicategory is biequivalent to a 2-category, and the same is true for pseudofunctors (this
is a consequence of this general strictification result [15]). It does not hold however for pseudonatural
transformations.

Free categories and rewriting

Coherence theorems can also be proven through rewriting techniques. The link between coherence and
rewriting goes back to Squier’s homotopical Theorem [16], and has since been expanded upon [6]. Squier’s
theory is constructive, which means that the coherence conditions can be calculated from the relations, in
a potentially automatic way. It can also be expanded to higher dimensions [8], a feature that may prove
useful when studying weaker structures. In [7], the authors use Squier’s theory to prove the coherence
of monoidal categories. Let us give an outline of the proof in the case of categories equipped with an
associative tensor product.

Polygraphs are presentations for higher-dimensional categories and were introduced by Burroni [3],
and by Street under the name of computads [17] [18]. In this paper we use Burroni’s terminology. For
example, a 1-polygraph is given by a graph G, and the free 1-category it generates is the category of
paths on G. If ¥ is an n-polygraph, we denote by X* the free n-category generated by X.

An (n,p)-category is a category where all k-cells are invertible, for £ > p. In particular, (n,0)-
categories are commonly called n-groupoids, and (n,n)-categories are just n-categories. There is a
corresponding notion of (n, p)-polygraph. If ¥ is an (n, p)-polygraph, we denote by X*() the free (n, p)-
category generated by 3.

The structure of category equipped with an associative tensor product is encoded into a 4-polygraph
Assoc, which generates a free (4, 2)-category Assoc*® . The 4-polygraph Assoc contains one generating

2-cell ' coding for product, one generating 3-cell <= : @ = g coding for associativity and one



generating 4-cell == corresponding to Mac Lane’s pentagon:

< o =4
N et

The coherence result for categories equipped with an associative product is now reduced to showing
that, between every parallel 3-cells A, B in Assoc*(Q), there exists a 4-cell @ : A= B in Assoc . A
4-category satisfying this property is said to be 3-coherent.

Let us denote by Assoc™ the free 4-category generated by Assoc. We have the following properties:

e Starting from any given 2-cell in Assoc”, it is impossible to form an infinite sequence of non-identity
3-cells. This property is known as 3-termination.

e If A and B are two 3-cells in Assoc™ with the same source, there exists 3-cells A’ and B’ in
Assoc™ such that the composites A x3 A’ and B x5 B’ are well-defined and have the same target.
This property is known as 3-confluence.

The conjunction of these two properties make Assoc into a 3-convergent 4-polygraph.

Squier’s theory and coherence

A generating 3-cell composed with some lower dimensional context is called a rewriting step of Assoc.
A local branching in Assoc is a pair of rewriting step of same source. Local branching are ordered by
adjunction of context, that is a branching (f, g) is smaller than a branching (u x; f *; v, u *; g *; v) for
any 2-cells v and v and ¢ = 0,1. There are three types of local branchings:

e A branching of the form (f, f) is called aspherical .
e A branching of the form (f *; s(g),s(f) *; g) for ¢ = 0 or 1 is called a Peiffer branching.
e Otherwise, (f,g) is called an overlapping branching.

Overlapping branchings that are also minimal are called critical branchings.

There is exactly one critical branching in Assoc, of source . Note that the critical pair appears

as the source of the generating 4-cell of Assoc. In particular there is a one-to-one correspondence between
4-cells and critical pairs. A 3-convergent 4-polygraph that satisfies this property is said to satisfy the
3-Squier condition.

Proposition 4.3.4 in [6] states that a 4-polygraph satisfying the 3-Squier condition is 3-coherent (and
more generally, that any (n+1)-polygraph satisfying the n-Squier condition is n-coherent). In particular,
the 4-polygraph Assoc satisfies the 3-Squier condition, so it is 3-coherent.

In Section 3, we exhibit, for any sets C and D and any application f : C — D two 4-polygraphs
BiCat[C] and PFonct[f] presenting respectively the structures of bicategory and pseudofunctor. Ap-
plying the reasoning we just presented, we prove our first two results:

Theorem 3.1.6 (Coherence for bicategories). Let C be a set.
The 4-polygraph BiCat[C] is 3-convergent and the free (4,2)-category BiCat[C]*() is 3-coherent.

Theorem 3.2.7 (Coherence for pseudofunctors). Let C and D be sets, and £ : C — D an application.
The 4-polygraph PFonct[f] is 3-convergent and the free (4,2)-category PFonct[f]*(?) is 3-coherent.



However, this approach fails to work in the case of pseudonatural transformations, because the
(4,2)-polygraph PNTrans|f,g] (where f and g are applications C — D) encoding the structure of
pseudonatural transformation is not 3-confluent.

The 2-Squier condition of depth 2

In order to circumvent this difficulty, we introduce the notion of 2-Squier condition of depth 2. We say
that a (4,2)-polygraph ¥ satisfies the 2-Squier condition of depth 2 if it satisfies the 2-Squier condition,
and if the 4-cells of ¥ correspond to the critical triples induced by the 2-cells (with a prescribed shape).

For example, the 4-polygraph Assoc satisfies the 2-Squier condition of depth 2: its underlying 2-
polygraph is both 2-terminating and 2-confluent. Moreover the only critical pair corresponds to the
associativity 3-cell. Finally, Mac Lane’s pentagon can be written as follows, which shows that it corre-
sponds to the only critical triple:

N
< 7
[ ]
<~ =
N
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We prove the following result about (4, 2)-polygraph satisfying the 2-Squier condition of depth 2:

Theorem 1.4.9. Let ¥ be a (4,2)-polygraph satisfying the 2-Squier condition of depth 2.

For every parallel 3-cells A, B € E*( )
(2 )

whose 1-target is a normal form, there exists a 4-cella: A= B

in the free (4,2)-category

Note in particular that the 2-Squier condition of depth 2 does not imply the 3-coherence of the
(4,2)-category generated by the polygraph, but only a partial coherence, "above the normal forms". For
example in the case of Assoc, the only normal form is the 1-cell | So Theorem 1.4.9 only expresses
the coherence of the 3-cells of Assoc*® whose 1-target is | On the other hand, Squier’s Theorem as
extended in [6] concerns all the 3-cells of Assoc*? | regardless of their 1-target.

The (4, 2)-polygraph PNTrans|f, g] does not satisfy the 2-Squier condition. However, we identify
in Section 4.2 a sub-(4, 2)-polygraph PNTrans™ [f, g] of PNTrans|f, g] that does. By Theorem 1.4.9,
we get a partial coherence result in PN’I‘rans++[f , g]*(Q). The rest of Section 4 is spent extending this
partial coherence result to the rest of PNTrans|f, g]*(2). To do so, we define a weight application from
PNTrans|f, g]*(z) to N to keep track of the condition on the 1-targets of the 3-cells considered. We
thereby prove the following result:

Theorem 3.3.8 (Coherence for pseudonatural transformations). Let C and D be sets, and f,g: C — D
applications.

Let A, B € PNTrans|f, g]*(Q) be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell o« : A= B € PNTranslf, g|; @)

White-categories and partial coherence

Let j < k < n be integers. In an n-category C, one can define the j-composition of (k 4 1)-cells A and
B using the k-composition and whiskering by setting:

Axj B := (Ax;si(B))*k (tx(A) xj B) = (sk(A) *; B) %1, (A*; tp(B)).

This is made possible by the exchange axiom between xj and %;. An n-white-category is an n-category
in which the exchange axioms between % and %o need not hold (even up to isomorphism) for any k& > 0.



As a result, 0-composition is not defined for k-cells, for k£ > 1. The notion of 2-white-category coincides
with the notion of sesquicategory (see [19]).

Most concepts from rewriting have a straightforward transcription in the setting of white-categories.
In particular in Section 2.1, we define the notions of (n, k)-white-category and (n, k)-white-polygraph.
We also give an explicit description of the free (n, k)-white-category L% (*) generated by an (n, k)-white-
polygraph 3.

In this setting, we give a precise definition to the notion of partial coherence. Let C be a (4, 3)-white-
category and S be a set of distinguished 2-cells of C. We call such a pair a pointed (4, 3)-white-category.
We say that C is S-coherent if for any parallel 2-cells f,g € S and any 3-cells A,B : f = g € C, there
exists a 4-cell « : A= B € C. In particular any (4, 3)-white category is (-coherent, and a (4, 3)-white
category C is Co-coherent if and only if it is 3-coherent (where Cs i sthe set of all the 2-cells of C). Theorem
1.4.9 amounts to showing that the free (4,2)-category ¥*(?) is Sy-coherent, where Sy is the set of all
2-cells whose target is a normal form.

Finally, we give a way to modify partially coherent categories while retaining information about the
partial coherence. Let (C,S) and (C',S’) be pointed (4, 3)-white-categories. We define a relation of
strength between pointed (4, 3)-white-categories. We show that if (C,S) is stronger than (C’,S’), then
the S-coherence of C implies the S’-coherence of C'.

Sketch of the proof of Theorem 1.4.9

We now give an overview of the proof of Theorem 1.4.9. Let us fix a (4, 2)-polygraph A satisfying the
2-Squier condition of depth 2, and denote by S4 the set of 2-cells whose target is a normal form. In
particular, (A*),S4) is a pointed (4, 3)-white-category. The first half of the proof (Section 5) consists
in applying to (A*),S4) a series of transformations. At each step, we verify that the new pointed
(4, 3)-white-category we obtain is stronger than the previous one. In the end, we get a pointed (4, 3)-
white-category (FW®), Sg), where F is a 4-white-polygraph. In dimension 2, the 2-cells of F consists of
the union of the 2-cells of A together with their formal inverses. We denote by f the formal inverse of a
2-cell f € A*. Let F3 be the set of 3-cells of F. It contains 3-cells Cf 4 for any minimal local branching
(f,9), and cells s for any 2-cell f € A of the following shape:

Ls(s)

g —
4D I,

The purpose of this transformation is that in FW&), for any 2-cells f,g € Sg, 3-cells of the form f = g
(and 4-cells between them) are in one-to-one correspondence with 3-cells of the form gx; f = 1; (and
4-cells between them), where @ is the common target of f and g. More generally we study cells of the
form h = 14, and 4-cells between them.

We start by studying the rewriting system induced by the 3-cells. Note that the 4-white-polygraph F
is not 3-terminating, so we cannot use a Squier-like Theorem to conclude. However, let N[.Aj] be the free
monoid on A}, the set of 1-cells of A*. There is a well-founded ordering on A} induced by the fact that
A is 2-terminating. This order induces a well-founded ordering on N[A3}] called the multiset order. We
define an application p : F3¥ — N[A}] which induces a well-founded ordering on F3", the set of 2-cells of
FV, and show that the cells Cy, are compatible with this ordering (that is, the target of a cell Cf 4 is
always smaller than the source). Thus, the fragment of F3 consisting of the cells Cf 4 is 3-terminating.

Thus the 7y cells constitute the non-terminating part of 73". To control their behaviour, we introduce
a weight application w,, : F3¥ — N[Aj], that essentially counts the number of 7 cells present in a 3-cell.
In section 6.3, using the applications p and w,,, we prove that for any h € 73" whose source and target
are normal forms (for Aj), and for any 3-cells A, B : h = 1 in FY", there is a 4-cell a : A= B in FVG),
Finally, we prove that this implies that F¥®) is Sg-coherent, which concludes the proof.



Organisation

In Section 1, we recall some classical definitions and results from rewriting theory, and we enunciate (with-
out proof) Theorem 1.4.9. Section 2 contains the definitions of white-categories and white-polygraphs,
together with the study of the notion of partial coherence. In Section 3, we construct the free categories
encoding the structures we want to study, and prove the coherence Theorems for bicategories (Theorem
3.1.6) and pseudofunctors (Theorem 3.2.7). The proof uses a lot of notions defined in Section 1 and relies
in particular on Squier’s Theorem to conclude. There remains to show the coherence of pseudonatural
transformations (Theorem 3.3.8), which is done in Section 4. To prove Theorem 3.3.8, we show that a
fragment of the structure of pseudonatural transformations satisfies the hypotheses of Squier’s Theorem
while an other satisfies the hypotheses of Theorem 1.4.9, which is temporarily admitted. The following
sections contain the proof of Theorem 1.4.9. The first half of the proof is contained in Section 5 and
consists in applying a series of transformations to a (4, 3)-polygraph satisfying the hypotheses of Theo-
rem 1.4.9. The combinatorics of the result of these transformations is analysed in Section 6 where we
conclude the proof.

Acknowlegments This work was supported by the Sorbonne-Paris-Cité IDEX grant Focal and the
ANR grant ANR-13-BS02-0005-02 CATHRE.



1 Higher-dimensional rewriting

We recall definitions and results from rewriting theory. Section 1.1 is devoted to polygraphs, which
are presentations of higher-dimensional categories. In Section 1.2, we define termination and enunciate
Theorem 1.2.4 which we will use throughout Sections 3 and 4 in order to prove the 3-termination of
polygraphs. In Section 1.3 we define the notion of branchings and classify them, which allows for a
simple criterion to prove the n-confluence of a polygraph. Finally in Section 1.4, we define the n-Squier
condition, and recall Squier’s homotopical theorem, in a generalized form proven in [6]. We conclude this
section by enunciating Theorem 1.4.9, whose proof will occupy Sections 5 and 6. Except for Theorem
1.4.9, the proof of every result in this section can be found in [6].

1.1 Polygraphs

Definition 1.1.1. Let n be a natural number. Let C be a (strict, globular) n-category. For k < n, we
denote by Cj, both the set of k-cells of C and the k-category obtained by deleting the cells of dimension
greater than k. For z € C, and @ < k, we denote by s;(x) and t,(x) respectively the i-source and i-target
of z. Finally we write s(z) and t(x) respectively for s;_1(x) and tx_1(x).

For C a 2-category, we denote by C°P the 2-category obtained by reversing the direction of the 1-cells,
and by C®° the 2-category obtained by reversing the direction of the 2-cells.

We recall the definition of Polygraphs from [3]. For n € N, we denote by Cat,, the category of
n-categories and by Graph,, the category of n-graphs. The category of n-categories equipped with a
cellular extension, denoted by Cat;", is the limit of the following diagram:

Cat,) —— Graph,,,
L]
Cat,, —— Graph,,

where the functor Cat,, — Graph,, forgets the categorical structure and the functor Graph,, | —
Graph,, deletes the top-dimensional cells.

S
Hence an object of Cat! is a couple (C, G) where C is an n-category and G is a graph C, &—— S,41 ,
t

such that for any u,v € S, 41, the following equations are verified:

Let R, be the functor from Cat,; to Cat} that sends an (n + 1)-category C on the couple
(Cny Cp & Cyy1 ). This functor admits a left-adjoint £,, : Cat,” — Cat,,; (see [14]).

We now define by induction on n the category Pol,, of n-polygraphs together with a functor Q,, :
Pol,, — Cat,,.

e The category Polj is the category of sets, and Q is the identity functor.

e Assume 9, : Pol, — Cat,, is defined. Then Pol, ;; is the limit of the following diagram:

Pol,.; —— Cat
||
Pol,, —— Cat,,,

n

and 9,11 is the composite

L
Pol,,; —— Cat;! — Cat,, 1,



Definition 1.1.2. Given an n-polygraph ¥, the n-category Q,(X) is denoted by ¥* and is called the
free n-category generated by 3.

Definition 1.1.3. Let C be an n-category, and 0 <4 < n and A € C; ;. If it exists, we denote by A~!
the inverse of A for the i-composition.

For £ < n, an (n,k)-category is an n-category which has every (¢ + 1)-cell invertible for the i-
composition, for i > k. We denote by Catslk) the full subcategory of Cat, whose objects are the
(n, k)-categories.

In particular Cat,(zo) is the category of n-groupoids, and Cat;") = Cat,,.

The functor R, restricts to a functor RY" from Catgﬁgl to Cat’. Once again this functor admits
a left-adjoint £ Cat — Catgﬁr)l. We define categories Polglk) of (n,k)-polygraphs and functors
Q%k) : Polglk) — Cat;k) in a similar way to Pol,, and Q,. See 2.2.3 in [8] for an explicit description of
this construction.

Definition 1.1.4. Given an (n, k)-polygraph X, the (n, k)-category lek)(E) is denoted by ¥*(*) and is
called the free (n,k)-category generated by 3. For j < n, we denote by E;(k) both the the of j-cells of
»*(®) and the (j, k)-category generated by . Hence an (n, k)-polygraph X consists of the following data:

20/21/22/("'>/Zk/ZkJrl/("')/En
A = 5 () = A ()

Remark 1.1.5. Let n,j and k be integers, with j < k < n. Since an (n, k)-category is also an (n, j)-
category, an (n, k)-polygraph gives rise to an (n, j)-polygraph. In particular, if ¥ is an (n, k)-polygraph,
we denote by X*) the (n, j)-category it generates.

Definition 1.1.6. Let C be an (n + 1, k)-category. We denote by C the (n, k)-category C, /Cp1.
Let ¥ be an (n + 1, k)-polygraph. We denote by ¥ the (n, k)-category ¥*(*) and call it the (n, k)-
category presented by .

1.2 Termination

Definition 1.2.1. Let ¥ be an n-polygraph. For 0 < k£ < n, the binary relation —} defined by v —} v
if there exists f : u — v in X}, is a preorder on ¥j_, (transitivity is given by composition, and reflexivity
by the units). We say that the n-polygraph ¥ is k-terminating if —7 is a well-founded ordering. We
denote by —>$ the strict ordering associated to —7.

We recall Theorem 4.2.1 from [6], which we will use in order to show the 3-termination of some
polygraphs.

Definition 1.2.2. Let sOrd be the 2-category with one object, whose 1-cells are partially ordered sets,
whose 2-cells are monotonic functions and which 0-composition is the cartesian product.

Definition 1.2.3. Let C be a 2-category, X : C2 — sOrd and Y : C§° — sOrd two 2-functors, and M a
commutative monoid. An (X,Y, M)-derivation on C is given by, for every 2-cell f € Cy, an application

d(f) : X(s(f)) x Y(t(f)) = M,

such that for every 2-cells fi, fa € Cq, every z, y, z and ¢ respectively in X (s(f1)), Y (t(f1)), X(s(f2))
and Y (t(f2)), the following equalities hold:

d(fix1 f2)[z,t] = d(f1)[z, Y (f2)[y] + d(f2)[X (f1)[z], y]
d(f1 o0 f2)[(%, 2), (y,1)] = d(f1)[z,y] + d(f2)[2,].



In order to show the 3-termination of some polygraphs, we are going to use the following result
(Theorem 4.2.1 from [6]).

Theorem 1.2.4. Let ¥ be an n-polygraph, X : 35 — sOrd and Y : (£5)°° — sOrd two 2-functors,
and M be a commutative monoid equipped with a well-founded ordering >, and whose addition is strictly
monotonous in both arguments.

Suppose that for every 3-cell A € X3, the following inequalities hold:

X(s(4)) = X(t(4))  Y(s(4)) =Y (t(A))  d(s(A)) > d(t(A)).

Then the n-polygraph % is 3-terminating.

1.3 Branchings and Confluence

Definition 1.3.1. Let ¥ be an n-polygraph. A k-fold branching of ¥ is a k-tuple (f1, fo,..., fx) of
n-cells in X* such that every f; has the same source u, which is called the source of the branching.

The symmetric group Si acts on the set of all k-fold branchings of . The equivalence class of a
branching (fi, fa, ..., fr) under this action is denoted by [f1, fa,..., fr]. Such an equivalence class is
called a k-fold symmetrical branching, and (f1, f2, ..., fx) is called a representative of [f1, fa,. .., fi]

Definition 1.3.2. Let X be an n-polygraph. We denote by N the n-category with exactly one k-cell for
every k < n, whose n-cells are the natural numbers and whose compositions are given by addition.

We define an application ¢ : ¥* — N by setting ¢(f) = 1 for every f € ,,. For f € ¥, we call £(f)
the length of a f.

An n-cell of length 1 in X7 is also called a rewriting step.

Definition 1.3.3. Let ¥ be an n-polygraph. A k-fold local branching of ¥ is a k-fold branching
(f1, f2,---, fr) of ¥ where every f; is a rewriting step.

A k-fold local branching (fi,..., fx) of source w is a strict aspherical branching if there exists an
integer ¢ such that f; = f;11. We say that it is an aspherical branching if it is in the equivalence class of
a strict aspherical branching.

A k-fold local branching (fi,..., fi) is a strict Peiffer branching if it is not aspherical and there exist
v1,v2 € ¥ _; such that u = vy *; vo, an integer m < n and fi,..., f, € ¥ such that for every j < m,
fi= fj{ *; v2 and for every j > m, f; = vi x; fJ’». It is a Peiffer branching if it is in the equivalence class
of a strict Peiffer branching.

A local branching that is neither aspherical nor Peiffer is overlapping.

Given an n-polygraph X, one defines an order C on k-fold local branchings by saying that (f1,..., fx) C
(wk; f1 %0, ...,uk; [ *; v) for every u,v € ¥F_; and every k-fold local branching (f1,..., fx).

Definition 1.3.4. An overlapping branching that is minimal for C is a critical branching.
A 2-fold (resp. 3-fold) critical branching is also called a critical pair (resp. critical triple).

Definition 1.3.5. Let ¥ be an n-polygraph. A 2-fold branching (f, g) is confluent if there are [, g’ € X%

of the following shape:
f/) \f/,

Definition 1.3.6. An n-polygraph X is k-confluent if every 2-fold branching of ¥ is confluent.
Definition 1.3.7. An n-polygraph is k-convergent if it is k-terminating and k-confluent.
The following two propositions are proven in [6].

Proposition 1.3.8. Let X be an n-terminating n-polygraph. It is n-confluent if and only if every 2-fold
critical branching is confluent.



Proposition 1.3.9. Let ¥ be a k-convergent n-polygraph. For every u € Xy _,, there exists a unique
v € ¥ _4 such that u =} v and v is minimal for —}.

Definition 1.3.10. Let ¥ be an n-polygraph. A normal form for ¥ is an (n — 1)-cell minimal for —Z.

If ¥ is n-convergent, for every u € £y _;, the unique normal form v such that v — v is denoted by
4 and is called the normal form of u.

1.4 Coherence

Definition 1.4.1. Two k-cells are parallel if they have the same source and the same target.
An (n + 1)-category C is n-coherent if, for each pair (f,g) of parallel n-cells in C,, there exists an
(n+1)-cell A: f — gin Cpy.

Definition 1.4.2. Let ¥ be an (n 4 1)-polygraph, and (f,g) be a local branching of 3,. A filling of

(f,g)isan (n+1)-cell A € ZZ(J_LI) of the shape:

Definition 1.4.3. An (n + 1)-polygraph ¥ satisfies the n-Squier condition if:
e it is n-convergent,

e there is a bijective application from ¥, 7 to the set of all critical pairs of 3,, that associates to
every A € 3,41, a critical pair b of ¥,, such that A is a filling of a representative of b.

The following Theorem is due to Squier for n = 2 [16] and was extended to any integer n > 2 by
Guiraud and Malbos [6].

Theorem 1.4.4. Let ¥ be an (n + 1)-polygraph satisfying the n-Squier condition. Then the free (n +
1,n — 1)-category Y*(=1) s n-coherent.

In the proof of this Theorem appears the following result (Lemma 4.3.3 in [6]).

Proposition 1.4.5. Let ¥ be an (n + 1)-polygraph satisfying the n-Squier condition.
For every parallel n-cells f, g € ¥ whose target is a normal form, there exists an (n+1)-cell A: f — g

Let us compare those two last results. Let ¥ be an (n + 1)-polygraph satifying the n-Squier relation,
and let f,g € X% be two parallel n-cells whose target is a normal form. According to Theorem 1.4.4,
there exists an (n+1)-cell A: f — g in the free (n + 1,n — 1)-category Zz(fl_l). Proposition 1.4.5 shows
that such an A can be chosen in the free (n + 1, n)-category E’;(ﬂ, where the n-cells are not invertible.
Hence for cells f,g € ¥ whose target is a normal form, Proposition 1.4.5 is more precise than Theorem

1.4.4.

Definition 1.4.6. Let ¥ be an (n+ 1)-polygraph, and (f, ¢g) a local branching in ¥,,. Depending on the
nature of (f,g), we define the notion of canonical filling of (f,g).

e If (f,g) is an aspherical branching, then its canonical filling is the identity 1.

e If (f,g) is a Peiffer branching, if (f,g) = (f' *; v1,v2 *; ') (vesp. (f,g) = (v1 *; [, g *; v2)), then
its canonical filling is 1f4,¢: (resp. 1grs, f/)-

e Assume that ¥ satisfies the n-Squier condition, and let (f,g) be a critical pair. Let A be the
(n + 1)-cell associated to [f,g]. If A is a filling of (f,g) then the canonical filling of (f,g) is A.
Otherwise, A is a filling of (g, f) and the canonical filling of (f,g) is A™L.

10



e Assume that the branching (f, g) admits a canonical filler A. Then the canonical filler of (u*; f *;
VUK f xg 0) 1S w kg Ak 0.

Definition 1.4.7. Let X be an (n 4 2, n)-polygraph satisfying the n-Squier condition, and (f, g, h) be a
local branching of 3,,. A filling of (f,g,h) is an (n + 2)-cell a € ijf; of the shape:

AN

X Ao

where A, A¢ g, Ag 1, A n, B1 and By are (n+ 1)-cells in ZZ(J:LI), and Ay g, Ay and Ay are the canonical
fillings of respectively (f,g), (g,h) and (f,h).

"

e \ / \ "
g— A % Afn

/ x/ Bs

Y

Definition 1.4.8. An (n + 2,n)-polygraph 3 satisfies the n-Squier condition of depth 2 if:
e it satisfies the n-Squier condition,

e there is a bijective application from ¥, 5 to the set of all critical triples of ¥,, that associates to
every o € X, 42 a critical triple b of ¥,, such that « is a filling of a representative of b.

We now enunciate the theorem whose proof will occupy Sections 5 and 6.

Theorem 1.4.9. Let ¥ be a (4,2)-polygraph satisfying the 2-Squier condition of depth 2.
For every parallel 3-cells A, B € 22(2
in the free (4,2)-category 21(2).

) whose 1-target is a normal form, there exists a 4-cellaw: A= B

This Theorem can be compared with Proposition 4.4.4 in [8]. There, for every parallel A, B € E;(l),

a 4-cell « is constructed in the free (4,1)-category EZ(U. Hence Theorem 1.4.9 gives a more precise

statement, at the cost of restricting the set of 3-cells allowed.
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2 Partial coherence and transformation of polygraphs

In Section 2.1 we define the notion of white-category together with the associated notion of white-
polygraph. The 2-white-categories are also known as sesquicategories (see [19]). White-categories are
strict categories in which the interchange law between the compositions xg and x; need not hold, for every
i > 0. That is, strict n-categories are exactly the n-white-categories satisfying the additional condition
that for every i-cells f and g of 1-sources (resp. 1-targets) u and v (resp. u’ and v'): (f*ov)*; (u' *x0g) =
(u *0 g) *i (f *0 ’U).

In Section 2.2, we define a notion of partial coherence for (4, 3)-white-categories. We show a simple
criterion in order to deduce the partial coherence of a (4, 3)-white-category from that of an other one.
This criterion will be used throughout Section 5. We also adapt the notion of Tietze-transformation
from [5] to our setting of partial coherence in white-categories, in preparation for Section 5.5.

In Section 2.3, we study injective functors between free white-categories. In particular, we give a
sufficient condition for a morphism of white-polygraphs to yield an injective functor between the white-
categories they generate. This result will be used in Section 5.3.

Note that, although Sections 2.2 and 2.3 are expressed in terms of white-categories (since this is how
they will be used throughout Section 5), all the definitions and results in these Sections also hold in
terms of strict categories, mutatis mutandis.

2.1 White-categories and White-polygraphs
Definition 2.1.1. Let n € N. An (n + 1)-white-category is given by:
e a set Cp,

e for every z,y € Cp, an n-category C(z,y). We denote by x4 the k-composition in this category,

e for every z € Cy and every u: x — y € Cq, functors uxg _ : C(y,z) = C(z,z) and _*ou:C(z,x) —
C(z,y), so that for every composable 1-cells u,v € Cq, their composite uxg v is defined in a unique
way,

e for every = € Cy, a 1-cell 1, € C(x, z).
Moreover, this data must satisfy the following axioms:

e For every z € Cy, and every y € Cy, the functors 1, xo _ : C(x,y) — C(z,y) and _ ¢ 1, : C(z,y) —
C(x,y) are identities.

e For every u,v € Cy, the following equalities hold:

— U *Q (U*O _) = (u*o U) *0 )
—uko(_*ov) = (uxp ) *ov,

— _xo (ukov) = (_ *ou)*ov,

An (n, k)-white-category is an n-white-category in which every (i + 1)-cell is invertible for the i-
composition, for every i > k.

Let n be a natural number. Let C be an n-white-category. For k < n, we denote by C; both the set
of k-cells of C and the k-white-category obtained by deleting the cells of dimension greater than k. For
x € Cx and i < k, we denote by s;(z) and t;(x) respectively the i-source and i-target of x. Finally we
write s(z) and t(x) respectively for sg_1(x) and tp_1(x).

Definition 2.1.2. Let C and D be n-white-categories. An n-white-functor is given by:
e an application Fy : Cy — Dy,
e for every z,y € Cy, a functor F, , : C(x,y) — D(Fo(z), Fo(y)).

Moreover, this data must satisfy the following axioms:

e for every x € Co, F'(12) = 1p,(a)s

12



e for every z € Cy and u : x — y € Cq, the following equalities hold between functors:
— Fu)*o F(_)=F(u*y _):C(y,z) = D(Fo(x), Fo(2))
— F(_) %0 F(u) = F(_*ou):C(z,2) = D(Fo(2), Fo(y))

This makes n-white-categories into a category, that we denote by WCat,,.

Remark 2.1.3. Let us define a structure of monoidal category ® on Cat,,, in such a way that WCat,, 11
is the category of categories enriched over (Cat,, ®).
Let C,D be two n-categories. The n-categories C x Dy and Cy x D are defined as follows:

CxDo:= || €  CoxD:= |_|D

yEDo z€Co

Let Co x Dy be the n-category whose 0-cells are couples (z,y) € Cy X Dy, and whose i-cells are
identities for every i > 0. Let F': Co x Dy — C x Dy (resp. G : Cy X Dy — Cy X D) be the n-functor
which is the identity on 0-cells. Then C ® D is the pushout (C x Dy) B¢, xp, (Co X D):

COXDOL)CXDO

o -]

CoxD——C®D.

The category of n-white-categories equipped with a cellular extension, denoted by WCat;f , is the
limit of the following diagram:

WCat,” —— Graph,,
L]
WCat,, —— Graph,,

where the functor WCat,, — Graph,, forgets the white-categorical structure and the functor Graph,, , ; —
Graph,, deletes the top-dimensional cells.
Let RY be the functor from WCat, ; to WCat; that sends an (n + 1)-white-category C on the

couple (Cp, C,, &——Cpt1 ).
Proposition 2.1.4. The functor RY admits a left-adjoint LY : WCat,” — WCat,, ;.

Proof. Let (C,%) € WCat, be an n-white-category equipped with a cellular extension. The construction
of L¥(C,Y) is split into three parts:

e First, we define a formal language Fy.

e Then, we define a typing system T¢ on Ex. We denote by EL the set of all typable expressions of
Es.

*

e Finally, we define an equivalence relation =% on EL. The set of (n + 1)-cell of L¥(C,Y) is then
the quotient EL/ =%.

Let Ex; be the formal language consisting of:

e For every 1l-cells u,v € Cy, and every (n+ 1)-cell A € ¥,,11, such that to(u) = sg(A) and to(A) =
so(v), a constant symbol ¢, 4, .

e For every n-cell f € C,, a constant symbol iy.

e For every 0 < i < n, a binary function symbol x;.

13



Thus Fy; is the smallest set of expressions containing the constant symbols and such that e x; f € ¥
whenever e, f € Fx,.

Let T¢ be the set of all n-spheres of C, that is of couples (f,g) in C, such that s(f) = s(g) and
t(f) = t(g). For e € Ex, and t € T¢, we define e : t (read as "e is of type t") as the smallest relation
satisfying the following axioms:

e For every l-cells uw and v in C;, and every (n + 1)-cell A € X, such that to(u) = so(A) and
to(A) = so(v)
Cudvp : (us(A)v, ut(A)v)

e For every n-cell f € C,

ir: (£, f)
e For every ej,es € Ex and i < n, if ey : (s1,t1), €2 : (s2,t2) and t;(t1) = s;(s2), then
€1 % €2 : (81 %; 89,1 *; t2)
e For every e1,es € Eyx, if €1 : (s1,t1), €2 : (s2,t2) and ¢ = s9, then
e1 *n €2 : (s1,12)

An expression e € Ey; is said to be typable if e : (s,t) for some n-sphere (s,t) € Tz. Moreover there is
only one such n-sphere, so the operations s(e) := s and t(e) := t are well defined. We denote by EL be
the set of all typable expressions.

Let =x. be the symmetric relation generated by the following relations on EL:

e For every A, B,C, D € EL, and every iy,i3 < n non-zero distinct natural numbers,

(A *il B) *iz (C *il D) = (A *iz C) *il (B *ig D)

For every A, B,C € EL, and every 0 <i <n,

(A*i B)*Z‘CEE A*i (B*l C)

For every A € EL and f € Cy:

ifxn A=x A Axpip=s A

For every f1, fo € C, and every i < n,

Ufy *Xilfy =5 Ufixifa

For every A, A’, B € EL and every 0 < i < n, if A =5 A’, then

A*iBEE A/*iB

For every A, B, B’ € EL and every 0 < i < n, if B =y B’, then

A*iBEE A*i B’

Let =% be the reflexive closure of =x.. The (n+1)-cells of L% (C, ¥) are given by the quotient FL/ =%.
The i-composition is given by the one of EZL, and identities by 4. O

Definition 2.1.5. We now define by induction on n the category WPol,, of n-white-polygraphs together
with a functor Q) : WPol,, - WCat,,.

e The category WPolj is the category of sets, and QF is the identity functor.

14



o Assume Q) : WPol,, - WCat,, defined. Then WPol, 4 is the limit of the following diagram:

WPol,, ;1 — WCath
.

and Q) is the composite

w

L
WPol,,; —— WCat, — WCat,

Given an n-white-polygraph ¥, the n-white-category QW (X) is denoted by W and is called the free
n-white-category generated by 3.

Definition 2.1.6. Let WCat:ﬁ) be the category of (n + 1,n)-white-categories. Once again we have
a functor Ry "™ : WCatflvﬁ) — WCat,"

no

and we are going to describe its left-adjoint E:lvﬁ). Let

(C, X)) be an n-white-category together with a cellular extension. To construct £:J(ﬁ) (C, %), we adapt the
construction of the free n-white-categories as follows:

e Let Fx be the formal language Ey, 5, where Y consists of formal inverses to the elements of %
(that is their source and targets are reversed).

e The type system is extended by setting, for every 1-cells w,v in C; and every (n+ 1)-cell A € &
such that to(u) = sg(v) and to(A) = sp(A):

Cudyp : (ut(A)v, us(A)v).
We denote by F the set of all typable expressions for this new typing system.
e We extend =y into a relation denoted by =y, by adding the following relations:
Cudv *n Cy iy =5 bus(A)v Cudv *n Cudv =5 Tut(A)w
for every u,v in C; and every (n + 1)-cell A € 3, such that to(u) = so(A) and to(A) = sg(v).

We define categories WPol,(Ik) of (n, k)-white-polygraphs and functors Q:Z(k) : WPolﬁLk) — WCat,(f)
in a similar way to Pol;k) and lek)

Definition 2.1.7. Given an (n, k)-white-polygraph X, the (n, k)-white-category owk) ( ) is denoted by
YW() and is called the free (n, k)-white-category generated by 3. For j < n, we denote by Ew(k both

the the of j-cells of %) and the (4, k)-category generated by X. Hence an (n, k)-polygraph E consists
of the following data:

20/21/22/(”')/Ek/2k+1/ /
£ Y zy () i S =

2.2 Partial coherence in pointed (4, 3)-white-categories

Definition 2.2.1. A pointed (4, 3)-white-category is a couple (C, S), where C is a 4-white-category, and
S is a subset of Cs.

Definition 2.2.2. Let (C,S) be a pointed (4, 3)-white-category. The restriction of C to S, denoted by
C|S, is the following (2, 1)-category:
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e its O-cells are the 2-cells of Co that lie in S,

e its 1-cells are the 3-cells of C3 with source and target in .5,

e its 2-cells are the 4-cells of C4 with 2-source and 2-target in .5,

e its O-composition and 1-composition are respectively induced by the compositions xo and x3 of C.

Definition 2.2.3. Let (C, S) be a pointed (4, 3)-white-category. We say that C is S-coherent if for every
parallel 1-cells A, B in the (2,1)-category C[S, there exists a 2-cell a: A = B € C|S.

Example 2.2.4. Every (4,3)-white-category is f-coherent. A (4, 3)-white-category C is Ca-coherent if
and only if it is 3-coherent.

We now rephrase Theorem 1.4.9 in the setting of partial coherence.

Theorem 1.4.9. Let A be a (4,2)-polygraph satisfying the 2-Squier condition of depth 2, and let S 4 be
the set of all 2-cells whose target is a normal form.
Then A is S4-coherent.

Definition 2.2.5. Let C and D be two 2-categories, F' : C — D a 2-functor.

We say that F' is 0-surjective if the application F : Cy — Dy is surjective.

Let 0 < k < 2. We say that F' is k-surjective if, for every (k — 1)-parallel cells s,t € Cg_1, the
application F': C(s,t) — Di(F'(s), F(t)) is surjective.

Definition 2.2.6. Let (C, S) and (C’, S") be two pointed (4, 3)-categories. We say that (C’,S’) is stronger
than (C, S) if there is a functor F' : C'|S” — C[.S which is 0-surjective and 1-surjective.

Lemma 2.2.7. Let (C,S5), (C',S’) be two pointed (4,3)-white-categories. If there exists a 2-functor
F:C'|S" — CIS which is 0-surjective and 1-surjective, then (C',S’) is stronger than (C,S).

Proof. The functor F' induces a functor F : C'[S" — CIS. Since it is equal to F on objects, it is 0-
surjective. On 1-cells F' is the composition of F' with the canonical projection associated to the quotient,
hence it is 1-surjective, and so (C’,S’) is stronger than (C,.S). O

Lemma 2.2.8. Let (C,S), (C',S") be two pointed (4, 3)-white-categories, and assume (C',S") is stronger
than (C,S).
If C' is S’-coherent, then C is S-coherent.

Proof. Let F : C'|S" — C|S be a functor that is O-surjective and 1-surjective. Let A, B : f — g € (C]S)1
be parallel 1-cells, and A, B be their projections in C[S.

Since F is O-surjective, there exists f’, ¢’ € (C'[S")o in the preimage of f and g under F. Since F
is 1-surjective, there exists A’, B’ € (C'|S")1 of source f’' and of target ¢’ such that F(A’) = A and
F(B') = B.

Since C'[S’ is 2-coherent, there exists o/ : A’ = B’ € (C'|S")2. Thus A’ = B’ and A = B. Hence
there exists & : A = B € C|S. This shows that C[S is 1-coherent, and therefore that C is S-coherent. [

We are going to define four families of Tietze-transformations on (4, 3)-white-polygraphs. Tietze
transformations originates from combinatorial group theory [11], and was adapted for (3, 1)-categories
in [5], as a way to modify a (3,1)-polygraph without modifying the 2-categories it presents. In partic-
ular, they preserve the 2-coherence. Here we adapt these transformations to our setting of (4, 3)-white-
polygraphs and show that they preserve the partial coherence. This will be used in Section 5.5. We fix
a 4-white-polygraph A.

Definition 2.2.9. Let A € A;V(?’). We define a 4-white-polygraph A(A) by adding to A a 3-cell B and
a 4-cell a, whose sources and targets are given by:

e s(B) =s(4),
e t(B) =t(4),
o s(a) =4,
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o t(a) = B.

The inclusion induces a functor between (4, 3)-white-categories 14 : AY®) — (A(A))¥®). We call
this operation the adjunction of a 3-cell with its defining 4-cell.

Definition 2.2.10. Let a € A4 and A € A3 such that:
e tla)=A4

o s(a) € (A\ {t(a)})y®?.

The 4-cell o induces an application Az — (Asz \ {t(a)})¥®), by sending t(a) on s() and that is the
identity on the other cells of A3. This application extends into a 3-functor 7, : AY — (A3 \ {t(a)})™.
Let A/(A;«) be the following 4-white-polygraph:

Ao o= AT = Ay (4 () % A\ {a)

Then 7, induces a functor AY®) — (A/(A;a))"®), which sends a on the identity of s(«), and which
is the identity on the other cells of A4. We call this operation the remowval of a 3-cell with its defining
4-cell.

Definition 2.2.11. Let « be a 4-cell in AZV(B). We define a 4-white-polygraph A(«) by adding to A a
4-cell B : s(a) St(a). The inclusion of A into A(a) induces a functor ¢ : A¥G) — A(a)V®). We call
this operation the adjunction of a superfluous 4-cell.

Definition 2.2.12. Let 3 € A4 such that there exists a 4-cell a € (A\ {})W®) parallel to 3. Let A/j be
the 4-white-polygraph obtained by removing 3 from .A. There exists a functor 75 : AW — (A/B)V®),
that sends 8 on «a and which is the identity on the other cells of A. We call this operation the removal
of a superfluous 4-cell.

Remark 2.2.13. Note that, in those four cases, the set of 2-cells is left unchanged. In particular, let
A be a 4-white-polygraph, and B a 4-white-polygraph constructed from A through a series of Tietze-
transformations. If S is a sub-set of A3, then S still is a subset of B3 .

Proposition 2.2.14. Let A be a 4-white-polygraph, S a sub-set of AY, and B a 4-white-polygraph
constructed from A through a series of Tietze-transformations.
If B¥®) is S-coherent, then A%®) is S-coherent.

Proof. We check that if B is constructed from A through a Tietze-transformation, then the 3-white-
categories presented by A and B are isomorphic.

Suppose now that B is S-coherent, and let A, B € AY be parallel 3-cells, whose source and target are
in S. Since BY®) is S-coherent, the images of A and B in the 3-white-category presented by B are equal.
Since it is isomorphic to the 3-white-category presented by A, there exists a 4-cell a : AS B € AZV(?’),
which proves that A is S-coherent. O

2.3 Injective functors between white-categories

Definition 2.3.1. Let ¥ and T' be two (n, k)-polygraphs (resp. (n,k)-white-polygraphs), and let F :
3> — T be a morphism of (n, k)-polygraphs (resp. (n, k)-white-polygraphs). We say that F' is injective if
for all 7 < n it induces an injective application from ¥, to [';,.

Definition 2.3.2. Let C and D be two n-white-categories, and let F' : C — D be a morphism of n-

white-categories. We say that F' is injective if for all j < n it induces an injective application from C to
D.

Remark 2.3.3. An injective morphism between (n, k)-polygraphs does not always induce an injective
functor between the free (n,k)-categories they generate. To show that, we are going to define two
2-polygraphs ¥ and I', an injective morphism of 2-polygraphs F : ¥ — T', and two distinct 2-cells
f,9 € 2*W such that F*M(f) = F*1(g).
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Let X be the following 2-polygraph:

Yo = {*} Sp={:x—#} Yo :={Q,0:|=]}

and I':
o= {*} Iy={:*— *} Iy :={0,0:|=]6:|— 1.}

Let F' be the inclusion of ¥ into I', f = 8 and g = g They are distinct elements of E;(l). However

using the exchange law, the following equality holds in Fz(l), where @ denotes the inverse of ©:
6 )
s 39 8
g 8° 3
® ®

In what follows, we prove some sufficient conditions so that a morphism between two (n, k)-white-
polygraphs induces an injective fucntor between the (n, k)-categories they present. This is achieved in
Proposition 2.3.8. This result will be used in Section 5.3.

To prove this result, we start by studying the more general case of an injective morphism I between
(n, k)-white-categories equipped with a cellular extension. When its image is closed by divisors (see
Definition 2.3.5), we show a simple sufficient condition so that I induces an injective (n + 1)-white-
functor. We also show that the image of the (n + 1)-white-functor induced by I is then automatically
closed by divisors. Hence this hypothesis disappears when we go back to morphisms of (n, k)-white-
polygraphs. In particular we show that every injective morphism of n-white-polygraphs induces an
injective white-functor between n-white-categories.

For the rest of this section, we fix two n-white-categories equipped with cellular extensions (C, X)), (C', X') €
WCat™, and a morphism I : (C,%) — (C',¥') € WCat™. That is, I is given by an n-white-functor
I:C — (' together with an application I,,11 : ¥ — X/ such that the following squares are commute:

Yy

C

We denote by I (resp. IV(™) the (n + 1)-white-functor £ (I) (resp. L% (I)). By definition, I
(resp. I™(™) is induced by an application from EL to EL, (resp. from FY to FL), that we again denote

by I% (resp. IW(M™).
Using their explicit definitions, the following properties of I™ (resp. (™)) hold:

n+1 n+1
Z/

Y
h t
C

—>C’

Z/

4>C’

e Any element of EL (resp. F{I') whose image is an i-composite is an i-composite.
e Any element of EL (resp. F{I') whose image is a an identity is an identity.

e Any element of EL (resp. F{I') whose image is a c,ra/,/ iS & Cyap-

e Any element of F¥ whose image by ™™ is a ¢, 11,/ IS & ¢, 4,-

Lemma 2.3.4. Assume that the application I,.1 is injective, and that I induces an injection on C.
Then the applications IV : EL — EL, and 1% : FL — FL are injective.
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Proof. Let aj,as € EL such that IV (a;) = IV (a2). We reason by induction on the structure of I'%(ay).
If I%(a1) = cyrar, with w/,v" € Cf and A’ € 3. Then there are uy, vy, us,v2 € C; and Ay, As € &
such that a; = ¢y, 4,0, and as = cyy4,0,, and so:

I(ul) = I(UQ) = u’ In+1(A1) = n+1(A2) = A/ I(’Ul) = I(Ug) = ’U/.
Since I and I, are injective, we get:
Uy = u2 A=Ay V1 = V2,

which proves that a = b.
If I'(a1) = iy, with f’ € C],. Then there exist f1, fo € C,, such that:

am =iy ag=iy  I(fi)=f  I(fa) =T

Since [ is injective, fi = f2, and so a; = asg.
If IV(a;) = A' %; B, with i < n, and A’, B’ € EL,. Then there exist Ay, A2, By, Bs € EL such that:

ai :Al *i B1 a9 :AQ *; BQ Iw(Al) :IW(AQ) :A/ Iw(Bl) :IW(BQ) :B/.

Using the induction hypothesis, we get that A; = Ay and B; = Bs, and so a1 = as.
In the case of I™("), we reason as previously, and we have one more case to check: if %™ (a;) =
Cur Aoy With u/ 0" € C] and A" € ¥'. Then there are uj,vi,uz,v2 € C; and Aj, A2 € ¥ such that

a1 = Cyy A,0, A G2 = Cy, 4,4, and so:

I(uy) = I(ug) = o’ In1(A) =1,1(As) = A I(vy) = I(ve) = ',
Using the injectivity of I and I,,41, we get:
Uy = U2 Ap = Ay U1 = V2,
and finally a1 = as. O

Definition 2.3.5. Let C be an n-white-category, and E be a subset of C,,. We say that E is closed by
divisors if, for any f € E, if f = f1 *; fa, then f; and fo are in F.

Lemma 2.3.6. Assume the image of I in C,, is closed by divisors, and that I and I, 41 are injective.
Then, for every a’,b' € EL, such that o’ =5/ V', and for every a € EL such that I¥(a) = d’, there
exists b € EL such that
o) =b a=sxb.

Assume moreover that the application I, 11 is bijective and that I is bijective on the 1-cells of C.
Then, for every a',b' € FL such that o’ Zs V', and for every a € FL such that IV (a) = a/, there
exists b € FL such that
™oy =1 a=gb

Proof. To show the result on IV we reason by induction on the structure of a’.
If there exist A, B',C’", D" € EL,, 0 <i; <iy <n and a € EL such that:

a = (A, *iq B/) Kig (O/ *iq D/) b = (A/ Kig C,) *iq (B/ Kig D/) Iw(a) = a’,
then, a = (Ax;, B)*;, (C*;, D), with A, B,C, D € EL. Let b := (Ax;, C)x;, (Bx;, D): by construction,
we have I'V(b) = b’ and a =5 b. The case where the roles of @’ and V' are reversed is symmetrical.
If there exist A’, B',C" € EL,, 0 <i < n and a € EL such that:
ad=A%B)YxC =A% BxC) IYa)=d,
then, a = (Ax; B)x; C, with A, B,C € EL. Let b := Ax; (B; C): By construction, we have I'V(b) = t/

and a =x b. The case where the roles of ¢’ and b are reversed is symmetrical.
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If there exist A’ € EL, f' € C}, and a € EL such that
a=ipx, A b =A  IV(a)=d,

then a = iy, A, with f € C,, and A € EL. Let b:= A’: by construction, we have I¥(b) = b’ and a =y, b.
If there exist A’ € EL, f' € C}, and a € EL such that

d=A  V=ipx, A IV(a)=4d,
let b := ig(4) *n a. Since V' is well typed, we have f' = s(A’), hence I(s(4)) = s(I¥(4)) = s(4") = f/,
and so IW(b) = V' and a =x,. b. The case of the right-unit is symmetrical.
If there are f], f5 € Cl, i <n and a € EL such that:
a = iflf x5 ifé b = if{*z'fé Iw(a) = a',
then a =iy, %, iy,, with f1, fo € C,,. Let b=y, by construction, we have IV (b) = b" and a =x5; b.
If there are f], f5 € Cl, i <n and a € EL such that:
a/:if{*ile b/Zif{ *iifz/ Iw(a):a'

then a = iy, with f € C,,. Since the image of I in C,, is closed by divisors, there exist fi, fo € C,, such
that

I(f1) = fi I(f2) = f3 f=Ji%i fa
Let us define b’ := iy, *; is,: By construction, we have IV (b) = b" and a =5, b.
If there are A}, Ay, B’ € EL, i <n and a € EL such that:
CLI = All *i B All =y AIQ b/ = AIQ *i B’ IW(CL) = CL/

then a = Ay x; B, with A;, B € EL. Using the induction hypothesis, there exist Ay € EL such that
IV (As) = A, and A} =5 A,. Let us define b := Ay %; B: by construction, we have I%(b) = b and
a =y b. The last case is symmetric.

In the case of IW(") we reason as previously, and we have two more cases to check. If there exist
u',v' €Cl, A€ and a € F such that:

a' = curary *n Cyr dry V = dus(ane ™™ () =d
then a = cu; A0, *n Cyy vy > With U1, uz,v1,v2 € C1 and Ay, Ay € ¥ such that:
I(Ul) = I(Ug) = U/ I(’Ul) = I(’UQ) = ’U/ In+1(A1) = n+1(A2) = A.

Let b := 4y,5(4,)v, - Since I and I,,41 are injective, we have I%(b) =V’ and a =y b.
If there exist u’,v' € Cj, A € ¥’ and a € FZ such that

a/ = iu/S(A/)U/ bl = Cy’ A’v’ *n Cyr A1y Iw(n) (a) = a/
Then a = iy, with f € C,,. Let b’ 1= cyay *i Cuay, with u = I71(u'), v =I71(v') and A = I}, (A): by
construction, we have IV (b) = b’ and a =5 b. The final case is symmetrical. O

Lemma 2.3.7. Assume that I, 11 and I are injective, and that the image of I in C,, is closed by divisors.
Then the functor IV : L¥(C,%) — LV(C', %) is injective, and its image is closed by divisors.

Assume moreover that 1,41 is bijective, and that I is bijective on the 1-cells of C. Then the functor
™ (e ) — LY™M(C!, ) is injective and its image is closed by divisors.

Proof. Let fi1, fo € LY (C,¥) and ay,as € EL such that:
I"(f1)=1"(f2)  [a]=fi  [a2] = fo.

Then [I%(a1)] = [I%(a2)], that is IV(a1) =%, W (az). Hence by definition, there exist » > 0 and
th,...,t, € EL such that:

th=Ta) ti=stiy  t,=IY(a2).
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Applying Lemma 2.3.6 successively, we get t1,...,t, € EL, such that:
tl = al ti =y ti+1 Iw(tl) = t;

In particular a4 =% ¢, and IV (t,) =t), = IV (az). Using Lemma 2.3.4, this implies that ¢, = ag, and so
a1 =% ag, which proves that fi = [a1] = [a2] = fa.

It remains to show that the image of IV is closed by divisors. Let f', f1, f5 € L% (C',¥') and i < n
such that f' = f{ x; f}, and assume that there is an f € LW(C’,%’) such that IV(f) = f’. Let a € EL
and b}, b, € EL, such that:

[a=f [il=f B =fi

In particular, we have I'V(a) =%, b} *; by. Using both Lemmas 2.3.4 and 2.3.6 as before, we get an

element b € EL such that:
a=%5b  IV(b) = by *; bh.

Since the image of IV is closed by divisors, there exists by, bs € Eg such that b = by %; by. Let f1 := [by]
and fy := [f2]: by construction we have:

I'(f1) = f1 I'Y(f2) = f3 fixi fa=f.

The case of I"(") is identical, the only difference lying in the hypothesis needed to apply Lemma
2.3.6. O

Proposition 2.3.8. Let ¥ and I" be two (n, k)-white-polygraphs and I : ¥ — T be an injective morphism
of (n, k)-polygraphs. Then for every j < k the functor IV X% — IV is injective, and its image is closed
by divisors.

Assume moreover that In and Iy are bijections, and that for every j > k the application I; : ¥; — T';

(k) yw(k) _, pw(k)
T

p 18 injective, and its image is closed by

is bijective. Then for every j the functor I;v
divisors.

Proof. We reason by induction on j. The case j = 0 is true by hypothesis.

Let 1 < j < k. By hypothesis, the application /; is injective, and by induction hypothesis, the functor
I, is injective with image closed by divisors. Hence [; satisfies the hypothesis of Lemma 2.3.7, and [3*
is injective with image closed by divisors.

Let j > k. Again, using the hypothesis and induction hypothesis, we get that I; satisfies the

hypotheses of Lemma 2.3.7. Hence I;V(k) is injective and its image is closed by divisors. O

In what follows, we use the fact that the image of a functor generated by a morphism of polygraphs
is closed by divisors in order to prove a characterisation of the image of such a functor.

Definition 2.3.9. Let C,D be two n-white-categories, F' : C — D be an n-functor and f be an n-cell of
D. We say that F' k-discriminates f if the following are equivalent:

1. The k-source of f is in the image of F'.
2. The k-target of f is in the image of F.
3. The n-cell f is in the image of F.

Given a subset D of D,,, we say that F' is k-discriminating on D if for every n-cell f in D, F
k-discriminates f.

Lemma 2.3.10. Assume that the image of I is closed by divisors, that the application I, is injective,
and that I is n-discriminating on X',
Then, I¥ (resp. I%™) ) is n-discriminating on L¥(C',%') (resp. LW (C',¥)).

Proof. Let us start with I'™V. Let E be the set all (n + 1)-cells of LW(C’,¥’) which I'V discriminates.
Let us show that E = LW (C’,%). Since IV commutes with the source and target applications, the
implications (3) = (1) and (3) = (2) hold for any cell in LW(C',%X’). So in order to show that a cell is
in E, it remains to show that it verifies the implications (1) = (3) and (2) = (3).
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The set E contains all units. Indeed, let A" = 15, with f' € C'. If s(A’) = f’ is in the image of
I, there exists f € C such that I(f) = f’. Let us define A =14 € LW(C,X): by construction we have
I (A) =155y = 15+ = A’, hence the implication (1) = (3) holds for A’. Moreover since t(A") = s(A’),
the implication (2) = (3) also holds for A.

The set E contains all cells of length 1. Indeed, given such a cell A’, there exist f},g; € C and
Aj € ¥’ such that

Al = fl w1 (fr1*n—2 - x2 (f1AQG1) *2 -+ *n—2 Gn_1) *n—1 Gn.-

Let A = f} *k—1 (fi_q *k—2 .- *2 (f1AL91) *2 ... %k—2 §,_1) *k—1 g),- Suppose that the source (resp.
target) of A’ is in the image of I, and let us show that A’ is in the image of IW. Since the image of I
is closed by divisors, we get first that f), g/, and s(A],_;) (resp. t(A],_;)) are in the image of I. By

iterating this reasoning, we get that, for all 4, f/, g/ and s(A}_;) (resp. t(A4,_,)) are in the image of I.
Since IV discriminates ', there exist f,gr € Cx and Ay € X such that:

I(fe) =t Ilgr) =gr  Int1(Ao) = Ap.

By induction on k we show that Ay := fi *r—1 Ag—1 *x—1 g is well defined and that IW(Ay) = Aj.
Indeed, assume that it is true at rank & — 1. Then we have the equalities:

I(6(fr)) = t(f3) = se-1(A_1) = I(sk-1(Ak-1))  I(tr-1(Ar-1)) = te-1(A}_1) = s(gr) = I(s(gx))

Using the injectivity of I we get that t(fx) = sg—1(Ax—1) and ti_1(Ax—1) = s(gr), which shows that A
is well defined, and finally:
IY(Ag) = fro*e—1 Ay *k-1 g), = Ap-

In particular, we have A, = IV (A,).

The set F is stable by n-composition. Indeed let A’, B’ € E, and assume that the source of A" x,, B’
is in the image of I. Let us show that A’ %, B’ is in the image of I%. The source of A’ x,, B’ is none
other that the one of A’. Since A’ is in F, there exists A € LY (C,X) such that IV (A) = A’. Hence the
source of B’ is in the image of I, and since B’ € E, there exists B € L¥(C,X) such that IW(B) = B'.
Moreover we have I(t(A)) = t(A") = s(B’) = I(s(B)), so using the injectivity of I we get t(A) = s(B).
Hence the cell A x,, B is well defined and satisfies:

I%(Axp, B)=TI"(A) %, IV (B) = A’ %, B'.

The case where the target of A’ x,, B’ is in the image of I is symmetrical.

This concludes the proof for V. Concerning I"(")| the reasoning is the same except that we also
have to show that E is stable under inversion. Indeed let A’ € E and assume that the source (resp.
target) of (A’)~! is in the image of I. Then the target (resp. source) of A’ is in the image of I and since
A’ is in E, there exists A € L¥(™)(C, %) such that W) (A) = A’, and so W™ (A1) = (A")~L. O

Proposition 2.3.11. Let ¥ and ' be two (n, k)-white-polygraphs, and I : ¥ — T' be a morphism of
polygraphs. Let ko such that for every j > ko, I; is a bijection.

Assume that I satisfies the hypothesis of Proposition 2.3.8, and that, for every j > ko, I; is ko-
discriminating on I';. Then for every j > ko, I;V(k) 18 ko-discriminating on I‘;V(k).
Proof. Since I satisfies the hypotheses of Proposition 2.3.8, we know that for every j, the functor I;V(k)
is injective, and that its image is closed by divisors.

We reason by induction on j > kqg. For j = kg + 1, the result is a direct application of Lemma 2.3.10.

Let j > ko + 1: let us show that Ij‘-"(k) is (j — 1)-discriminating on I';. Let A € T';. If s(A) (resp.
t(4)) is in the image of I;fo ) then in particular, the ko-source (resp. ko-target) of A is in the image
of I,:‘;(k). Since I;V(k) is ko-discriminating on I'j, A is in the image of I;V(k). Hence we can use Lemma

w(k) w(k)
P Let A e Fj

then, by induction hypothesis, the source (rep. target) of A is in the
) (k)

2.3.10, and we get that I;V(k) is (j — 1)-discriminating on I'
(k)

. If its kg-source (resp.

ko-target) is in the image of I,

k)

image of I;V_(l , and so A is in the image of I;V(k , which proves that I;V is kg-discriminating. O
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3 Application to the coherence of pseudonatural transformations

We now study the coherence problem successively for bicategories, pseudofunctors and pseudonatural
transformations. In Section 3.1, we start by recalling the usual definition of bicategories (see [2]).
We then give an alternative description of bicategories in terms of algebras over a certain 4-polygraph
BiCat[C], and show that the two definitions coincide. The coherence problem for bicategories is now
reduced to showing the 3-coherence of BiCat[C], and we use the techniques introduced in the previous
section (especially Theorems 1.2.4 and 1.4.4) to conclude. In Section 3.2 and 3.3, we apply the same
reasoning to pseudofunctors and pseudonatural transformations. However in the case of pseudonatural
transformations, we get a (4, 3)-polygraph PNTrans|[f, g] which is not 3-confluent, and so we cannot
directly apply Theorem 1.4.4. The proof of the coherence theorem for pseudonatural transformations
will take place in Section 4 and will make use of Theorem 1.4.9.

3.1 Coherence for bicategories

Let Cat be the category of (small) categories. We denote by T the terminal category in Cat. Let
sCat be the 3-category with one 0-cell, (small) categories as 1l-cells, functors as 2-cells, and natural
transformations as 3-cells, where 0-composition is given by the cartesian product, 1-composition by
functor composition, and 2-composition by composition of natural transformations.

Definition 3.1.1. A bicategory B is given by:
e A set Bp.

e For every a,b € By, a category B(a,b). The objects and arrows of B(a,b) are respectively called
the 1-cells B and 2-cells of B.

For every a,b, c € By, a functor %, : B(a,b) x B(b,c) = B(a,c).

For every a € By, a functor I, : T — B(a,a), that is to say a 1-cell I, : a — a.

For every a, b, c,d € By, a natural isomorphism o p,c q:

B(aa b) X *p.c,d

B(a,b) x B(b,c) x B(c,d) B(a,b) x B(b,d)
*q.b,c X Be, d) a% *a,b.d
B(a,c) x B(ec,d) Fo— B(a,d)

of components ay g : (fxg)*h = f*(g*h), for every triple (f, g,h) € B(a,b) x B(b,c) x B(c,d).

e For every a,b € By, natural isomorphisms R, and Lg p:

B(a, b) X Ib
B(a,b) B(a,b) x B(b,b)
Ra,b
I, x B(a,b) *a,b,b
La,b
B(a,a) x B(a,b) E— B(a,b)

of components Ly : I, x f = f and Ry : f I, = f for every 1-cell f € B(a,b).

This data must also satisfy the following axioms:



e For every composable 2-cells f, g, h,i in B:

((fxg) xh) *i
Qf.g.h *1
e (Fx (g ) =i
(f*g)* (ki) = Of gxhi (1)
Of g o ((gxh) 1)
%
f*(g*(h*1))
e For every couple (f,g) € B(a,b) x B(b,c):
(f*1p) x
Oéf[b/ \Rf*g
(2)
f*(Ib*g)
fxLg

Definition 3.1.2. Let C be a set. Let us describe dimension by dimension a 4-polygraph BiCat[C],
so that bicategories correspond to algebras on BiCat[C], that is to 4-functors from BiCat[C] to sCat
(see Proposition 3.1.4).

Dimension 0: Let BiCat[C]y be the set C.
Dimension 1: The set BiCat[C]; contains, for every a,b € C, a 1-cell |, : @ — b.

Dimension 2: The set BiCat[C], contains the following 2-cells:
e For every a,b,c € C, a 2-cell 'V'ayb ot a|b|c = a|c.
e For every a € C, a 2-cell @, : 1, = a|a.

Note that the indices are redundant with the source of a generating 2-cell. In what follows, we will
therefore omit them when the context is clear. For example, the 2-cell g‘ of source a|b|c|d designates

the composite (4,7, ) *¥1 'V'a’b’ 4+ We will use the same notation for higher-dimensional cells.

Dimension 3: The set BiCat[C]3 contains the following 3-cells:

e For every a,b,¢c,d € C, a 3-cell 7', . ,: y = g‘ of 1-source glplca-

e For every a,b € C, 3-cells {, , : g = |andb,, : %Q = | of 1-source .
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Dimension 4: The set BiCat[C], contains the following 4-cells:
e For every a,b,c,d, e € C, a d-cell <=, , ;. of 1-source q|p|c|al.-

ww@

e For every a,b,c € C, a 4-cell ‘¢’ of 1-source 4.

=
%ﬁ, &
@v,v
)

Definition 3.1.3. We denote by Alg(BiCat) the set of all couples (C, @):
e where C is a set,
e where ® is a functor from BiCat|C] to sCat.
Proposition 3.1.4. There is a one-to-one correspondence between (small) bicategories and Alg(BiCat).

Proof. The correspondence between a bicategory B and an algebra (C, ®) over BiCat is given by:

e At the level of sets: C = By.

e For every a,b € By, ®(a}s) = B(a,b).

e For every a, b, c € By, (I)('V'a,b,c) = *q bc-

e For every a € By, ®(Q,) = I,.

e For every a,b,c,d € By, @(vmb,qd) = Qg bed-

e For every a,b € By, <I>(|>a7b) = R, and @(dayb) =Lgp.

e The axioms that a bicategory must satisfy correspond to the fact that ® is compatible with the
quotient by the 4-cells <" and ‘¢".

This correspondence between the structures of bicategory and of algebra over BiCat is summed up
by the following table:
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Bicategory Alg(BiCat)
Sets By C 0-cells
Categories B(_, ) | 1-cells
Functors *, I Avallel 2-cells
Natural transformations | «, L, R || <7, ¢, b | 3-cells
Equalities 1) (2) || =<9 | 4-cells

Table 1: Correspondence for bicategories

We are going to show the coherence theorem for bicategories, using Theorem 1.4.4.
Proposition 3.1.5. For every set C, the 4-polygraph BiCat[C] 3-terminates.

Proof. In order to apply Theorem 1.2.4 we construct two functors X¢ : BiCat[C]5 — sOrd and Y :
(BiCat[C]3)%® — sOrd by setting, for every a,b € C:

Xc(ap) = Ye(ab) = N*
and, for every i,j € N*:
We now define an (X¢, Ye, N)-derivation de on BiCat[C]} by setting, for every i, j, k € N*:

dC('V')[%LM =it+k+1, dC(Q)M =1,
It remains to show that the required inequalities are satisfied. Concerning X and Yg, we have for
every 1, j, k € N*:

Xe( gl =i+ j+h>itj+k=Xcl< )i

Concerning d¢, we have for every i, j, k,1 € N*:
dc(@)[z’,j,k,l] — 2t r2A+2> it LA +2= dc(g‘)[i,j,l@l]

oYl =2 +2>0=do(lig]  dedP)li ) =i+2)+1>0=do()lij]

The following Theorem is a rephrasing of Mac Lane’s coherence Theorem ( [13]) in our setting.
Theorem 3.1.6. Let C be a set.
The 4-polygraph BiCat[C] is 3-convergent and the free (4,2)-category BiCat[C]*(?) is 3-coherent.

Proof. We already know that BiCat[C] is 3-terminating. Using Proposition 1.3.8 and Theorem 1.4.4, it
remains to show that every critical pair admits a filling.
There are five families of critical pairs, of sources:

O e

The first two families are filled by the 4-cells 0" and <<=, whereas the last three are filled by 4-cells

w; € BiCat[C]Z(z)7 which are constructed in a similar fashion as in the case of monoidal categories (see
Proposition 3.5 in [7]). O
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3.2 Coherence for pseudofunctors
Definition 3.2.1. A pseudofunctor F' is given by:
e Two bicategories B and B'.
e A function Fy : By — Bj.

e For every a,b € By, a functor F,; : B(a,b) — B'(Fo(a), Fy(b)).

For every a,b, c € By, a natural isomorphism ¢g p,.:

B(a,b) x B(b, ) Kabe Bla, )
Fa,b X Fb,c Qja,b/F Fa,c
B'(Fo(a), Fo(b)) x B'(Fy(b), Fo(c)) B'(Fo(a), Fo(c))

*Fo (@), Fo (), Fo <)
of components ¢y : F(f xg) = F(f)* F(g), for every couple (f,g) € B(a,b) x B(b,c).

e For every a € By, a natural isomorphism %,:

T Lo B(a,a)
;p/ Foa
T B'(Fo(a), Fo(a))

I}b(a),Fo(a)

of components ¢, : F(I,) = I},O(a), for every a € By
This data must satisfy the following axioms:

e For every composable 1-cells f,g and h in B:

F((f +g) % h)
F(O‘f,g,h ¢f*g,h
F(f+ (g h) P(fxg)# F(h)
¢f,g*hﬂ - ﬂm* F(h ®)
F(f) + F(g*h) (F(f) F(h)

. ; /
(f)* @7 O‘;“(f),F(g)yF(h)

F(f)* (F(g)« F(h))
e For every 1-cell f:a — bin B:

ox F
F1) < P D e

1..s Lrp)
/ - (@)

F(I, + f) F(f)
F(Ly)
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e For every 1-cell f:a — bin B:

F !
F(f)+" F(I) MF(JC) * It ()

(b,b P
/ = N\ (5)

F(f*[b) F(f)
F(Ry)

Definition 3.2.2. Let C and D be sets, and f an application from C to D. Let us describe dimension by
dimension a 4-polygraph PFonct[f]. We will prove in Proposition 3.2.5 that pseudofunctors correspond
to algebras over PFonct/[f].

The polygraph PFonct[f] contains the union of:

e the polygraph BiCat[C], whose cells are denoted by 7, 0, <, b, {, <" and ‘¢, defined as
in Definition 3.1.2,

e the polygraph BiCat[D], whose cells are denoted by ‘¢, @, “9” p, {, ~<gF~" and ‘¢, defined as
in Definition 3.1.2,

together with the following cells:
Dimension 1: For every a € C, the set PFonct|f]; contains a 1-cell ol(q) : @ — f(a).
Dimension 2: For every a,b € C, the set PFonct[f], contains a 2-cell &, , : alblf(b) = alf(a)lf(b).

Dimension 3: The set PFonct[f]; contains the following 3-cells:

e For every a,b,c € C, a 3-cell &=, , .. : z:g‘ = Fﬁé of 1-source qlplle(c)-
e For every a € C, a 3-cell &, : ?EIJ =| @ of 1-source 4le(q)-

Dimension 4: The PFonct[f], contains the following 4-cells:

e For every a,b,c,d € C, a 4-cell ==, ,, . 4 of 1-source qfpleldle(a)

=
< ~ Rae

W@}%

e For every a,b € C, 4-cells P, , and @<, , of 1-source olle(s)
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Definition 3.2.3. Let Alg(PFonct) be the set of all tuples (C,D, f, ®):

s

e where C and D are sets,
e where f is an application from C to D,

e where @ is a functor from PFonct[f] to sCat such that, for every ¢ € C the following equality
holds:
(o)) =T

Remark 3.2.4. Let f : C — D be an application. Since BiCat[C] (resp. BiCat[D]) is a sub-4-
polygraph of PFonct[f], every functor ® : PFonct[f] — sCat induces by restriction two functors:

®p : BiCat[C] — sCat dg : BiCat[D] — sCat

Proposition 3.2.5. Pseudofunctors between (small) categories are in one to one correspondence with
elements of Alg(PFonct).

Proof. The proof is similar to the case of bicategories, using the following correspondence table:

Pseudofunctors Alg(PFonct)

Source and target Band B || (C,®0) and (D, ®g) | Restrictions
Function Fy f Function
Functors F o 2-cells

Natural transformations U, ¢ S, S 3-cells
Equalities (3) (4) (5) <S—F7 X > 4-cells

Table 2: Correspondence for pseudofunctors

O

Proposition 3.2.6. For every sets C,D and every application £ : C — D, the 4-polygraph PFonct|[f]
3-terminates.

Proof. In order to apply Theorem 1.2.4, we define functors X¢ : PFonct[f]; — sOrd and Yz : (PFonct[f]5)®° —
sOrd as extensions of the functors X¢, Xp, Yc and Yp from Proposition 3.1.5, and by setting for every
a€C:

Xt (ale(a)) = Yelalea)) = T,

where T is the terminal ordered set, and for every i € N*:

Xe(@)li] =i Ye(@li] = 2i+ 1.
We now define an (Xg, Y, N)-derivation df on PFonct[f]} as an extension of dg, by setting for every
1,7,k € N*:
de(W)li. g K =itk de(@®li] =i de(@)[ij] =i+j+1
It remains to show that the inequalities required to apply Theorem 1.2.4 are satisfied. Since X (resp.

Y:) extends X¢ and Xp (resp. Yo and Yp), the only inequalities that need to be checked are those
corresponding to the 3-cells S& and &, Indeed for every i, j € N*, we have:

XeQ) =121=xe( #)



Xf(@)[i,j] =itj2itj= Xf(%:ﬁ)[iaj}
Ve(G )i = (20 +1,2i+ 1) > (20 +1,2i +1) = Yf(%::ﬁ)m

Concerning dg, the 3-cells from BiCat[C] have already been checked in Proposition 3.1.5. For the
other 3-cells, we have, for every i, j, k € N*:

de@li. | =2 +1>0=de0fidl  delGPli.d) =i +27 >0 = de(Dfi. 1]
de(Qhli) = 3i+2> i = de( ®)

de ()i, K] = 2i 4+ 3k +3 > 20+ + 3k +2 = df(%:é)[i,j,k].
O

Theorem 3.2.7. Let C and D be sets, and f : C — D an application.
The 4-polygraph PFonct|f] is 3-convergent and the free (4,2)-category PFonct[f]*(?) is 3-coherent.

Proof. We have shown that it is 3-terminating, so using Proposition 1.3.8 and Theorem 1.4.4, it remains
to show that every critical pair admits a filler in PFonct|[f].

There are thirteen families of critical pairs. Among them, ten come from BiCat[C] or BiCat[D],
and were already dealt with in Theorem 3.1.6. The remaining three have the following sources:

AN S

and they are filled respectively by the 4-cells >, X< and '<S—=. O

3.3 Coherence for pseudonatural transformations

Definition 3.3.1. A pseudonatural transformation 7 consists of the following data:
e Two pseudofunctors F, F’ : B — B’, where B and B’ are bicategories.
e For every a € By, a functor 7, : T — B'(Fy(a), Fi(a)), that is a 1-cell 7, : Fy(a) — Fj(a) in B'.

e For every a,b € By, a natural isomorphism o, p:

B(a,b)
B'(Fy(a), Fo(b)) B'(Fy(a), Fo (b))
Oa,b

B (Fo(a), Fo(0) x | 70 % B(E @), E0)
B'(Fo(a), Fy (b)) x B'(Fy(b), F5 (b)) B'(Fo(a), Fy(a)) x B'(Fy(a), Fy(b))
*’F(](a)m /afa /
B/(Fo(a),Fé(b))FO( ), Fé(a),Fg(b)
of components oy : F(f)* 7, = 17, %" F'(f), for every f € B(a,b).

This data must satisfy the following axioms:
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e For every (f,g) € B(a,b) x B(b,c):

To % F'(f % g)
% N‘
(f*g * Te )
pg* T alfa,F’(f)’F’(g)
(F(f)* F(g))* e = (ra " F'(f)) " F'(g) (6)
O/F(f),ng),rc op % F'(g)
F(f)+ (F(g)* 7.) )" 1)« F'(g)
X %
* Tb « F/
e For every a € By:
F(1,)* 7,
Yo ¥ Ty \
Tax F'(1,)
Iﬁ,(a) * T4 = Ta ¥ ), (7)
Ta % IF /(a)

L/

Ta /
/
- R.ra

Definition 3.3.2. Let C and D be sets, and f, g be applications from C to D. Let us define dimension
by dimension a (4, 2)-polygraph PNTrans|f,g]. We will see in Proposition 3.3.5 that pseudonatural
transformations correspond to algebras over PNTrans|f, g].

The polygraph PNTrans|f, g] contains the union of the polygraphs PFonct[f] and PFonct[g]. In
particular, the following cells are in PNTrans|[f, g]:

e the cells Y, 9, <, b, {, <" and ¢’ coming from BiCat[C],
e the cells 'Y, @, 9~ ), {, g and ¢ coming from BiCat[D],
e the cells I, N7, &, S, P& and X< coming from PFonct|f],
e the cells jm, @, 6, § >K and X coming from PFonct|g].

Together with the union of PFonct[f] and PFonct[g], PNTrans|f, g| contains the following cells:

Dimension 2: For every a € C, the set PNTrans|f, g], contains a 2-cell @3, : alg(a) = alt(a)lg(a)

Dimension 3: For every a,b € C, the set PNTrans|f, g]3 contains a 3-cell: iﬁa’b : %:a = % of

1-source a|b|g(b)
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Dimension 4: The set PNTrans|[f, g], contains the following 4-cells:

e For every a € C, a 4-cell &, of 1-source a|g(a)

a2
AR,

%ﬁﬁ\ﬁ P

e For every a,b,c € C, a 4-cell &, , . of 1-source alblclg(C)

L m 1 i
/%ﬁ%ﬁ%@@
%E@%

Definition 3.3.3. Let Alg(PNTrans) be the set of tuples (C,D,f, g, @) :
e where C and D are sets,
e where f,g: C — D are applications,
. |where ® is a functor from PNTrans[f,g] to sCat, such that for every ¢ € C, d € D and 1-cell
rc—d:

q’(Cld) =T

Remark 3.3.4. Since PFonct[f] (resp. PFonct[g]) is a sub-4-polygraph of PNTrans[f,g|, every
functor ® : PNTrans|f, g] — sCat induces by restriction two functors

®g : PFonct[f] — sCat dg : PFonct[g] — sCat

Proposition 3.3.5. Pseudonatural transformations between pseudofuncteurs are in one to one corre-
spondence with elements of Alg(PNTrans).

Proof. The proof is similar to that of bicategories, using the following correspondence table:
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Pseudonatural transformations Alg(PNTrans)

Source and target F and F' || ®o and Pg | Restrictions
Functors T — 2-cells
Natural transformations o g 3-cells
Equalities (6) (7) S &, 4-cells

Table 3: Correspondence for pseudonatural transformations

O

This result induces the following classification of the cells of the (4,2)-polygraph PNTrans|f, g],
depending on which structure they come from. We also distinguish two types of cells: product cells and
unit cells. Moreover, in the following table, every line corresponds to a dimension.

’ Origin \ Dimension \ Product cells  Unit cells \

2-cells A4 Q

Source bicategory 3-cells <~ b, 4
4-cells N heg
2-cells v ®

Target bicategory 3-cells - b, ¢
4-cells . A 4
2-cells Pu'

Source pseudofunctor 3-cells — JeX
4-cells <= PP (<
2-cells PY

Target pseudofunctor 3-cells 4 'Y
4-cells <’ p b
2-cells )

Pseudonatural transformation 3-cells P
4-cells < JeX

Table 4: Classification of the cells of PNTrans|f, g|

Proposition 3.3.6. Let f,g : C — D be two applications. The (4,2)-polygraph PNTrans[f, g| 3-
terminates.

Proof. We apply Theorem 1.2.4. To construct the functors X¢ g : PNTrans[f, g]5 — sOrd and Y¢ g :
(PNTrans|f, g]5)°° — sOrd, we extend the functors X¢, Xg, Y and Y, from Proposition 3.2.6, by
setting:

Xeg(@R) =1

We now define an (Xt g, Y¢ g, N)-derivation d¢ g of the 2-category PNTrans|[f, g]5 as the extension
of dg satisfying, for every i,j € N*:

deg ()i j]l =i+  deg(@R)i] =1

It remains to show that the required inequalities are satisfied. Since X¢ g (resp. Yt g) is an extension
X¢ and Xg (resp. Y and Yg), it only remains to treat the case of the 3-cell . For every i,j € N*, we
have:

Xf,g(rt—a)[i] =itlzitl= Xﬂg(‘%j)[i] Yf,g(%:a)[i] =2i+12>2i+1= Yf,g(f_'%j)[i]

Concerning d¢ g, the 3-cells from PFonct[f] were already treated in Proposition 3.1.5. For the others
we have, for every i, j, k € N*:
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e o(Cgdli j, K] = 2i 4+ + 3k +2 > 20+ j + 3k = df,g(%j)[i,j, K

e o) =3+ 1> i = de (| #) dﬁg(%ﬁ)[i,ﬂ — 241431 = df,g@ﬁw,ﬂ

O

Definition 3.3.7. We define a weight application w as the 1-functor from PNTrans|f, g]} to N, defined
as follows on PNTranslf, g];:

o for all a,b € C, w(up) =1,
o for all a,b € D, w(,|) =1,
o foralla e Candbe D, w(y)) = 0.

Theorem 3.3.8 (Coherence for pseudonatural transformations). Let C and D be sets, and f,g: C — D
applications.
Let A, B € PNTrans|f, g};@) be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell o : A= B € PNTrans|f, g]Z(Q).

This theorem will be proven in Section 4. Contrary to the case of bicategories and pseudofunctors,
we cannot directly apply Theorem 1.4.4 to the (4, 2)-polygraph PNTransl|f, g], because the following

critical pair is not confluent:

N
g @@@ﬁ@

Theorem 1.4.9 will be used in order to avoid this difficulty.
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4 Proof of the coherence for pseudonatural transformations

In this section we prove Theorem 3.3.8. We fix for the rest of this section two sets C and D, together
with two applications f,g : C — D. Let A, B € PNTrans|f, g]*(z) be 3-cells whose 1-target is of weight
1. We want to build a 4-cell o : A= B € PNTrans|[f, g]*®.

The 1-cells of weight 1 are of one of the following forms, with a,a’ € C and b,b’ € D:

ala’ blb’ ala’lf(a’) ala’lg(a’) ala’lf(a’) alg(a)lb alf(a)lb

In Section 4.1, we show that if the common 1-target of A and B is not of the last form, then they
are generated by a sub-4-polygraph PFonct[f, g] of PNTrans|[f, g]. We then show using Theorem 1.4.4
that this 4-polygraph is coherent.

There remains to treat the case where the 1-target of A and B is of the last form. We define two
sub-(4, 2)-polygraphs of PNTrans|f, g]: PNTrans™ T[f,g] and PNTrans™[f,g]. The (4,2)-polygraph
PNTrans++[f ,g] contains all the structure of pseudonatural transformations, except for the axioms
concerning the units @ and @, while PNTrans™[f, g] is an intermediary between PNTrans™"[f, g] and
PNTrans|[f, g], which contains the 2-cells ¢ and @. The inclusions between the (4, 2)-polygraphs can be
seen as follows:

PNTrans'"[f,g], C PNTrans™[f, g], = PNTrans|f, g]>
PNTrans" " [f, g]; = PNTrans'[f, g]3 C PNTrans[f, g]3

In Section 4.2 we show that PNTrans™* " [f, g] satisfies the 2-Squier condition of depth 2, which allows
us to apply Theorem 1.4.9. Since 1-cells of the form alf(a)lb are normal forms for PNTrans++[f , 8], this
concludes the case where A and B are in PNTrans™ T[f, g].

We then define a sub-3-polygraph PNTrans"[f, g] of PNTrans|f,g]. The rewriting system induced
by the 3-cells PNTrans"[f, g] corresponds to simplifying the units out.

Using the properties of this rewriting system, we extend the result of Section 4.2, first to 3-cells A
and B in PNTrans"[f,g] in Section 4.3, and finally to general A and B whose 1-target is alf(a)lb in
Section 4.4, thereby concluding the proof.

4.1 A convergent sub-polygraph of PNTrans|f, g|

Definition 4.1.1. Let PFonctl[f, g] be the 4-polygraph containing every cell of PNTrans|f, g], except
those corresponding to the pseudonatural transformation. Alternatively, PFonct[f, g| is the union of
PFonct|[f] and PFonct[g].

Lemma 4.1.2. For every h € PNTranslf, g]5, one of the following holds:

e The target of h is of the form

allm a; f(ai)lbll-ulbj’ (8)

where i and j are non-zero integers, the a are in C and the by are in D.
e The 2-cell h is in PFonct[f, g]5.

Proof. Let us show first that the set of all 1-cells of the form (8) is stable when rewritten by PFonct[f, g];.
To prove this, we examine the case of every cell of PFonct[f, g|5 of length 1:

all-ulak—l Y ak+1|m|bj : (lllm

allmlakQaklmlbj : allm
all“‘lbk—lvkarll“-lbj : allm

allmlbk’bklmlb]‘ : all"'lai

ai—lh:ﬁf(ai)l-ulbj : allm

Let us now prove the lemma: we reason by induction on the length of h. If A is of length 0, it is an
identity, so h is in PFonct|[f, g]*.

a; bll"'lbj = all-.-lak—llflk+1|-.-|bj

f (a:i)

ailf (a;) bllmlbj = allmlaklaklmlb]

f (a;i)

bll"'lbj = a |“-|bk—1|bk+1|“-|bj

a;

f(ai,)lbllmlbj = allmlbklbklmlb]’

by = ol

allm a;ilf (a;) ai—llf(aq‘,—l)lf(ai)lbll-”|bj
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If h is of length 1 and h is not in PFonct[f, g]*, then h has to be of the form || & || So its

target is of the form:
al|-”|ak|f(ak)|g(ak)|b2|-ulbj
which is indeed of the form (8), with b; = g(a).

Let now h be of length n > 1. We can write h = hy *; ho, where hs is of length 1, and h; is strictly
shorter than h. Let us apply the induction hypothesis to hy. If the target of hsy is of the form (8), then
so is the target of h, since t(hy) = t(h). Otherwise, then h; € PFonct[f,g]*, and we can apply the
induction hypothesis to ha. If hs also is in PFonct|[f, g]*, then so is h.

It remains to treat the case where t(hq) is of the form (8) , and hs is in PFonct[f, g]*. But we have
shown that the 1-cells of the form (8) are stable when rewritten by PFonct[f, g]*. Thus the target of hs
(which is the target of h) is of the form (8), which concludes the proof. O

Lemma 4.1.3. For every A € PNTransl|f, g]gm, one of the following holds:
e The 1-target of A is of the form (8).
o The 3-cell A is in PFonct[ﬂg]g(Q),

Proof. Let us start by the case where A is a 3-cell of length 1 in PNTrans|[f, g]5. If the 1-target of A
is not of the form (8) then, according to Lemma 4.1.2, the 2-source of A is in PFonct[f, g]5. The only

3-cell in PNTrans[f, g]3 which is not in PFonct[f, g]3 is the 3-cell j&, whose 2-source Fﬁ is not in

PFonct[f, g|5. Thus A is in PFonct[f, g]3.
Suppose now that A = B~!, where B is a 3-cell of PNTrans|[f, g|} of length 1. The 1-target of B is

the same as the one of A. If it is not of the form (8), B is in PFonct|[f, g];(z)7 and so is A.
In the general case, A is a composite of 3-cells of one of the two previous forms, and all of them
have the same 1-target as A. Thus if the 1-target of A is not of the form (8), all those 3-cells are in

PFonctlf, g]§(2), and so is A. O
Lemma 4.1.4. The 4-polygraph PFonct|[f, g] is 3-coherent.

Proof. It is a sub-4-polygraph of PNTrans|[f, g] which is 3-terminating, therefore it is also 3-terminating.
Moreover, every critical pair in PFonct[f, g] arises from one either in PFonct[f] or PFonct[g]. Since
those 4-polygraphs are confluent and satisfy the Squier condition, so does PFonct[f, g].

Using Theorem 1.4.4, this means that PFonct|[f, g] is 3-coherent. O

Proposition 4.1.5. Let f,g: C — D be two applications.

For every parallel 3-cells A, B € PNTrans|f, g]*(® whose 1-target is not of the form (8), there exists
a 4-cell o : A= B € PNTransl|f, g}z(g).

In particular, for every parallel 3-cells A, B € PNTrans|f, g]*(z) whose 1-target is of weight 1 and is
not of the form ole(a)lb, there exists a 4-cell a : AS B € PNTrans[f,g]Z(Q).

Proof. Let A,B € PNTrans[f, g]§(2) whose 1-target is not of the form (8). We want to build a 4-
cell @« : A= B € PNTranslf, g]Z@). According to Lemma 4.1.3, A and B are actually 3-cells in
PFonct|f, g]§(2). In Lemma 4.1.4 we showed that PFonct|[f, g] is 3-coherent, hence there exists a 4-cell
a:A=SBe€ PFonct[f,g]Z(Q) C PNTrans[f, g]z(g).

Moreover, the only 1-cells of weight 1 and of the form (8) are the 1-cells gle(4)|p, Which proves the
second part of the Proposition. O

4.2 A sub-polygraph of PNTrans|[f, g] satifying 2-Squier condition of depth 2

Definition 4.2.1. Let PNTrans™ t[f, g] be the sub-(4, 2)-polygraph of PNTrans|[f, g] containing every
product cell from Table 4.

Lemma 4.2.2. The (4,2)-polygraph PNTrans™ T[f, g] satisfies the 2-Squier condition of depth 2.
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Proof. The 2-Squier condition

Let us start by showing the 2-termination of the (4,2)-polygraph PNTrans ™" [f, g].
We define a functor 7 : PNTrans|[f, g]; — N?, where compositions in N® are given by component-wise
addition, by defining:

For all a,b € C, 7(4}) = (1,0,0).
e For all a € C, 7(4le(a)) = (0,1,0).
e Forall a € C, 7(4lg(a)) = (0,2,0).
For all a,b € D, 7(4}) = (0,0,1).

The lexicographic order on N® induces a noetherian ordering on PNTrans|f, g];. Moreover the 2-cells
are indeed decreasing for this order:

7(s(¥)) = (2,0,0) > (1,0,0) = 7(t(¥))  7(s(¥)) = (0,0,2) > (0,0,1) = 7(t('¥))
T(s(@®) = (1,1,0) > (0,1,1) = 7(t(m))  7(s(m)) = (1,2,0) > (0,2, 1) = 7(t(m))

T(S([:])) = (07270) > (07 L, 1) = T<t([_:r])>

The following diagrams show both the 2-confluence of PNTrans™ T[f, g] and the correspondence
between critical pairs and 3-cells:

aleha alcla
v | \4 v | v
ablela /V\ di ablea /{*\ ald

A e A

albld albld

&L = |
ablewlece) dle(leolece) abls®)lee) alg(@le®)lz(e)

7N T N

aleldlece) S~ ale(ale(e) albllg (o) - dlg(alee)

a clf(c) alclg(c)

= |
le(@)le)y == dk@leg@le®)
alg(a)lg alf(a)lg(a)lg
B =7
olev) pug ale(@)lgv)

| &3
alole (o) l(b) ﬁ ae(a)leo)lev)
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The 2-Squier condition of depth 2

The following diagrams show the bijection between critical triples and 4-cells.

Y |
alcldle

e g TN T v
My o -

alblcldle i 'V' i albldle al %albl |d|

IIX Ny ¥ II\

alblcldle i v i albldle '*' ae albl(ldle

e T e
A e

v |

alblcldlf(d) albldlf(d) w alf(a)lf(d)
N h::ﬂ W v
| =
alolele (o) le(a) | S de(@lewlecay

| = || ¥ |

alble(wleolecay abole(b)lea)
===
Y |
alcldle @)

o - alale a) -
7 T &l A

| 'Y
alplelale (ay de(a)lecole(@y =——= dke(o)l(a)

||fc)|fd)
e v/ v T i

|b| |f(c)|f(d) alf(a |f(b |f(c |f alf(a)lf(d)

| = || |

ableo)leco)lecay abblev)le(a)
‘ I ¢ (
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v |

ablelalg ) ablalg () - alg(@)le(a)
=) [
| =
alblclg(c)lg(d) | w alg(a)lg(b)lg(d)

| = || ¥ |

able®)laco)le(a) abls bl a)
(|~
Y |
al( |d|g

aldlg(d)
v | - =

| v
al |g(c>|g<d> :k de(@le0lst) == ks

a|b| |d|g<d>
~~ | ¥

albl |g(c |g a|g<a>|g<b>|g<c>|g alg(a)lg(a)

I}!\\x | |

alblg(b)lg(c)lg(d) | | v alblg(b)lg(d)
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A = |
ddg(c) === d(a)le(c) === ck(we(ale(0)

v -
Y |
y dg(@le®lee) == k@ ls@lemlke) gl
- &1 s
| ¥

!
alblclg(c) — alblg(b)lg(c) M alf(a)lg(b)lg(c)

| v

| 'Y

ale(@)lg(e)

<

A o
| &2 | |

| | &2 able@)lso)le) == akewlewleolece) _ ale(@le@le(e)

| =

| |
alblclf(c)l (c) =—> |b|f(b)|f(c)| (¢) alblf(b)l (c)
I f S T VR0

alele (o) :> de(@)le(e) :> af(alg(@lz(0)

| v
/ / ook ()lg(p)

albl |g al |f c)lg( '

\ / ale(aleco)lece) |g c) a|f el

ablele ) |g |b|f wleelee ﬁ alblf(b le(c)

I

alr(@)le(e)

<

O

Proposition 4.2.3. For every 3-cells A, B € PNTrans™ 1 [f, g]*(?) whose 1-target is of the form a|f(a)|b,
there exists a 4-cell a : A= B € PNTrans|f, g]*(?).

Proof. Thanks to Lemma 4.2.2, we can apply Theorem 1.4.9 to PN’I‘I‘ans++[f7 g]*(2), and there exists
a d-cell @ : A= B in PNTrans ™ T[f, g]*® for every 3-cells A, B € PNTrans™ t[f, g]*(?) whose 1-target
is a normal form. In particular the 1-cells of the form alf(a)lb are normal forms. O

4.3 Adjunction of the units 2-cells

Definition 4.3.1. Let PNTrans“[f, g] be the sub-3-polygraph of PNTrans|f, g] containing the same
1- and 2-cells, and whose only 3-cells are the unit cells from Table 4.

A 2-cell h € PNTranslf, g} is said unitary if it is generated by the sub-2-polygraph of PNTrans|f, g]
whose only 2-cells are @ and @.
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Lemma 4.3.2. Let h € PNTrans(f, g]5 whose target is of the form ole(q)ls, where a € C and b € D.

If there is a decomposition h = hy *1 ha, where hy € PNTrans"[f, g]* and ho € PNTrans|f, g]* are
not identities, and hy is a unitary 2-cell, then there is a 3-cell A € PNTrans"[f, g5 of source h which
is not an identity.

Proof. Let us start with the case where h; is of length 1. We reason by induction on the length of ho. If
hso is of length 1, since the target of hs is of the form a|f(a)|b, hso is one of the following 2-cells:

Y = &

Y e %

And all of these 2-cells are indeed the sources of 3-cells in PNTrans"[f, g];.
In the general case, let us write ho = hg %1 hj, where hg is of length 1. Two cases can occur.

Hence h is one of the following 2-cells:

o If there exist 1-cells u,u/,v and v' and 2-cells hj : u = v € PNTrans"[f,g]* and b} : v = ' €
PNTrans[f, g]* such that hy = b} xgu (resp. hy = u*g h}) and hg = v’ % h{, (resp. hg = hj*ov').

Then h = (h} %o hg) x1 b (resp. h = (h{ *o b)) *1 hb), and we can apply the induction hypothesis
to () o u') x1 by (resp. (v %o h}) %1 hb).

e Otherwise, hy *1 hg is one of the following 2-cells,

HYH HYH HYH H@H HelH HeH

and all of them are sources of 3-cells in PNTrans"[f, g]*.

In the case general case where hy is of any length, let b}, h{ € PNTrans|f, g]5 with h{ of length 1
such that hy = hf %1 Y. Then there is a non-empty 3-cell A’ € PNTrans"[f, g]5 of source h{ x1 ha, and
one can take the 3-cell h] x; A’. O

Lemma 4.3.3. Let h be a 2-cell in PNTranslf, g|* whose target is of the form alf(a)lb, with a € C and
beD.
If h is a normal form for PNTrans"[f, g], then one of the following holds:

o The 2-cell h equals the composite | @.
e The 2-cell h is in PNTranstT[f, g]*.

Proof. We reason by induction on the length of h. If h is of length 1, the cells of PNTrans|f, g|5 of
length 1 and of target alf(a)lb are:
|Y &= o |e

Otherwise, let us write h = hy x1 ho, where hp is of length 1. We can apply the induction hypothesis
to hs, which leads us to distinguish three cases:

o If hy =| @, then hy is a 2-cell in PNTrans|f, g]; whose target is of the form alf(a). The only such
cell is the identity, and h = hy =| @.

e If hy and hy are in PNTrans™ T[f, g]*, then h is in PNTrans™* " [f, g]*.

e Lastly, if hy is in PNTrans* " [f, g]* and h; is in PNTrans"[f, g]*, then because of Lemma 4.3.2,
h is the source of a 3-cell in PNTrans"[f, g]* of length 1, which is impossible since, by hypothesis,
h is a normal form for PNTrans"[f, g].

O

Definition 4.3.4. Let PNTrans'[f, g] be the sub-4-polygraph of PNTrans|f, g] containing PNTrans ™t [f, g],
together with the 2-cells @ and @.

In particular a 3-cell in the free (3, 2)-category PNTrans™[f, g]*(?) is in PNTrans™* " [f, g]*(?®) if and
only if its 2-source is in PNTrans™ T [f, g]*(?) too.
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Proposition 4.3.5. For every parallel 3-cells A, B € PNTrans™[f, g]*(?) whose 1-target is of the form
de(a)lo and whose 2-source is a normal form for PNTrans"(f, g], there exists a 4-cell o« : ASB €

PNTrans|[f, g]*(?.

Proof. Given such 3-cells A and B, we use Lemma 4.3.3 to distinguish two cases:

If the source of A and B is| @, the only 3-cell in PNTrans™[f, g]*(®) with source| @ is the identity.
So A = B and we can take o = 14.

Otherwise, the source of A and B lies in PNTrans™ t[f, g5, so A and B lie in PNTrans™t " [f, g]§(2).

Proposition 4.2.3 allows us to conclude. O

4.4 Adjunction of the units 3-cells

In this section, we consider the rewriting system formed by the 3-cells of PNTrans"[f,g]. Since it
is a sub-3-polygraph of PNTrans|f,g] (which 3-terminates by Proposition 3.3.6), PNTrans"[f, g] is
3-terminating. The fact that it is 3-confluent is a consequence of the following more general Lemma:

Lemma 4.4.1. Let A € PNTransl[f, g|5 and B € PNTrans"[f, g]5. There exist 3-cells A’ € PNTrans|f, g|}
and B' € PNTrans"[f, g]* and a 4-cell as g € PNTrans[f,g]Z(z) of the following shape:

é
B %3 B’
A/

Proof. Let us start by the case where (A4, B) is a critical pair of PNTrans[f,gl;. If A and B are in
PFonctl[f, g5, the result holds because PFonct[f, g] is 3-convergent. Otherwise, the only critical pair

left is the following one:
= :
'y

pel P L
b
T_’quN:

Let us now study the case where (A4, B) is a local branching of PNTrans|f, g]3. We distinguish three
cases depending on the shape of the branching:

e If (A, B) is an aspherical branching, then one can take identities for A’ and B’, and oo = 14.

e If (A, B) is a Peiffer branching, let A’ and B’ be the canonical fillers of the confluence diagram of
(A, B), and « be an identity.

e Lastly, if (A, B) is an overlapping branching, let us write (A, B) = (f %1 uAjv %1 g, f %1 uB1v %1 g),
where (A1, By) is a critical pair. Let A}, B] and a; be the cells associated with (A;, By). We then
define A" := f x uAjv*1 g, B := fx uBjv* g and oy 1= f % uav *1 g.

In the general case, we reason by noetherian induction on h = s(A) = s(B), using the 3-termination
of PNTrans[f, g].

42



e If A or B is an identity, then the result holds immediately.

e Otherwise, we write A = Aj x9 As and B = By x3 By, where A; and B are of length 1. We now
build the following diagram:

b Ay Az
’
Bl
Bi||| ®A.,B; Q4,,B] Bi/
’ ’
Al A2

Bs|| @ay.Bs || ®ay,By ||BY
,B/

2

1 1
A7 Al

In this diagram, a4, p, is obtained thanks to our study of the local branchings. The existence of aa, p;
and a4, B, (followed by « AL, Bé) then follows from the induction hypothesis.

Lemma 4.4.2. Let f,g be 2-cells of PNTranslf,g]*, and A: f = g a 3-cell of PNTrans™ [f, g]*. If f
is a normal form for PNTrans"[f, g], then so is g.

Proof. We prove this result by contrapositive. We are going to show that for any A € PNTrans™[f, g]*
and B € PNTrans"[f, g]* two 3-cells of length 1 such that t(A) = s(B), there exists B’ € PNTrans"[f, g]*

of length 1 and of source s(A):
A
=——

Two cases can occur depending on the shape of the branching (A~!, B):
e If it is a Peiffer branching, then the required cell is provided by the canonical filling.
e If it is an overlapping branching, then it is enough to check the underlying critical pair.

It remains to examine those critical pairs:
=R Y=Y
4m MP M m»
v Y Y v

WY Ty Ry BTy
A
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G

O

Lemma 4.4.3. Let A € PNTranslf,g|5. If the source of A is a formal form for PNTrans"[f, g], then
A is in PNTrans™[f, g]5.

Proof. We reason by induction on the length of A:

If A is an identity, then it is in PNTrans™[f, g].
Otherwise, let us write A = Ay xo As, where A; is of length 1. Since the source of A is a normal
form for PNTrans"[f, g], the 3-cell A; can only be in PNTrans™ [f, g]*.

According to Lemma 4.4.2, the normal forms for PNTrans"[f, g] are stable when rewritten by
PNTrans™[f, g]*. Hence the source Ay is a normal form for PNTrans"[f,g], and by induction
hypothesis, A, is in PNTrans™ [f, g]*. By composition, so is A.

O

Lemma 4.4.4. Let A be a 3-cell in PNTrans[f, g]*(?). There exist Cy,Cy € PNTrans"[f, g]; whose
target is a normal form for PNTrans"[f, g], a 3-cell A’ € PNTraner[f,g];@) and a 4-cell o €
PNTrans[f,g]Z(?) of the following shape:

é

Proof. Let us write A = A;l *9 B %o A;l .o.xg A%y B,,, where the A; and B; are in PNTrans|[f, g5.
For every i < n, we chose a 3-cell D; € PNTrans"[f, g]; of source s(A;) = s(B;) and of target a normal
form for PNTrans"[f, g].

According to Lemma 4.4.1, there exist for every i some 3-cells A, B} in PNTrans[f,g|*, D, €
PNTrans"[f, g]; and D/ € PNTrans"[f,g]; and some 4-cells o; and 3; in PNTrans|[f, g]*®) of the

form:
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= =——
!/ 2
o / b b / o
Al B!
The following is a consequence of the target of D; being a normal form for PNTrans"[f, g]:

e Using Lemma 4.4.3, A} and B! are in PNTrans™[f, g]*,

e Using Lemma 4.4.2, the target A; and B} (thus of D} and D) are normal forms for PNTrans"[f, g].

e Since PNTrans"[f, g] is 3-convergent, for any i < n, the cells D" and Dj; are parallel.

Since PNTrans"[f, g] is a sub-polygraph of PFonct|[f, g] which is 3-coherent, there exists, for every

i <n,ad-cell v, : D/ = D] in PFonct|f, g]Z(Q).
We can now conclude the proof of this Lemma by taking C; = D}, Co = D! and A’ = (A})7! o
Bl %o ... x3 (A!)71 %3 B!, and by defining « as the following composite:

D//

n

Al Bl A2 BQ A3 an 1 An Bn
ol D D, D,
(%) Qo
D, o o0 DY D!, Bn
' B B ||
Dy
4 By 4y B; 43 B A4, B,
O

We can now conclude the proof Theorem 3.3.8.
Theorem 3.3.8 (Coherence for pseudonatural transformations). Let C and D be sets, and f,g : C — D
applications.

Let A, B € PNTrans|f, g]g(z) be two parallel 3-cells whose 1-target is of weight 1.
There is a 4-cell o : A=) B € PNTrans|f, g];*.

Proof. Let A,B € PN’I‘rans[f,g];(Q) be two parallel 3-cells whose 1-target is alf(a)lb. We are going to
build a 4-cell & : A= B € PNTrans[f, g]z(z).

According to Lemma 4.4.4, there exist Cy,Cy, C1,Ch, € PNTrans"[f, g]* whose targets are normal
forms for PNTrans"[f,g], A’, B’ € PNTrans'[f,g]*? and a;,as € TPN[f,g]Z(2) such that we have

the diagrams:
A B
e =
G / G G % o
A B’

The 3-cells A and B are parallel, and the 3-cells C; and Cs (resp. C7 and C%) have the same source
and have a normal form for PNTrans"[f, g] as target. Since PNTrans"[f, g] is 3-convergent, this implies
that the 3-cells Cy and Cy (resp. Cf and C%) are parallel. This has two consequences:
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e The critical pairs of PNTrans"[f, g] already appeared in PFonct|[f, g], and we showed that they
admit fillers. Hence there exist cells 51 : C1 = Cs and 32 : C1 = C in PNTrans|f, g]Z(Q).

e The 3-cells A’ and B’ are parallel, their 1-target is still alf(a)|b7 and their 2-source is a normal form
for PNTrans"[f,g]. So by Proposition 4.3.5 there exists a 4-cell v: A'= B’.

To conclude, we define « as the following composite (where we omit the context of the 4-cells):

A
c a c;

ﬁ\
B1 v B2

Cs -1 C!
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5 Transformation of a (4, 2)-polygraph into a (4, 3)-white-polygraph

The proof of Theorem 1.4.9 will occupy the rest of this article. We start with a (4,2)-polygraph 4
satisfying the hypotheses of Theorem 1.4.9. Let S4 be the set of all 2-cells in A% whose target is a
normal form. Then proving Theorem 1.4.9 consists in showing that A is S 4-coherent.

In this section we successively transform A four times, leading to five pointed (4, 3)-white-categories,
namely (A*?),S4), (B¥?),Sg), (C¥®),Se), (D¥®),Sp) and (EW®), S¢), and we show each time that
the new pointed (4, 3)-white-category is stronger than the previous one. A brief description of each
pointed (4, 3)-white-category can be seen in Table 5. Finally in Section 5.5, we perform a number of
Tietze-transformations on the 4-white-polygraph &, leading to a 4-white-polygraph F.

Thanks to Lemma 2.2.8 and Proposition 2.2.14, we know that in order to show that A*() is S 4-
coherent, it is enough to show that F%(®) is Sg-coherent. This will be done in Section 6.

Name Description Commentary
Az
(A*(2)7 S.A) A3
Ay
Asy Weakening of the
(B¥(2), S) As UK exchange law !
A4UL
Ao Weakening
(€3, Sec) Az UA" UK UK of the invertibility
Ay ULU{pa,Aa} of 3-cells
Ay U AP Adjunction of
(D¥®), Sp) As UAP UK UK°P formal inverses
Ay ULU{pa,ra} to 2-cells
Ay U AT Adjunction
(V) Se) | AsUAP UK UK U {nsept of connections
AsULU{pa, \a} U{rs,0/} between 2-cells

Table 5: List of the successive transformations of A.

Example 5.0.5. We have already shown in Section 3 that for every sets C, D and for every applications
f g : C — D, the (4,2)-polygraph PNTrans™ T[f, g] satisfies the hypothesis of Theorem 1.4.9.
In what follows, we will use as a running example the polygraph A = Assoc which consists of one

0-cell, one 1-cell |, one 2-cell ' :| |=|, one 3-cell <F': y = g‘, and one 4-cell <"

V/V

| ¥ =1 |

l\

In particular, Assoc satisfies the 2-Squier condition of depth 2. The 2-category Assoc; is 2-
convergent and its only normal form is the 1-cell |
The corresponding set S 4 is then the set of 2-cells in Assoc) from any 1-cell |--| to |

all

<
7

—7 7\

<

/VY: = | V/ l IVV>’
N| %g | IX‘I | ~ /

;
——

1The sets K and L will be defined in Section 5.1
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5.1 Weakening of the exchange law

We construct dimension by dimension a (4, 2)-white-polygraph B, together with a white-functor F :
BY(2) — A*(2) We then define a subset Sp of B¥(?) and show (Proposition 5.1.4) using F' that (B¥(?), Sp)
is stronger than (A*(?) S ).

In low dimensions, we set B; = A;, for every i < 2, and the functor F' is the identity on generators.

Lemma 5.1.1. The functor F : BY — A* is 2-surjective.
Proof. By construction, A% is the quotient of By by the equivalence relation generated by:
(f %0 v) %i (u' %0 g) = (u*o g) *; (f %0 V')
And F is the canonical projection induced by the quotient. O

In what follows, we suppose chosen a section i : A* — BY of F, which is possible thanks to Lemma
5.1.1.

We extend B into a 3-white-polygraph and F' : BY — A* into a 3-white-functor by setting Bs :=
As U K:

e For every 3-cell A € A3, the source and target of A in BY are respectively s3(A) := i(s4(A)) and
tB(A) == i(tA(A)).

e The set K is the set of 3-cells Ay, .4, of shape:

Afvug

for every strict Peiffer branching (fv,ug), where f:u = u' and g : v = v’ are rewriting steps.
The image of a cell of B3 under F is defined as follows:
e For every strict Peiffer branching (fv,ug), F(Afv,ug) :=1fxog
e For every 3-cell A in Az, F(A) = A.

Lemma 5.1.2. Let f,g € BY. There exists a 3-cell A : f = g in K;V(Q) if and only if the equality
F(f) = F(g) holds in Aj.

Proof. Let f,g € BY. The image of any cell in K;V(Q) by F' is an identity. So if there exists a 3-cell
A:f=gin K;V@), necessarily F(f) = F(g).
Conversely, the set A3 is the quotient of BY by the equivalence relation generated by:

fs(g) x1 t(f)g = s(f)gx1 ft(g),

for f,g € BY. The 3-cells Afy g, where (fu,vg) is a strict Peiffer branching, generate this relation, and
they are in K. Hence the result. O

Lemma 5.1.3. The functor F : BY?) — A% s 3-surjective.

Proof. Let E be the set of 3-cells A € AZ(Q) such that, for every f,g € BY in the preimage of s(A4) and

t(A) under F', there exists a 3-cell B: f = g € B;V(Q) satisfying F/(B) = A. Let us show that £ = Aj.
We already know that E contains the identities thanks to Lemma 5.1.2.

The 3-cells of length 1 in A} are in . Indeed, let A € A} be a 3-cell of length 1, and f, g € BY such
that F'(f) =s(A) et F(g) = t(A). There exist u,v € A}, f',¢' € A5, and A’ € A3 such that

A= f5 (uA'v) % ¢
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Let u, v, f, g be in the preimages respectively of u, v, f’, ¢’ under F' (they exist thanks to Lemma 5.1.1),
and let By == f % (GA'0) %1 g € BSV(Q). By construction, F(B;) = A, which leads to the equalities:

F(s(B1) =F(f)  F(t(B1)) = F(g).

Thus, according to Lemma 5.1.2, there exist 3-cells C; : f = s(B1) € K;V(z) and Cy : t(B1) = g € K;V@).
Let B := C} %2 By %9 C5: by construction, B has the required source and target, and moreover:

F(B) = F(Cl) *9 F(Bl)*g F(CQ) = 1F(f) *9 A*Q 1F(g) = A.

The set E is stable under composition. Indeed let A;, Ay € E such that t(A;) = s(4s2), and f,g € BY
satisfying F'(f) = s(41) and F(g) = t(A42). Since F is 2-surjective, there exists h € BY in the inverse
image of t(A;) under F. Since A; (resp. Ay) is in F, there exists a cell By (resp. Bs) in B;V(Q) such that
F(By) = Ay (resp. F(Bz2) = A3), s(B1) = f (resp. s(Bz2) = h) and t(By) = h (resp. t(Bz) = g). Let
B := By xo By: we get:

S(B) :f F(B) :A1 *9 A2 t(B) =g

The set E is stable under 2-composition. Indeed let A € E and f,g € BY such that F(f) =s(4A~1)

and F(g) = t(A™1). There exists B € BY(?) such that:

sB)=g F(B)=A t(B)=f.
Hence the cell B! satisfies the required property. O

We now extend B into a (4, 2)-white-polygraph and F : B¥® — A*®?) into a 4-white-functor by
setting By = A4 U L:

e For every 3-cell A € A4, the source and target of A in B;V(Q) are respectively s3(A) := i(sA(A))
and tB(A) := i(t4(A)), where i is a chosen section of the application Fs : By ® — AY® (which
exists since F' is 3-surjective). And we set F'(A4) := A.

e For every 3-fold strict Peiffer branching (f, g, h), the set L contains a 4-cell Ay, j, whose shape
depends on the form of the branching (f,g,h). If (f,g,h) = (f'v,g'v,uh’), with (f’,g’) a critical
pair, and b’ : v = v’ then Ay 4, is of the following shape:

—_—
/ /
Iy Aprgv y \
"yY— ) U wh!
g A o h
Ag’v,uh’

where A and B are in K ) And we define F(Afpgn) = =14, xoh'-
If (f,9,h) = (f'v,ug’,uh’), with (g, h) a critical pair, and f :u = ' then Ay 4, is of the following

shape:
‘v
floug’

A

7S
A

where A and B are in K W2 And we define F(Afgn) = 1Ju*0A -

~
h

L

b
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If (f,g,h) = (f'vw,ug’w,uh’w), then Ay g1, is of the following shape, where A and B are in K;V(2):

flow flow
Af’vuq’w UAgwuh’

wé Af/v Tw u’u/h vw,uvh’
U?N g’'w,vh’ i UQN i Af’u uglw/
Let now Sp be the set of all 2-cells in BY whose 1-target is a normal form.

And we define F(Af g ) := 1frugguoh’-

Proposition 5.1.4. The pointed (4,3)-white-category (B¥ (), Sg) is stronger than (A*?),Sy4).

Proof. The functor F' sends normal forms on normal forms. Hence by restriction it induces a 2-functor
F|Sg: B¥@ Sz — A*2) 15,4
Lemmas 5.1.1 and 5.1.3 show that it is k-surjective for every k < 2. Hence we can conclude using

Lemma 2.2.8. O
Example 5.1.5. In the case where A = Assoc, the set K contains in particular the following 3-cells, as-
sociated respectively to the strict Peiffer branchings (7 | | , | | Yand (& | | | , | | | 9):
TV==V 7 VIV===VIY
(E— —
In L, the 4-cell associated to the strict Peiffer branching (%7 | | | , | ¥ | | , | | | ) isthe
following:

Sqi===TL {8
T Y =
o Ty

A e

5.2 Weakening of the invertibility of 3-cells

We construct dimension by dimension a 4-white-polygraph C, together with a 3-white-functor G : C¥3) —
B¥(2). We then define a subset S¢ of C¥) and show (Proposition 5.2.2) using G that (CV®),S¢) is
stronger than (B¥(2), Sp).

In low dimensions, we set C; = B; for i < 2, with the functor G being the identity.

We extend C into a 3-white-polygraph by setting Cs := B3 UB5", where the set Bs” contains, for every
A € B3, a cell denoted by A°P, whose source and target are given by the equalities:

s(A%) =t(4) (A7) =s(4)
And the functor G : C%¥ — B¥(?) is defined as follows for every A € Bs:

G(A)=A  G(AP)=A".
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Lemma 5.2.1. The functor G : C%¥3) — BY(2) s 3-surjective.

Proof. By definition, B;V(z) is the quotient of Cy” by the relations A xg A =1 and Axy A? =1, and G
is the corresponding canonical projection. O

We extend C into a 4-white-polygraph by setting Cy := By U {pa, Aa|A € B3}, where the applications
source and target s,t : C4 — CY’ are defined as follows:

e For A € By, the cell s€(A) (resp. t°(A)) is any cell in the preimage of s5(A) under G, which is
non-empty thanks to Lemma 5.2.1. And we set G(A4) := A.

e For every A € Bs, the cells p4 and A4 have the following shape:

s(A) s(A) t(A) t(A)
2> NS [ NS

And we set G(pa) := 1g(a) and G(A4) := lg(a).
Let S¢ be the set of all 2-cells in C% whose 2-target is a normal form.
Proposition 5.2.2. The pointed (4,3)-white-category (C¥®), S¢) is stronger than (B¥ (), Sp).

Proof. The functor G restricts into a functor G|Se : C¥®) Sz — B¥() S, which is i-surjective for i < 2
thanks to Lemma 5.2.1. Hence we can conclude thanks to Lemma 2.2.8. O

Example 5.2.3. In the case where A = Assoc, let A ='<?. The set C3 contains the following 3-cell:

<7 Y =="

And the following cells lie in C4, where A ='<<"
< << <
U pA HAA

5.3 Adjunction of formal inverses to 2-cells
Let D be the 4-white-polygraph defined as follows:
for every i # 2, D; :=C; Dy :=Cy UCs,

where for every f € Cy, the set Cy contains a cell f with source t(f) and with target s(f). Let Sp be the
set of all 2-cells of the sub-2-white-category C3" of DY whose target is a normal form.

Notation 5.3.1. The application Co — Co extends into an application Cy — C>" which exchanges the
source and targets of the 2-cells.

We denote a 2-cell f by %} it fisin BY, by é if fisin BY, and by é if f is any
cell in CY'.

Proposition 5.3.2. The pointed (4,3)-white-category (DV®), Sp) is stronger than (C¥®), Se).



Proof. Let us show that DY®)[Sp = CWE)Se. Let ¢ : C¥3) — DWE) be the canonical inclusion functor.
Since the only cells added are in dimension 2, ¢ satisfies the hypotheses of Proposition 2.3.8, thus CV is
a sub-4-white-category of D%, which gives us an inclusion C¥®) S, C DVG) 1Sy,

Let us show the reverse inclusion. Let f € D) be an i-cell (i > 2), and suppose that f is in
DY) 1Sp. In particular to(f) and sy(f) are in CY. Since ¢ also satisfies the hypotheses of Proposition

2.3.11, with kg = 2, it is 2-discriminating on D;"(‘n)). Thus f is in C¥®), and in CV®) [ S since its 1-target
is a normal form. O

Example 5.3.3. In the case where A = Assoc, the set D, contains one additional 2-cell:

A=Y

And the following cells are composites in D%:

XN U=
Note that the equality DW®) [Sp = CV3)|Se implies that none of these composites belongs to DY) [Sp.

5.4 Adjunction of connections between 2-cells
Let & be the following 4-white-polygraph:

e Fori1=0,1,2, =D

e Fori=3,E& =D3sU{nsef|f €Ca}.

o Fori=4,& =Dy U{rs,0f|f € Ca}.

The cells 0y, €7, 7y and oy have the following shape:

° Ef:f*lfglt(f) ° 77f51s(f)3f*1f

N S

o Tf: (f %1 ng) *x2 (€f *1 f)é}lf

A=)

® Oy (77f*1 f)*2 (f*1 €f)§>1f.

Sz ACRNTI

\
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Notation 5.4.1. Let us denote by \U the 3-cell € ¢ and (M the 3-cell ny. In a similar fashion, we denote

by [ for oy and @ for 74:
N1 U=

Let R := {of,7}, and R (resp. R™(®)) be the sub-4-white-category (resp. sub-(4,3)-white-
category) of EWE) generated by the cells in R. A 4-cell of length 1 in RY is called an R-rewriting
step.

Let S¢ be the set of all 2-cells of the sub-2-white-category C3" of £5" whose target is a normal form.
Using properties of the rewriting system induced by R¥, we are going to define a functor K : E¥() [Se —
DV Sp.

Lemma 5.4.2. Let a € £} and f € RY of length 1 with the same source. There exist o' € EY and
B € RY of mazimum length 1, such that:

=

E=——)

(07

Proof. The result holds whenever (a, ) is a Peiffer or aspherical branching.

If (o, B) is an overlapping branching, then the source of o must contain an 7y or an €¢;. The only
cells of length 1 in £}" that satisfy this property are those in R%. Hence « is in R™. Thus the branching
(a, B) is one of the following two, and both of them satisfy the required property:

o v

Lemma 5.4.3. The rewriting system generated by R is 4-convergent.

Proof. Using Lemma 5.4.2, the rewriting system generated by R is locally 4-confluent. Moreover, the
cells oy and 7 decrease the length of the 3-cells, hence the 4-termination. O

Let A € £3: we denote by A € &Y its normal form for R. Remark in particular that if A is in DY,
then A = A.

Lemma 5.4.4. Let A be a 3-cell of £ whose target is in C3'.
o If the source of A is in C3', then A is in Dy .

o Otherwise, for every factorization of A into f1 1 f *1 fa, where f is a rewriting step, there exists
a factorisation of A into:

% “ N f Ay 2
AN

Ay
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Proof. We reason by induction on the length of A. If A is of length 0, then the source of A is in C3’, and
A= Aisin DY.

If A is of length n > 0, let us write A = Bj %1 Bs, where Bj is of length 1. We can then apply the
induction hypothesis to By. We distinguish three cases:

o If both the sources of A and By are in C3", then B; is in DY, and so is A= Bj %3 32.

e If the source of A is in CY¥ but not that of By, then B; is of the form g1 1 ¢ *1 g2. There hence
exists a factorisation (g1 *1 f) *1 f *1 g2 of the source of By. Applying the induction hypothesis to
Bs, we deduce the following factorisation of A:

g1 \\\ nf / \ g2
f f f Ay
/ AR

As

In particular, A is the source of an R-rewriting step. Let A’ be its target, which is thus of length
smaller than A. Applying the induction hypothesis to A’, we get that A = A’ is in DY

o There remains the case where the source of A is not an element of Cy'.

In order to treat this last case, let us fix a factorisation f; 1 f x1 f2 of the source of A, where f is of
length 1. We distinguish three cases depending on the form of Bj.

o If By = fi1x [ B, where Bj is a 3-cell of length 1 from f, to go € DY, then we get a
factorisation of the source of B into f; x1 f *1 g2. Let us apply the induction hypothesis to Bs:
there exist A}, A, € €Y and g5 € DY such that:

By = (fi%1 f*1 A7) %2 (fi %1 €5 %1 g5) %2 Ay

Thus A factorises as follows, which is of the required form by setting A; = Bj xo A} and Ay = A):

f . IS~ B
/ f ﬁ A 92\ f2

o If B) = Bj %1 f %1 f2, where B} is a 3-cell of length 1 from f; to g; € DY¥. Then the source of B
factorises into gi x1 f %1 f2. Applying the induction hypothesis to Bs, there exist A}, A} € £ and
1% € DY such that:

By = (g1 %1 f *1 A7) x2 (g1 %1 €5 %1 f3) %2 A

We get the required factorisation of A by setting A; = A} and Ay = (B} %1 f3}) xo Ab.

f
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e Otherwise, we have By = f1 *1 €f %1 f5, with fo = f %1 f3. We then get the required factorisation
of A by setting Ay =1y, and Ay =

f f
N X
By

O

Lemma 5.4.5. Let B € RY, and « be a 4-cell £} of same source. There exist o € EY and ' € R™ of
mazimum length that of 8 such that we have the following square:

=

eSS
&)
Proof. We reason using a double induction on the lengths of 8 and «. If 8 (resp. «) is an identity, then
the result holds by setting o/ = « (resp. 5’ = ).
Otherwise, let us write o = a1 x3 as and 8 = (1 x3 B2, where a; and B are of length 1. We can then
construct the following diagram:

a1 (6%}
B1 B 1
o
g
B2 By 5
af ay

The 4-cells o) and 3] exist thanks to Lemma 5.4.2. We can then apply the induction hypothesis to the
4-cells as and B (resp. o) and f2) and we construct this way the cells o, and 37 (resp. «f and f35).
Lastly, we apply the induction hypothesis to of et 85 in order to construct o and 3. O

Lemma 5.4.6. The application A — A extends into a 1-functor K : E¥®)[Se — DYG) Sy, which is
the identity on objects.

Proof. The application A — A does not change the source or target. Moreover, given a 3-cell A € £ w(3)
if Aisin E¥()[Sg then in particular the source and target of A are in C¥. Thus A is in DY |Sp (Lemma
5.4.4).

Let A, B be 3-cells in &Y (3) which belong to £Y®)[Sg. We just showed that A and B are in DY [Sp,
hence so is A %y B. So A *9 B 3 is a normal form for R which is attainable from A x5 B. Smce R is
4-convergent, this means that Ay B = A x, B. So A — A does indeed define a functor. O

Proposition 5.4.7. The pointed (4, 3)-category (£, Sg) is stronger than (D, Sp).
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Proof. Let us show that K induces a functor K : E¥®3)[Se — DW) [ Sp. Let A, B be 1-cells in E¥G)[Sg,
and suppose A = B. Let us show that K (A) = K(B), that is that there exists a 4-cello/ : AS B € DZV(S).

Since A = B there exists a 4-cell a : ASB € SZV(B). Suppose that a lies in £}Y. Let § € RY be a
cell from A to A. Applying Lemma 5.4.5 to  and 3, we get cells o’ and ' of sources respectively A and
B. Let B’ be their common target. By hypothesis Ais in Dy, and the only cells in £} whose source
is in DY are the cells in DY¥. Thus o’ is in DY, and so is B’. So B’ is a normal form for RY which is
attainable from B. By unicity of the R¥-normal-form, B’ = B, and so ¢ is a cell in DY of source K(A)
and of target K(B), hence K(A) = K(B).

In general if A = B, there exist Ay,..., A, € &Y with A; = A, B, = B and for every i there exist
cells ; : Ag; =) Ag;—1 and B; : Ay — Agiq1 in E)Y. Hence using the previous case K (A1) = ... = K(4,),
that is K(A41) = K(A,).

So K : EWB)[Sg — DWB)[Sp is well defined, and it is 0 and 1-surjective because K is. Hence (£, Sg)
is stronger than (D, Sp). O

Example 5.4.8. In the case where A = Assoc, let A ='7. The set £3 contains the following 3-cells:
€A A

And the set &4 the following 4-cells:

7 7ix

At A Y

5.5 Reversing the presentation of a (4, 3)-white-category
We start by collecting some results on the cells of £.
Lemma 5.5.1. The set & is composed exactly of the following cells:
o For every f € Ag, 3-cells ny and €5.
e For every non-aspherical minimal branching (f,g), a 3-cell Ay 4 of shape:
S f
/ N\

g\ -

And in particular for every non-aspherical minimal branching (f,g), we have A;’fg =Ags.

Proof. If (f, g) is a critical pair: if it was associated to a 3-cell in A then Ay 4 is this corresponding cell.
Otherwise Ay, is in fact the cell A?”; from Section 5.2.

If (f,g) is a strict Peiffer branching, then Ay, is the cell defined in Section 5.1. Otherwise, (g, f) is
a strict Peiffer branching, and we set Ay, := A;fj ' from Section 5.2. O

Lemma 5.5.2. For every minimal non-aspherical branching (f, g, h), there exists a 4-cell Ay 41 € SZV(S)

of the following shape:
—
o SN N
J— Asp
\ Agh / hot \ B,
h g h

A

]



Proof. Let us first start by showing that, for every non-aspherical 3-fold minimal symmetrical branching
b, there exists a representative (f, g, h) of b for which the property holds. If b is an overlapping branching
then, using the fact that A satisfies the 2-Squier condition of depth 2, the cell A, exists for some
representative (f, g, h) of b. Otherwise b is a Peiffer branching, and we conclude using the cells defined
in Section 5.1.

It remains to show that the set of all branchings satisfying the property is closed under the action of
the symmetric group.

o If (f1, fo, f3) satisfies the property, then so does (fs, f2, f1). Indeed, let A := Ay, , r,, and let us
denote its source by s and its target by ¢, all we need to construct is a 4-cell from s°? to t°P. This
is given by the following composite:

g T ———————

_ — op
s°P *92 >‘t ! top *9 A L *9 s°P t™ ko Ps

o If (f1, fa, f3) satisfies the property, then so does (f2, f1, f3). Indeed, given a cell Ay, ¢, r,, we can
construct the following composite:

A 1,J3
£ hf /

f17f2,f3

7
f2Af2 f1
%\ A \ f1 AflfQ/\
A 2, f1
k / ng / )\Afl f2 \ Afg,f.’i \ /
By

Since the transpositions (1 2) and (1 3) generate the symmetric group, the set of all branchings
satisfying the property is closed under the action of the symmetric group. O

We are now going to apply a series of Tietze-transformations to £ in order to mimic a technique
known as reversing. Reversing is a combinatorial tool to study presented monoids [4]. Reversing is
particularly adapted to monoids whose presentation contains no relation of the form su = sv, where s is
a generator and u and v words in the free monoid, and at most one relation of the form su = s'v, for s
and s’ generators. The (4, 2)-polygraph A satisfies those properties, but only up to a dimensional shift:
there are no 3-cell in Ajg of the form f xo g = f x2 h, where f is of length 1 and ¢g and h are in AY, and
there is at most one 3-cell in Aj3 of the form f x3 g = f’ %9 h, where f and f’ are of length 1. Hence we
adapt this method to our higher-dimensional setting.
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Adjunction of 3-cells C; , with its defining 4-cell X;,. For every non-aspherical branching (f, g),
we add a 3-cell Cf 4 of the following shape:

using as defining 4-cell a cell X, whose target is C'y,, and whose source is the composite:

f g

N\
€f \f Ag.y \g/ g’

N\ N\
I g

Adjunction of a superfluous 4-cell Yy ,. We add a 4-cell Y 4 of target A, ¢, parallel to the following
4-cell (where the second step consists in the parallel application of o and o4 ):

g g
7 7
T’f %f Cfvg g/ Eg/
f f
P
1.9
g
nr 7N\ N g 7N\
/ p f Ags g 9 e,
FX ¢ “ "\ ; Ny @
g
N\ N\ X
1 f A, ! 1y
X f N 9.f g N g
f/
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Removal of the superfluous 4-cell X;,. We remove the 4-cell X ,, using the fact that it is parallel
to the following composite:

f/
Xz I
g
7 7
% 1y / Cf,g g Ly /
a 5 ¢ g

Removal of the 3-cell A, ; with its defining 4-cell Yy . This last step is possible because Ay ; is
the target of Yy, and does not appear in its source.

We denote by F the 4-white-polygraph obtained after performing this series of Tietze-transformations
for every non-aspherical branching (f,g), and II : £¥3) — FW®) the 3-white-functor induced by the

Tietze-transformations. We still denote by A, ¢ the composite in }"ZV(S), image by II of Ay, € &4.

Example 5.5.3. In the case where A = Assoc, the cells < and <" respectively associated to the
branchings (%7 | , | ¥)and (| ¥ , 'S¢ |) have been replaced by cells of the following shape:

=X WKn=X
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6 Proof of Theorem 1.4.9

This Section concludes the proof of Theorem 1.4.9. We keep the notations from Section 5. In Section
6.1, we study the 4-cells of the (4, 3)-white-category FWG) and in particular study the consequences of
A satisfying the 2-Squier condition of depth 2.

In Section 6.2, we define a well-founded ordering on N[F}¥], the free commutative monoid on F7".
Using this ordering together with two applications p : 73" — N[F}Y] and w,, : F3" — N[F}"], we proceed
to complete the proof by induction in Section 6.3.

6.1 Local coherence

Definition 6.1.1. We extend the notation Cf , from Section 5.5 by defining, for every local branching
(f.g) of BY, a 3-cell of the form Cy 4 : fx1 9= f' %1 g € FY, where f" and ¢’ are in BY.

e If (f,g) is a minimal overlapping or Peiffer branching, then Cy , is already defined.
If (f, g) is aspherical, that is f = g, then we set Cy ; = ¢;.
e If (f, ¢) is not minimal, then let us write (f,g) = (ufv,ugv), with (f, ) a minimal branching, and

we set Cy g :=uCj ;0.

Definition 6.1.2. We say that a 3-fold local branching (f, g, h) of Ay is coherent if there exists a 4-cell
Cygh € ]:Zv(g) of the following shape, where A and B are 4-cells in F3".
N

g g h\ f/cf )
e N
N2

V4
N\

7 o
K\
Q

/N

/\
\/

Lemma 6.1.3. Every 3-fold local branching of BY is coherent.

Proof. Let (f,g,h) be a minimal local branching. We first treat the case where (f, g, h) is an aspherical
branching. If f = g, then Ct 4 = €y, and the following cell shows that the branching is coherent:

\/\

f,h

f

/|

74
Q

f

3

/XN
g\§

ﬁ&

f/

The case where g = h is symmetrical. Assume now g # f,h and f = h. Then (f,g) is either an
overlapping or a Peiffer branching. In any case there exists either a cell Ay, or Ay in €Y. In the

former case, we can construct the following cell in F," ®
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f ST f
C.f; ! &ngg ’ gqﬂ”\i
A 4 !
\ eg\ l/q g
Hi(pa,,)
N\

§77f’7

In the latter, we can construct the same cell, only replacing II(p4, ) by (A4, ).
Suppose now that (f, g, k) is not aspherical. Using the cell Ay, described in Lemma 5.5.2, we build

the following composite in fZV(3):

<§\
7
\V4

<
/“
=
=
B

N

/
A
AvA
A

=
2

:\g

/,
N/
\

<
=
>
&
z

\
)

no

4

—
=
oy
\a
3
3

/N7

Finally, if (f, g, h) is not aspherical, then there exists a 3-fold minimal branching ( f. 3, 71) of BY and
1-cells u,v € BY such that (f,g,h) = (ufv,ugv,uhv). Then the cell “Cf,g,i#’ shows that (f,g,h) is
coherent. O
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6.2 Orderings on the cells of 7%

Definition 6.2.1. Let E be a set. The set of all finite multi-sets on E is N[E], the free commutative
monoid over E. For every e € E, let v, : N[E] — N be the morphism of monoids that sends e to 1 and
every other elements of F to 0.

If E is equiped with a strict ordering >, we denote by >,, the strict ordering on N[E] defined as
follows: for every f,g € N[E], one has f >,, g if

e [#yg

e For every e € F, if v.(f) < v.(g), then there exists ¢’ > e such that v (f) > ve (g).

Lemma 6.2.2. Let E be a set and a € E. The set of all f € N[E] such that f < a is equal to the set of
all f € N[E] satisfying the following implication for every b € E:

v (f)>0=b<a.

In particular, this set is a sub-monoid of N[E].

Proof. Let f € N[E] such that for every b € E the implication vi(f) > 0 = b < a is verified. Let us
prove that f <,, a. Necessarily v,(f) = 0, otherwise we would have a < a. Thus in particular f # a.
Moreover, let b € E such that v,(f) > vy(a) > 0. By definition of f this implies that b < a, and since
0 =v,(f) <vg(a) =1 we get that f < m,.

Conversely, let f <, a. Let us show by contradiction that v,(f) = 0. If v,(f) # 0, we distinguish
two cases:

e If v, (f) = 1, then since f # a, there exists b # a € E such that v,(f) > 0. Thus because f < a,
there exists ¢ > b € E such that v.(f) < v.(a). So we necessarily have v.(a) > 1, which implies
that ¢ = a. The condition v.(f) < v.(a) thus becomes v, (f) < 1, which contradicts the hypothesis
that v, (f) = 1.

o If v, (f) > 1, then there exists b > a such that v;(a) > v, (f), which is impossible.

Hence necessarily v, (f) = 0.

Let b € E such that v,(f) > 0, and let us show that b < a. We just showed that b # a, and so
vy(f) > vp(a). Thus there exists ¢ > b such that v.(a) > v.(f). In particular this implies v.(a) > 0. So
¢ = a and finally a > b. O

Lemma 6.2.3. Let (E, <) be a set equipped with a strict ordering. The relation >, is compatible with
the monoidal structure on N(E), that is, for every f,f',g e N(E), if f > [/, then f+9>m [ '+ 9.

Proof. Let f, f',g € N(FE), and suppose that f >,, f’. Let us show that f+g >,, f'+g. Firstly, f # [/,

hence f+g# ' +g.
Let e € E such that v.(f + g) < ve(f' + g). Since v, is a morphism of monoids, this implies that
ve(f) < ve(f'). Hence there exists ¢/ > e such that v (f) > ve (f), and so v (f +g) > v (f +9) O

The proof of the following theorem can be found in [1].

Theorem 6.2.4. Let (E,>) be a set equipped with a strict ordering. Then >, is a well-founded ordering
if and only if > is.

Since A is 2-terminating, the set A} is equipped with a well-founded ordering =-. This induces a well
founded ordering =, on N[Aj]. We now define two applications p : 73" — N[A}] and w,, : 3" — N[A]].
Using =,,,, those applications induce well-founded orderings on 53" and F3'. We then show a number
of properties of these applications in preparation for Section 2.2.

Definition 6.2.5. We define an application p : 73" — N[Aj]:
e for every f € FY of length 1, we set p(f) :=s(f) + t(f),

e for every composable fi, fo € F3¥, we set p(f1 x1 f2) := p(f1) + p(f2).
For every f,g € F3', we set f > g if p(f) =, p(g). The relation > is a well-founded ordering of F3".
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Definition 6.2.6. We define an application w,, : 73* — N[A]] by setting:
e For every f € BY of length 1, w,(ns) = s(f).
e For every 3-cell A € F3 and u,v € Aj, if A is not an 1y then w, (uAv) = 0.
e For every fi, fo € F3¥ and A € FY', w,(fi x1 A*1 fa) = wy(A).
o For every A1, Ay € F3', wy(A1 %2 Az) = wy (A1) + wy(A2).

Definition 6.2.7. A product of the form fx; g € F’, where f and g are nonempty cells in BY is called
a cavity. It is a local cavity if f and g are of length 1. Let Cx be the set of all cavities.

Lemma 6.2.8. Let f,g € BY. Suppose f is not an identity and t(f) = s(g). The following inequality
holds:

s(f) > p(9)

Proof. We reason by induction on the length of g. If g is empty, then p(g) =0 < s(f).
Otherwise, let us write g = g1 x1 g2, with g1 of length 1. Then p(g) = p(g1) + p(g2) and by induction
hypothesis p(g2) < s(f *1 g1) = s(f). Moreover we have f : s(f) = s(g1) and f x1 g1 : s(f) = t(q1).

Hence s(f) > p(g1),8(g2),t(g2) and, by Lemma 6.2.2, we get s(f) > p(g1) +s(g2) + t(g2) = p(9)-
O

Lemma 6.2.9. Let f1, f2,91,92 € BY, with f1 and fa non-empty and of same source u. For every 3-cell
A fix1 fo = g1 %1 G2 € FY, the following inequalities hold:

p(s(4)) >u > p(t(4)).
In particular for every cell Cy 4, we have s(Cyq) > t(Cygq).

Proof. Considering the first inequality, we have p(s(4)) = p(f1) + p(g2) > 2u > w.
Considering the second one, using Lemma 6.2.8, we have the inequalities u = s(f1) > p(g1) and
u=s(f2) > p(g2). By 6.2.2, we then have u > p(g1) + p(g2) = p(t(4)). O

Definition 6.2.10. Let h € F3'. A factorisation h = hy *; f1 %1 fo *1 ho of h, with fi, fo € By of
length 1 and hy, he € F3Y is called a cavity-factorisation of h. Thus a cavity-factorisation is represented
as follows:

n NS,

Lemma 6.2.11. Let h € F35" be a 2-cell which is not an identity, and whose source and target are a
normal form for As. Then there exists a cavity-factorisation of h.

Proof. By definition of 53", there exist n € N* and ¢1,..., g2, € BY all not identities, except possibly

g1 OT gan, such that h = g1 %1 go *1 ... %1 Gan—1 *1 G2n.
Let us show that g; and g2, are not identities:

e If g, is an identity, then since h isn’t, either n > 2 or n = 1 and g2, is not an identity. In both
cases go is of length at least 1, and has s(h) as target, which contradicts the fact that s(h) is a
normal form for As.

e The case where go, is an identity is symmetric.

Therefore the 2-cells g; and gs are of length at least 1. So we can write g1 = f1%1 g] and g2 = fa*1 g5,
with f1, fa € BY of length 1. Let hy := g4 and hg := gh *1 G3 %1 g4 *1 - .. ¥1 Gon—1 *1 g2n. We finally get:
h = hy %1 f1 %1 fax1 ho. O

Lemma 6.2.12. Let h € F3¥ be a 2-cell of source and target @, a normal form for As. There exists a
3-cell A: h = 1y such that w,(A) =0.
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Proof. We reason by induction on h using the ordering >. If h is minimal, then h = 1; and we can set
A= 1h-

Otherwise by Lemma 6.2.11 there exists a cavity-factorisation h = hy *1 f1 *1 fo *1 ho of h. Let
Ay :=Cy, 5,0 we have wy(A;) = 0 and by Lemma 6.2.9, s(A;) > t(A4;). Since the ordering is compatible
with composition, we get h > hy x1 t(A;) %1 he. By induction hypothesis, there exists a 3-cell Ay :
hix1 t(A1) %1 ha = 13 € F§" such that w,(A43) = 0.

Let A := (hy %1 Ay *1 ha) %1 As. We have wy(A) = w(hy 1 Ay %1 ho) + w(A2) =w(A;)+0=0. O

Lemma 6.2.13. Let h € F3" of source and target @ a normal form for Az, and A: h = 1,4 € F3". For
every cavity-factorisation h = hy %1 f1%1 fax1 ha, there exists a factorisation of A = (h1*1 A1 %1 ho)*o Ag,
with A1, Ay € F3', and either Ay = Cy, 5, or A1 = f1 %1 1y, *1 f2, with fs3 € BY of length 1.

Proof. We reason by induction on the length of A. If A is of length 0, then there is no cavity-factorisation
of h = 1; and the result holds.

If A is not of length 0, let h = hy %1 fi *x1 fo *x1 ha be a cavity-factorisation of h. Let us write
A = Bx; C, where B is of length 1. If B is not of the required form, then either B = B’ x1 fi %1 f2 %1 ho,
or B = hy %1 fi x1 fa*1 B'. Let us treat the first case, the second being symmetrical. The source of C
admits a cavity-factorisation s(C) = t(B’) x1 fi *1 f2 %1 he. By induction hypothesis, we can factorise C
as follows:

C= (hll *1 A1 *1 h2) *9 C/,

with Al = Cfl’f2 or A1 = f_l *1 Ny *1 f2. Let AQ = (Bi *1 t(Al) *1 hg) *9 CQZ we then have A =
(hl *1 A1 *1 hg) *9 AQ.

hy i fa

/?\ /Al\’

§ A \/’
C/

Lemma 6.2.14. Let h € FY¥ and u € Aj such that u > p(h), u > s(h) and u > t(h). For every 3-cell
A € FY of source h, the inequality uw > wy(A) holds.

ho
—

O

Proof. We reason by induction on the length of A. If A is of length 0, w,(A) = 0 and the result holds.
Otherwise, let us write A = A %9 Ao, with A; of length 1. We distinguish two cases depending on
the shape of A.
o If Ay = hy %1 0y %1 ho, with hy, ho € F3¥ and f € BY of length 1.

If by and hy are empty, then s(As) = f %1 f. Thus p(s(4s)) = 2s(f) + 2t(f) < 4s(f) = 4s(h).
Since s(h) < u, using Lemma 6.2.2, we get that p(s(A4z2)) < u. Applying the induction hypothesis
to Ag, we get wy(A2) < u. Moreover, w,(A) = wy (A1) +w,(A2) =s(f) + w(Asz), and we showed
that w(A2) < v and s(f) = s(h) < u. Thus according to Lemma 6.2.2, we get w,(A4) < u.

Otherwise, suppose for example that h; is not an identity (the case where hs is not an identity being
symmetrical). Then we have v¢(,)(P(h1)) > 0, 50 Vs, (P(h)) > 0. Since p(h) < u, we have by
Lemma 6.2.2 that s(f) = t(h1) < u. Sop(s(Asz)) = p(h1)+p(ha)+2s(f)+2t(f) < p(h)+4s(f) < u.
By induction hypothesis, we thus have w,(As) < u, and finally w, (A) = s(f) + w,(A2) < u.

e Otherwise, we have on the one hand that w,(A;) = 0, and on the other hand that s(As) = t(A4;) <
s(A1) = h <u by Lemma 6.2.9. Thus w,(4) = w,(A2) < .

O

Lemma 6.2.15. Let (f1, f2, f3) be a 3-fold local branching, u € Af, and A,B € Fy two 3-cells such
that there exists a 4-cell:

Chifanto = L1 gy %1 fawo (Cpy gy %1 Cry ) %2 AS Cy, g, %2 B.
Then wy(A), w,(B) < u.
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Proof. Using Lemma 6.2.9, we have p(t(CY, 1,)), P(t(C,.1,)), P(t(Cf, . 15)) < u. Sop(s(A)) =p(t(Cy, 1)+
p(t(cfz,fg)) <uet p(S(B)) = p(t(cfl,fs)) < u, and using 6.2.14, we get Wn(A)7W17(B) <u O

6.3 Partial coherence of FV®)

Proposition 6.3.1. For every 2-cell h € F3’ with source and target 4 a normal form for As, and for
every 3-cells A, B : h= 1; € Fy', there exists a 4-cella : AS B € fZV@).

Proof. We reason by induction on the couple (w,(A) + w,(B), p(h)), using the lexicographic order. If
h =14, then A = B = 1;,. Thus setting a = 14 = 15 shows that the property is verified.

Suppose now that A is not an identity. Using Lemma 6.2.11, there exists a cavity-factorisation h =
hix1 fix1 fax1 he. By Lemma 6.2.13, there exist Ay, Ao, By, By € FY, such that A = (hy %1 Ay %1 ho)xg As
and B = (hy *1 By %1 ha) x2 Ba. Using this Lemma, we distinguish four cases depending on the shape of
Al and Ag.

If Ay =By =CY4 5. Then in particular we have:
s(A2) =s(B2)  wy(A) =wy(A2)  wy(B) =wy,(B2)  t(A1) <s(A),

where the last inequality is a consequence of Lemma 6.2.9. Hence we get p(s(A4z)) = p(h1) +p(t(41)) +
p(h2) < p(h1) + p(s(A1)) + p(h2) = p(h), and finally (w,(A2) + w,(B2),p(s(A2))) < (wyn(A) +
w,(B),h)). Using the induction hypothesis there exists a : Ay = By € ]-"ZV(?’), and by composition we
construct A; +o v : A — B.

If A, = f1«1 nf, x1 fo and By = Cy, r,. We are going to construct the following composite:

hi fl/ \2 ha

_ <:> <:>
hi %1 fi1 %1 0g *1 fox1 ho hix1 Cy, 1, *1 ha
fi 2 <:>h <:>h
h / \ / \ ha ' \/ ’
<:> <:>
(€3]

D,

" NS 5,
| S

According to Lemma 6.1.3, there exists a 4-cell

D,

Chifarto : J1*11py %1 fa 2 (Cpy gy %1 Cyo ) k2 DY Cy, g, %2 D,

with D}, Dy € FI'®). Let us define Dy 1= hy %1 (Cf,. 5, %1 Cfy.,) %2 D)) %1 hay Dy := hy %1 D %1 ha, and
aq = hy x1 Cy, 5.1, *1 ho. The existence of D3 is guaranteed by Lemma 6.2.12, which also proves that
we can choose D3 such that w,(D3) = 0.

In order to construct the 4-cells a; and as, let us show that we can apply the induction hypothesis
to the couples (Ag, Dy %2 D3) and (D x2 D3, Bs). Let v be the common source of f; and fs.

e Using Lemma 6.2.15, w,, (D1 *2 D3) = wy(D1) = w, (D) < v, and so:

Wy (A2) + Wy (D1 %2 D3) < wy(Az) + w(nz) = wy(A) < wy(A) + wy(B).
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e As previously w,(Da x2 D3) = w,(D3) = w,(D5) < v, and so:

Wy (Bz2) +Wy(D2 *2 Ds) < wy(Bz) + w(ns) < wy(B) + wy(A).

If Ay =Cy, 4, and B, = fi*1 Nty *1 fo.  This case is similar to the previous one, only using Cf_llf3 fa
rather than Cy, ¢, f,.

If Ay = fi*x1mp, %1 fo and By = f1 %1 0y, %1 fo.  We are going to construct the following composite:

fi
ha / \2 ha

~ — — ~
hi %1 f1x1 mgy *1 f2 %1 h2 hi*1 f1x1 Mg, *1 f2 %1 b
fi f2 fi 2
hy / \ / \ ha hy / \ / \ ha
A= —1 A= —1 A= —14 A= —1
D, o D,
Ao h f:/ \ / \ / \{2 ho Bs
—_— —_—
K a2 Ds a3 J
\ V J

Let us set ~ ~
Dy := hy x1 f1 %1 fa*1 fax1 np, *1 fax1 b

Dy i=hy %1 f1 %1 0py %1 fa*1 fa*1 fax1 ha.
We then have
(h1 %1 A1 %1 ho) %2 Dy = hy %1 fi %1 0py %1 0p, %1 f2 %1 ha = (h1 %1 Bi %1 ha) x1 Da.

Hence we define o as an identity. Let now D3 be as in Lemma 6.2.12, with w,(D3) = 0, and v be the
common source of f1, fa, f3 and fy. We then have the inequalities:

wy(A2) + wy(D1) + wy(D3) = wy(A2) + v < wy(Az) + wy(Ba) + 2v = wy(A) + wy(B),

Wy, (B2) + wy(D2) + wy(Ds) = wy(B2) +v < wy(B2) + wy(Az) + 2v = w, (A) + w, (B).
Hence we can apply the induction hypothesis to the couples (As, Dy xo D3) and (Ds *2 D3, By), which
provides as and as. O

Proposition 6.3.2. The (4,3)-white-category F¥3) is Sg-coherent.

Proof. Let A, B : f = h € F3¥ whose 1-target is a normal form 4, with f,g € BY.

The 3-cells (h*; A) o €, and (h *; B) %3 €, are parallel, and their target is 14. In particular they
verify the hypothesis of Proposition 6.3.1. So there exists a : (h %1 A) x2 €, = (h %1 B) %2 ¢,. Then the
following composite is the required cell from A to B:
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Mk =
Xh/ N 2l "

Iz
N & -
N~ aNghT e

A\

O

We can now complete the proof of Theorem 1.4.9. Indeed we showed that F¥() is Sg-coherent. Using
Proposition 2.2.14, that means that E¥®) is Sg-coherent, and finally using Lemma 2.2.8 that A*(?) is

S 4-coherent, that is that for every 3-cells A, B € A§(2), whose 1-target is a normal form, there exists a
dcell o : AS B € .AZ(Q).

67



References

(1]
2]

3]

4]

[5]

16]

17l

18]

19]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge university press, 1999.

Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar, pages
1-77. Springer, 1967.

Albert Burroni. Higher-dimensional word problems with applications to equational logic. Theoretical
computer science, 115(1):43-62, 1993.

Patrick Dehornoy. The subword reversing method. International Journal of Algebra and Computu-
tation, 21(1-2):71-118, 2011.

Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of artin monoids.
Compositio Mathematica, 151(05):957-998, 2015.

Yves Guiraud and Philippe Malbos. Higher-dimensional categories with finite derivation type. The-
ory and Applications of Categories, 22(18):420-478, 2009.

Yves Guiraud and Philippe Malbos. Coherence in monoidal track categories. Mathematical Struc-
tures in Computer Science, 22(06):931-969, 2012.

Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity.
Advances in Mathematics, 231(3):2294-2351, 2012.

Gregory Maxwell. Kelly. Coherence theorems for lax algebras and for distributive laws. In Category
seminar, pages 281-375. Springer, 1974.

Gregory Maxwell. Kelly and Saunders MacLane. Closed coherence for a natural transformation. In
Coherence in categories, pages 1-28. Lecture Notes in Math., Vol. 281. Springer, Berlin, 1972.

Roger C Lyndon and Paul E Schupp. Combinatorial group theory. Springer, 2015.

Saunders Mac Lane. Natural associativity and commutativity. Rice University Studies, 49(4):28-46,
1963.

Saunders Mac Lane and Robert Paré. Coherence for bicategories and indexed categories. Journal
of Pure and Applied Algebra, 37(1):59-80, 1985.

Frangois Métayer. Cofibrant objects among higher-dimensional categories. Homology, Homotopy
and Applications, 10(1):181-203, 2008.

Anthony Power. A general coherence result. Journal of Pure and Applied Algebra, 57(2):165-173,
1989.

Craig C. Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems.
Theoretical Computer Science, 131(2):271-294, 1994.

Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure and Applied Algebra,
8(2):149-181, 1976.

Ross Street. The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49(3):283-335,
1987.

Ross Street. Categorical structures. Handbook of algebra, 1:529-577, 1996.

68



