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A coherence theorem for pseudonatural transformations

Maxime LUCAS

August 5, 2015

Abstract

We prove coherence theorems for bicategories, pseudofunctors and pseudonatural transformations.
These theorems boil down to proving the coherence of some free (4, 2)-categories. In the case of
bicategories and pseudofunctors, existing rewriting techniques based on Squier’s Theorem allow us
to conclude. In the case of pseudonatural transformations this approach only proves the coherence
of part of the structure, and we use a new rewriting result to conclude.
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Introduction
A mathematical structure, such as the notion of monoid or algebra, is often defined in terms of some data
satisfying relations. In the case of monoids, the data is a set and a binary application, and the relations
are the associativity and the unit axioms. In category theory, one often considers relations that only hold
up to isomorphism. One of the simplest example of such structure is that of monoidal categories, in which
the product is not associative, but instead there exist isomorphisms αA,B,C : (A⊗B)⊗C → A⊗(B⊗C).
This additional data must also satisfy some relation, known as Mac-Lane’s pentagon:

(A⊗ (B ⊗ C))⊗D
αA,B⊗C,D

//

=

A⊗ ((B ⊗ C)⊗D)

A⊗ αB,C,D

&&

((A⊗B)⊗ C)⊗D

αA,B,C ⊗D
88

αA⊗B,C,D
**

A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗D

44

The intended purpose of this relation is that, between any two bracketings of A1⊗A2⊗. . .⊗An−1⊗An,
there exists an isomorphism constructed from the isomorphisms αA,B,C , and that any two such composites
are equal. This statement was made precise and proved by MacLane in the case of monoidal categories
[11]. In general a coherence theorem contains a description of a certain class of diagrams that are to
commute. Coherence theorems exist for various other structures, e.g. bicategories [12], or V -natural
transformations for a symmetric monoidal closed category V [10].

Coherence results are often a consequence of (arguably more essential [9]) strictification theorems. A
strictification theorem states that a “weak” structure is equivalent to a “strict” (or at least “stricter”) one.
For example any bicategory is biequivalent to a 2-category, and the same is true for pseudofunctors (this
is a consequence of this general strictification result [14]). It does not hold however for pseudonatural
transformations.

Rewriting techniques can also be applied in order to prove coherence theorems [7]. The link between
coherence and rewriting goes back to Squier’s homotopical Theorem [15], and has since been expanded
upon [6]. Squier’s theory is constructive, which means that the coherence conditions can be calculated
from the relations, in a potentially automatic way. It can also be expanded to higher dimensions [8], a
feature that may prove useful when studying weaker structures.

In this article, we prove coherence results for bicategories, pseudofunctors and pseudonatural trans-
formations (see [2] for a definition of all these notions). Let us give an outline of the proof in the case of
categories equipped with an associative tensor product. This proof follows closely that of [7] for monoidal
categories.

The structure is encoded into a free (4, 2)-category Assoc∗(2) generated by a (4, 3)-polygraph Assoc.
Polygraphs are presentations for higher-dimensional categories and were introduced by Burroni [3], and
by Street under the name of computads [16] [17]. In this paper we use Burroni’s terminology, as is
custom in rewriting. The (4, 3)-polygraph Assoc contains one generating 2-cell coding for product,
one generating 3-cell : V coding for associativity and one generating 4-cell
corresponding to MacLane’s pentagon. The coherence result for categories equipped with an associative
product is now reduced to showing that, between every parallel 3-cells A, B in Assoc

∗(2)
3 , there exists

a 4-cell α : A → B in Assoc
∗(2)
4 . A 4-category satisfying this property is said to be 3-coherent. We

then use a result from Guiraud and Malbos [6], which states that for a 3-terminating and 3-confluent
polygraph Σ, if the 4-cells correspond to the critical pairs then Σ∗(2) is 3-coherent. A critical pair is a
minimal overlap of two distinct rewriting steps. The 4-polygraph Assoc satisfies those hypotheses, the
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only critical pair corresponding to MacLane’s pentagon:

This reasoning can be applied to both bicategories and pseudofunctors, however it fails to work in
the case of pseudonatural transformations, because the polygraph PNTrans encoding the structure is
not 3-confluent. In order to adapt the proof, we use Theorem 1.27.

This theorem relies on the property of the rewriting system generated by the 2-cells (instead of the
3-cells). For example in the case of Assoc, the 2-cells form a 2-terminating and 2-confluent rewriting
system. Moreover the only critical pair corresponds to the associativity 3-cell, and the only critical triple
to MacLane’s pentagon:

%9

�&

%9

�)
=

�&

2F

%9

�,

5I

�)

�?

2F

�,

%9

%9

8L

%9

5I 8L

By Theorem 1.27, this implies that between any parallel 3-cells A, B in Assoc
∗(2)
3 , if their 1-target

is a normal form, then there exists a 4-cell α : A→ B in Assoc
∗(2)
4 . This result is slightly weaker than

the previous one because of the additional hypothesis on A and B. However here the 3-cell whose target
is a normal form are those whose target is , that is those that correspond to one composite of coherence
isomorphisms. Thus the coherence result on categories equipped with an associative tensor product still
holds.

In Section 1, we recall some classical definitions and results from rewriting theory, and we enunciate
(without proof) Theorem 1.27. In Section 2, we construct the free categories encoding the structures
we want to study, and prove the coherence Theorems for bicategories (Theorem 2.6) and pseudofunctors
(Theorem 2.13). The proof uses a lot of notions defined in the previous section and relies in particular on
Squier’s Theorem to conclude. There remains to show the coherence of pseudonatural transformations
(Theorem 2.21), which is done in Section 3. To prove Theorem 2.21, we show that a fragment of the
structure of pseudonatural transformations satisfies the hypotheses of Squier’s theorem while an other
satisfies the hypotheses of Theorem 1.27, which is temporarily admitted. The following sections contain
the proof of Theorem 1.27. The first half of the proof consists in applying a series of transformations to
a (4, 3)-polygraph satisfying the hypotheses of Theorem 1.27. In Section 4, we set up the theory behind
these transformations, and the transformations themselves are performed in Section 5. The combinatorics
of the result of these transformations is analysed in Section 6 where we conclude the proof.
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1 Higher-dimensional rewriting
We recall definitions and results from rewriting theory. Section 1.1 is devoted to polygraphs, which
are presentations of higher-dimensional categories. In Section 1.2, we define termination and enunciate
Theorem 1.8 which we will use throughout Sections 2 and 3 in order to prove the 3-termination of
polygraphs. In Section 1.3 we define the notion of branchings and classify them, which allows for a
simple criterion to prove the n-confluence of a polygraph. Finally in Section 1.4, we define the n-Squier
condition, and recall Squier’s homotopical theorem, in a generalized form proven in [6]. We conclude
this section by enunciating Theorem 1.27, whose proof will occupy Sections 4 to 6. Except for Theorem
1.27, the proof of every result in this section can be found in [6].

1.1 Polygraphs
We recall the definition of Polygraphs from [3]. Let Catn be the category of n-categories, and Graphn
the category of n-graphs. The category of n-categories equipped with a cellular extension, noted Cat+

n ,
is the limit of the following diagram:

Cat+
n

//

��

y
Graphn+1

��

Catn // Graphn

where the functor Catn → Graphn forgets the categorical structure and the functor Graphn+1 →
Graphn deletes the top-dimensional cells.

Hence an object of Cat+
n is a couple (C, G) where C is an n-category and G is a graph Cn Sn+1

t
oo
s
oo ,

where s and t must satisfy some compatibility conditions with the source and target operations in C.
Let Rn be the functor from Catn+1 to Cat+

n that sends an (n + 1)-category C on the couple
(Cn, Cn Cn+1oo

oo ). This functor admits a left-adjoint Ln : Cat+
n → Catn+1 (see [13]).

We now define by induction on n the category Poln of n-polygraphs together with a functor Qn :
Poln → Catn.

• The category Pol0 is the category of sets, and Q0 is the identity functor.

• Assume Qn : Poln → Catn is defined. Then Poln+1 is the limit of the following diagram:

Poln+1
//

��

y
Cat+

n

��

Poln Qn
// Catn,

and Qn+1 is the composite

Poln+1
// Cat+

n

Ln
// Catn+1

Definition 1.1. Given an n-polygraph Σ, the n-category Qn(Σ) is noted Σ∗ and is called the free
n-category generated by Σ.

Definition 1.2. An (n, k)-category is an n-category which has every (i + 1)-cell invertible for the
i-composition, for i ≥ k. We note Cat(k)

n the full subcategory of Catn whose objects are the (n, k)-
categories.

In particular Cat(0)
n is the category of n-groupoids, and Cat(n)

n = Catn.
The functor Rn restricts to a functor R(n)

n from Cat
(n)
n+1 to Cat+

n . Once again this functor admits
a left-adjoint L(n)

n : Cat+
n → Cat

(n)
n+1. We define categories Pol(k)

n of (n, k)-polygraphs and functors
Q(k)
n : Pol(k)

n → Cat(k)
n in a similar way to Poln and Qn.
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Definition 1.3. Given an (n, k)-polygraph Σ, the (n, k)-category Q(k)
n (Σ) is noted Σ∗(k) and is called

the free (n, k)-category generated by Σ.

Definition 1.4. Let C be an (n+ 1, k)-category. We note C̄ the (n, k)-category Cn/Cn+1.
Let Σ be an (n+ 1, k)-polygraph. We note Σ̄ the (n, k)-category Σ∗(k) and call it the (n, k)-category

presented by Σ.

1.2 Termination
Definition 1.5. Let Σ be an n-polygraph, and k ≤ n. The binary relation →∗k defined by u →∗k v if
there exists f : u → v in Σ∗k is a preorder on Σ∗k−1 (transitivity is given by composition, and reflexivity
by the units). We say that the n-polygraph Σ is k-terminating if →∗k is a well-founded ordering. We
note →+

k the strict ordering associated to →∗k.

We recall Theorem 4.2.1 from [6], which we will use in order to show the 3-termination of some
polygraphs.

Definition 1.6. Let sOrd be the 2-category with one object, whose 1-cells are partially ordered sets,
whose 2-cells are monotonic functions and which 0-composition is the cartesian product.

Definition 1.7. Let C be a 2-category, X : C2 → sOrd and Y : Cco2 → sOrd two 2-fonctors, and M a
commutative monoid. An (X,Y,M)-derivation on C is given by, for every 2-cell f ∈ C2, an application

d(f) : X(s(f))× Y (t(f))→M,

such that for every 2-cells f1, f2 ∈ C2, every x, y, z and t respectively in X(s(f1)), Y (t(f1)), X(s(f2))
and Y (t(f2)), the following equalities hold:

d(f1 ?1 f2)[x, t] = d(f1)[x, Y (f2)[y]] + d(f2)[X(f1)[x], y]

d(f1 ?0 f2)[(x, z), (y, t)] = d(f1)[x, y] + d(f2)[z, t].

In order to show the 3-termination of some polygraphs, we are going to use the following result
(Theorem 4.2.1 from [6]).

Theorem 1.8. Let Σ be an n-polygraph, X : Σ∗2 → sOrd and Y : (Σ∗2)co → sOrd two 2-functors, andM
be a commutative monoid ordered by a terminating order ≥, and whose addition is strictly monotonous
in both arguments.

Suppose that for every 3-cell A ∈ Σ3, the following inequalities hold:

X(s(A)) ≥ X(t(A)) Y (s(A)) ≥ Y (t(A)) d(s(A)) > d(t(A)).

Then the n-polygraph Σ is 3-terminating.

1.3 Branchings and Confluence
Definition 1.9. Let Σ be an n-polygraph. A k-fold branching of Σ is a k-tuple (f1, f2, . . . , fk) of n-cells
in Σ∗ such that every fi has the same source u, which is called the source of the branching.

The symmetric group Sk acts on the set of all k-fold branchings of Σ. The equivalence class of a
branching (f1, f2, . . . , fk) is noted [f1, f2, . . . , fk]. Such an equivalence class is called a k-fold symmetrical
branching.

Definition 1.10. Let Σ be an n-polygraph. We note N the n-category with exactly one k-cell for every
k < n, whose n-cells are the natural numbers and whose compositions are given by addition.

The length of an n-cell in Σ∗n is given by the functor ` : Σ∗ → N defined by setting `(f) = 1 for every
f ∈ Σn.

An n-cell of length 1 in Σ∗n is also called a rewriting step.
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Definition 1.11. Let Σ be an n-polygraph. A k-fold local branching of Σ is a k-fold branching
(f1, f2, . . . , fk) of Σ where every fi is a rewriting step.

A k-fold local branching (f1, . . . , fk) of source u is a strict aspherical branching if there exists an
integer i such that fi = fi+1. We say that it is an aspherical branching if it is in the equivalence class of
a strict aspherical branching.

A k-fold local branching (f1, . . . , fk) is a strict Peiffer branching if it is not aspherical and there exist
v1, v2 ∈ Σ∗n−1 such that u = v1 ?i v2, an integer m < n and f ′1, . . . , f ′n ∈ Σ∗n such that for every j ≤ m,
fj = f ′j ?i v2 and for every j > m, fj = v1 ?i f

′
j . It is a Peiffer branching if it is in the equivalence class

of a strict Peiffer branching.
A local branching that is neither aspherical nor Peiffer is overlapping.

Given an n-polygraph Σ, one defines an order⊆ on k-fold local branchings by saying that (f1, . . . , fk) ⊆
(u ?i f1 ?i v, . . . u ?i fk ?i v) for every u, v ∈ Σ∗n−1 and every k-fold local branching (f1, . . . , fk).

Definition 1.12. An overlapping branching that is minimal for ⊆ is a critical branching.
A 2-fold (resp. 3-fold) critical branching is also called a critical pair (resp. critical triple).

Definition 1.13. Let Σ be an n-polygraph. A 2-fold branching (f, g) is confluent if there are f ′, g′ ∈ Σ∗n
of the following shape:

f ′

��

f //

g //
g′

@@

Definition 1.14. An n-polygraph Σ is k-confluent if every 2-fold branching of Σk is confluent.

Definition 1.15. An n-polygraph is k-convergent if its underlying k-polygraph is k-terminating and
k-confluent.

The following two propositions are proven in [6].

Proposition 1.16. Let Σ be an n-terminating n-polygraph. It is n-confluent if and only if every 2-fold
critical branching is confluent.

Proposition 1.17. Let Σ be a k-convergent n-polygraph. For every u ∈ Σ∗k−1, there exists a unique
v ∈ Σ∗k−1 such that u→∗k v and v is minimal for →∗k.

Definition 1.18. Let Σ be an n-polygraph. A normal form for Σ is an (n− 1)-cell minimal for →∗n.
If Σ is n-convergent, for every u ∈ Σ∗n−1, the unique normal form v such that u→∗n v is noted û and

is called the normal form of u.

1.4 Coherence
Definition 1.19. Two k-cells are parallel if they have the same source and target.

An (n + 1)-category C is n-coherent if, for each pair (f, g) of parallel n-cells in Cn, there exists an
(n+ 1)-cell A : f → g in Cn+1.

Definition 1.20. Let Σ be an (n + 1)-polygraph, and (f, g) be a local branching of Σn. A filling of
(f, g) is an (n+ 1)-cell A ∈ Σ

∗(n)
n+1 of the shape:

��
A

��

f //

g //

@@

Definition 1.21. An (n+ 1)-polygraph Σ satisfies the n-Squier condition if:
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• it is n-convergent,

• there is a bijective application from Σn+1 to the set of all critical pairs of Σn that associates to
every A ∈ Σn+1, a critical pair b of Σn such that A is a filling of one representative of b.

The following Theorem is due to Squier for n = 2 [15] and was extended to any integer n ≥ 2 by
Guiraud and Malbos [6].

Theorem 1.22. Let Σ be an (n + 1)-polygraph satisfying the n-Squier condition. Then the free (n +
1, n− 1)-category Σ∗(n−1) is n-coherent.

In the proof of this Theorem appears the following result (Lemma 4.3.3 in [6]), that we are going to
extend when n = 2.

Proposition 1.23. Let Σ be an (n+ 1)-polygraph satisfying the n-Squier condition.
For every parallel n-cells f, g ∈ Σ∗n whose target is a normal form, there exists an (n+1)-cell A : f → g

in Σ
∗(n)
n+1.

Let us compare those two last results. Let Σ be an (n+ 1)-polygraph satifying the n-Squier relation,
and let f, g ∈ Σ∗n be two parallel n-cells whose target is a normal form. According to Theorem 1.22,
there exists an (n+ 1)-cell A : f → g in the free (n+ 1, n− 1)-category Σ

∗(n−1)
n+1 . Proposition 1.23 shows

that such an A can be chosen in the free (n+ 1, n)-category Σ
∗(n)
n+1, where the n-cells are not invertible.

Hence for cells f, g ∈ Σ∗n whose target is a normal form, Proposition 1.23 is more precise than Theorem
1.22.

Definition 1.24. Let Σ be an (n+ 1)-polygraph, and (f, g) a local branching in Σn. Depending on the
nature of (f, g), we define the notion of canonical filling of (f, g).

• If (f, g) is an aspherical branching, then its canonical filling is the identity 1f .

• If (f, g) is a Peiffer branching, if (f, g) = (f ′ ?i v1, v2 ?i g
′) (resp. (f, g) = (v1 ?i f

′, g′ ?i v2), then its
canonical filling is 1f ′?ig′ (resp. 1g′?if ′).

• Assume Σ satisfies the n-Squier condition, and let (f, g) be a critical pair. Let A be the (n+1)-cell
associated to [f, g]. If A is a filling of (f, g) then the canonical filling of (f, g) is A. Otherwise, A
is a filling of (g, f) and the canonical filling of (f, g) is A−1.

• Assume the branching (f, g) admits a canonical filler A. Then the canonical filler of (u?i f ?i v, u?i
f ?i v) is u ?i A ?i v.

Definition 1.25. Let Σ be an (n+ 2, n)-polygraph satisfying the n-Squier condition, and (f, g, h) be a
local branching of Σn. A filling of (f, g, h) is an (n+ 2)-cell α ∈ Σ

∗(n)
n+2 of the shape:

//

Af,g
��

A

//

B1

��Af,h
��

f
??

g //

h
��

Ag,h

??

��

α
//

f
??

h
��

//

B2

//

?? ??

//

??

where A,Af,g, Ag,h, Af,h, B1 and B2 are (n+ 1)-cells in Σ
∗(n)
n+1, and Af,g, Ag,h and Af,h are the canonical

fillings of respectively (f, g), (g, h) and (f, h).

Definition 1.26. An (n+ 2, n)-polygraph Σ satisfies the n-Squier condition of rank 2 if:

• it satisfies the n-Squier condition,

• there is a bijective application from Σn+2 to the set of all critical triples that associates to every
α ∈ Σn+2 a critical triple b of Σn such that α is a filling of a representative of b.
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We now enunciate the theorem whose proof will occupy Sections 4 to 6.

Theorem 1.27. Let Σ be a (4, 2)-polygraph satisfying the 2-Squier condition of rank 2.
For every parallel 3-cells A,B ∈ Σ

∗(2)
3 whose 1-target is a normal form, there exists a 4-cell α : A→ B

in the free (4, 2)-category Σ
∗(2)
4 .

This Theorem is to be compared with Proposition 4.4.4 in [8]. There, for every parallel A,B ∈ Σ
∗(1)
3 ,

a 4-cell α is constructed in the free (4, 1)-category Σ
∗(1)
4 . Hence Theorem 1.27 gives a more precise

statement, at the cost of restricting the set of 3-cells allowed.
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2 Application to the coherence of pseudonatural transformations
We now study the coherence problem successively for bicategories, pseudofunctors and pseudonatural
transformations. In Section 2.1, we start by recalling the usual definition of bicategories (see [2]). We
then give an alternative description of bicategories in terms of algebras over a certain (4, 3)-polygraph
BiCat[C], and show that the two definitions coincide. The coherence problem for bicategories is now
reduced to showing the 3-coherence of BiCat[C], and we use the techniques introduced in the previous
section (especially Theorems 1.8 and 1.22) to conclude. In Section 2.2 and 2.3, we apply the same
reasoning to pseudofunctors and pseudonatural transformations. However in the case of pseudonatural
transformations, we get a (4, 3)-polygraph PNTrans[f ,g] which is not 3-confluent, and so we cannot
directly apply Theorem 1.22. The proof of the coherence theorem for pseudonatural transformations will
take place in Section 3 and will make use of Theorem 1.27.

2.1 Coherence for bicategories
Let Cat be the category of (small) categories. We note > the terminal category in Cat. Let sCat be the
3-category with one 0-cell, (small) categories as 1-cells, functors as 2-cells, and natural transformations
as 3-cells, where 0-composition is given by the Cartesian product.

Definition 2.1. A bicategory B is given by:

• A set B0.

• For every a, b ∈ B0, a category B(a, b).

• For every a, b, c ∈ B0, a functor ?a,b,c : B(a, b)× B(b, c)→ B(a, c).

• For every a ∈ B0, a functor Ia : > → B(a, a), that is to say a 1-cell Ia : a→ a.

• For every a, b, c, d ∈ B0, a natural isomorphism αa,b,c,d:

B(a, b)× B(b, c)× B(c, d)
B(a, b)× ?b,c,d

//

?a,b,c × B(c, d)

��

B(a, b)× B(b, d)

?a,b,d

��

αa,b,c,d ,@

B(a, c)× B(c, d)
?a,c,d

// B(a, d)

of components αf,g,h : (f ? g) ? h⇒ f ? (g ? h), for every triple (f, g, h) ∈ B(a, b)×B(b, c)×B(c, d).

• For every a, b ∈ B0, natural isomorphisms Ra,b and La,b:

B(a, b)

Ia × B(a, b)

��

B(a, b)× Ib
// B(a, b)× B(b, b)

?a,b,b

��

Ra,bq�

B(a, a)× B(a, b)
?a,a,b

//

La,b
1E

B(a, b)

of components Lf : Ia ? f ⇒ f and Rf : f ? Ib ⇒ f for every 1-cell f ∈ B(a, b).

This data must also satisfy the following axioms:

• For every composable 2-cells f, g, h, i in B:

9



((f ? g) ? h) ? i
αf,g,h ? i

�2αf?g,h,i

s�
=

(f ? (g ? h)) ? i

αf,g?h,i

��

(f ? g) ? (h ? i)

αf,g,h?i

�+

f ? ((g ? h) ? i)

f ? αg,h,il�
f ? (g ? (h ? i))

(1)

• For every couple (f, g) ∈ B(a, b)× B(b, c):

(f ? Ib) ? g

f ? (Ib ? g) f ? g

αf,Ib,g Rf ? g

f ? Lg

= (2)

Definition 2.2. Let C be a set. Let us describe dimension by dimension a 4-polygraph BiCat[C], so
that bicategories correspond to algebras on BiCat[C], that is to 4-functors from BiCat[C] to sCat (see
Proposition 2.4).

Dimension 0: Let BiCat[C]0 be the set C.

Dimension 1: The set BiCat[C]1 contains, for every a, b ∈ C, a 1-cell a b : a→ b.

Dimension 2: The set BiCat[C]2 contains the following 2-cells:

• For every a, b, c ∈ C, a 2-cell a,b,c : a b c ⇒ a c.

• For every a ∈ C, a 2-cell a : 1a ⇒ aa.

One can recover a 2-cell in BiCat[C]∗2 from its shape and its 1-source. In what follows, we will
therefore omit the indices when the context is clear.

For example, the 2-cell of source a b c d designates the composite (a b b,c,d) ?1 a,b,d.
We will use the same notation for higher-dimensional cells.

Dimension 3: The set BiCat[C]3 contains the following 3-cells:

• For every a, b, c, d ∈ C, a 3-cell a,b,c,d : V of 1-source a b c d.

• For every a, b ∈ C, 3-cells a,b : V and a,b : V of 1-source a b.

10



Dimension 4: The set BiCat[C]4 contains the following 4-cells:

• For every a, b, c, d, e ∈ C, a 4-cell a,b,c,d,e of 1-source a b c d e.

• For every a, b, c ∈ C, a 4-cell a,b,c of 1-source a b c.

Definition 2.3. We note Alg(BiCat) the set of all couples (C,Φ):

• where C is a set,

• where Φ is a functor from BiCat[C] to sCat.

Proposition 2.4. There is a one-to-one correspondence between (small) bicategories and Alg(BiCat).

Proof. The correspondence between a bicategory B and an algebra (C,Φ) over BiCat is given by:

• At the level of sets: C = B0.

• For every a, b ∈ B0, Φ(a b) = B(a, b).

• For every a, b, c ∈ B0, Φ( a,b,c) = ?a,b,c.

• For every a ∈ B0, Φ( a) = Ia.

• For every a, b, c, d ∈ B0, Φ( a,b,c,d) = αa,b,c,d.

• For every a, b ∈ B0, Φ( a,b) = Ra,b and Φ( a,b) = La,b.

• The axioms that a bicategory must satisfy correspond to the fact that Φ is compatible with the
quotient by the 4-cells and .

This correspondence between the structures of bicategory and of algebra over BiCat is summed up
by the following table:
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Bicategory Alg(BiCat)
Sets B0 C 0-cells

Categories B(_,_) 1-cells
Functors ?, I , 2-cells

Natural transformations α, L, R , , 3-cells
Equalities (1) (2) 4-cells

Table 1: Correspondence for bicategories

We are going to show the coherence theorem for bicategories, using Theorem 1.22.

Proposition 2.5. For every set C, the 4-polygraph BiCat[C] 3-terminates.

Proof. In order to apply Theorem 1.8 we construct two functors XC : BiCat[C]∗2 → sOrd and YC :
(BiCat[C]∗2)co → sOrd by setting, for every a, b ∈ C:

XC(a b) = YC(a b) = N∗

and, for every i, j ∈ N∗:

XC( )[i, j] = i+ j, XC( ) = 1, YC( )[i] = (i, i).

We now define an (XC, YC,N)-derivation dC on BiCat[C]∗2 by setting, for every i, j, k ∈ N∗:

dC( )[i, j, k] = i+ k + 1, dC( )[i] = i,

It remains to show that the required inequalities are satisfied. Concerning XC and YC, we have for
every i, j, k ∈ N∗:

XC( )[i, j, k] = i+ j + k ≥ i+ j + k = XC( )[i, j, k]

XC( )[i] = i+ 1 ≥ i = XC()[i] XC( )[i] = i+ 1 ≥ i = XC()[i]

YC( )[i] = (i, i, i) ≥ (i, i, i) = YC( )[i]

YC( )[i] = i ≥ i = YC()[i] YC( )[i] = i ≥ i = YC()[i].

Concerning dC, we have for every i, j, k, l ∈ N∗:

dC( )[i, j, k, l] = 2i+ j + 2l + 2 > i+ j + 2l + 2 = dC( )[i, j, k, l]

dC( )[i, j] = 2j + 2 > 0 = dC()[i, j] dC( )[i, j] = i+ 2j + 1 > 0 = dC()[i, j].

The following Theorem is a rephrasing of MacLane’s coherence Theorem ( [12]) in our setting.

Theorem 2.6. Let C be a set.
The 4-polygraph BiCat[C] is 3-convergent and the free (4, 2)-category BiCat[C]∗(2) is 3-coherent.

Proof. We already know that BiCat[C] is 3-terminating. Using Proposition 1.16 and Theorem 1.22, it
remains to show that every critical pair admits a filling.

There are five families of critical pairs, of sources:

The first two families are filled by the 4-cells and , whereas the last three are filled by 4-
cells ωi ∈ BiCat[C]

∗(2)
4 , which are constructed in a similar fashion as in the case of monoidal categories

(see [7]).
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2.2 Coherence for pseudofunctors
Definition 2.7. A pseudofunctor F is given by:

• Two bicategories B et B′.

• A function F0 : B0 → B′0.

• For every a, b ∈ B0, a functor Fa,b : B(a, b)→ B′(F0(a), F0(b)).

• For every a, b, c ∈ B0, a natural isomorphism φa,b,c:

B(a, b)× B(b, c)
?a,b,c

//

Fa,b × Fb,c

��

B(a, c)

Fa,c

��

φa,b,c
l�

B′(F0(a), F0(b))× B′(F0(b), F0(c))
?′F0(a),F0(b),F0(c)

// B′(F0(a), F0(c))

of components φf,g : F (f ? g)⇒ F (f) ?′ F (g), for every couple (f, g) ∈ B(a, b)× B(b, c).

• For every a ∈ B0, a natural isomorphism ψa:

>
Ia

// B(a, a)

Fa,a

��

ψa
n�

>
I ′F0(a),F0(a)

// B′(F0(a), F0(a))

of components ψa : F (Ia)⇒ I ′F0(a), for every a ∈ B0

This data must satisfy the following axioms:

• For every composable 1-cells f, g and h in B:

F ((f ? g) ? h))
φf?g,h

 4

F (αf,g,h)

k�

=

F (f ? (g ? h))

φf,g?h
��

F (f ? g) ?′ F (h)

φf,g ?
′ F (h)

��
F (f) ?′ F (g ? h)

F (f) ?′ φg,f �3

(F (f) ?′ F (g)) ?′ F (h)

α′F (f),F (g),F (h)
j~

F (f) ?′ (F (g) ?′ F (h))

(3)

• For every 1-cell f : a→ b in B:

F (Ia) ?′ F (f)
ψa ?

′ F (f)
%9

=

I ′F0(a) ?
′ F (f)

L′F (f)

�0
F (Ia ? f)

φIa,f
-A

F (Lf )

&: F (f)

(4)
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• For every 1-cell f : a→ b in B:

F (f) ?′ F (Ib)
F (f) ?′ ψb%9

=

F (f) ?′ I ′F0(b)

R′F (f)

�0
F (f ? Ib)

φf,Ib
-A

F (Rf )

&: F (f)

(5)

Definition 2.8. Let C and D be sets, and f an application from C to D. Let us describe dimension
by dimension a (4, 2)-polygraph PFonct[f ]. We will prove in Proposition 2.11 that pseudofunctors
correspond to algebras over PFonct[f ].

The polygraph PFonct[f ] contains the union of:

• the polygraph BiCat[C], whose cells are noted , , , , , and ,

• the polygraph BiCat[D], whose cells are noted , , , , , and ,

together with the following cells:

Dimension 1: For every a ∈ C, the set PFonct[f ]1 contains a 1-cell a f(a) : a→ f(a).

Dimension 2: For every a, b ∈ C, the set PFonct[f ]2 contains a 2-cell a,b : a b f(b) ⇒ a f(a) f(b).

Dimension 3: The set PFonct[f ]3 contains the following 3-cells:

• For every a, b, c ∈ C, a 3-cell a,b,c : V of 1-source a b c f(c).

• For every a ∈ C, a 3-cell a : V of 1-source a f(a).

Dimension 4: The PFonct[f ]4 contains the following 4-cells:

• For every a, b, c, d ∈ C, a 4-cell a,b,c,d of 1-source a b c d f(d)

%9

�.

�-

0D

%9

1E

• For every a, b ∈ C, 4-cells a,b and a,b of 1-source a b f(b)
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%9

�,

1E

';

%9

�-

0D

';

Definition 2.9. Let Alg(PFonct) be the set of all triples (C,D, f):

• where C and D are sets,

• where f is an application from C to D,

• where Φ is a functor from PFonct[f ] to sCat such that, for every c ∈ Cthe following equality
holds:

Φ(c f(c)) = >

This last condition stems from the fact that the 1-cells c f(c) are just an artefact to keep track of the
function f , but that have no real computational meaning.

Remark 2.10. Let f : C→ D be an application. Since BiCat[C] (resp. BiCat[D]) is a sub-polygraph
of PFonct[f ], every functor Φ : PFonct[f ]→ sCat induces by restriction two functors:

Φ : BiCat[C]→ sCat Φ : BiCat[D]→ sCat

Proposition 2.11. Pseudofunctors between (small) categories are in one to one correspondence with
elements of Alg(PFonct).

Proof. The proof is similar to the case of bicategories, using the following correspondence table:

Pseudofunctors Alg(PFonct)
Source and target B and B′ Φ and Φ Restrictions

Function F0 f Function
Functors F 2-cells

Natural transformations ψ, φ , 3-cells
Equalities (3) (4) (5) 4-cells

Table 2: Correspondence for pseudofunctors

Proposition 2.12. For every sets C,D and every application f : C → D, the polygraph PFonct[f ]
terminates.

Proof. In order to apply Theorem 1.8, we define functorsXf : PFonct[f ]∗2 → sOrd and Yf : (PFonct[f ]∗2)co →
sOrd as extensions of the functors XC, XD, YC and YD from Proposition 2.5, and by setting for every
a ∈ C:

Xf (a f(a)) = Yf (a f(a)) = >,

where > is the terminal ordered set, and for every i ∈ N∗:

Xf ( )[i] = i Yf ( )[i] = 2i+ 1.

We now define an (Xf , Yf ,N)-derivation df on PFonct[f ]∗2 as an extension of dC, by setting for every
i, j, k ∈ N∗:

df ( )[i, j, k] = i+ k df ( )[i] = i df ( )[i, j] = i+ j + 1
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It remains to show that the inequalities required to apply Theorem 1.8 are satisfied. Since Xf (resp.
Yf ) extends XC and XD (resp. YC and YD), the only inequalities that need to be checked are those
corresponding to the 3-cells and . Indeed for every i, j ∈ N∗, we have:

Xf ( ) = 1 ≥ 1 = Xf ( )

Xf ( )[i, j] = i+ j ≥ i+ j = Xf ( )[i, j]

Yf ( )[i] = (2i+ 1, 2i+ 1) ≥ (2i+ 1, 2i+ 1) = Yf ( )[i]

Concerning df , the 3-cells from BiCat[C] have already been checked in Proposition 2.5. For the
other 3-cells, we have, for every i, j, k ∈ N∗:

df ( )[i, j] = 2j + 1 > 0 = df ()[i, j] df ( )[i, j] = i+ 2j > 0 = df ()[i, j]

df ( )[i] = 3i+ 2 > i = df ( )

df ( )[i, j, k] = 2i+ j + 3k + 3 > 2i+ j + 3k + 2 = df ( )[i, j, k].

Theorem 2.13. Let C and D be sets, and f : C→ D an application.
The 4-polygraph PFonct[f ] is 3-confluent and PFonct[f ]∗(2) is 3-coherent.

Proof. We have shown that it is 3-terminating, so using Proposition 1.16 and Theorem 1.22, it remains
to show that every critical pair admits a filler in PFonct[f ]4.

There are thirteen families of critical pairs. Among them, ten come from BiCat[C] or BiCat[D],
and were already dealt with in Theorem 2.6. The remaining three have the following sources:

and they are filled respectively by the 4-cells , and .

2.3 Coherence for pseudonatural transformations
Definition 2.14. A pseudonatural transformation τ consists of the following data:

• Two pseudofunctors F, F ′ : B → B′, where B and B′ are bicategories.

• For every a ∈ B0, a functor τa : > → B′(F0(a), F ′0(a)), that is a 1-cell τa : F0(a)→ F ′0(a) in B′.

• For every a, b ∈ B0, a natural isomorphism σa,b:

B(a, b)
F ′a,b

''

Fa,b

ww

B′(F0(a), F0(b))

B′(F0(a), F0(b))× τb
��

B′(F ′0(a), F ′0(b))

τa × B′(F ′0(a), F ′0(b))
��

B′(F0(a), F0(b))× B′(F0(b), F ′0(b))

?′F0(a),F0(b),F ′0(b) ''

B′(F0(a), F ′0(a))× B′(F ′0(a), F ′0(b))

?′F0(a),F ′0(a),F ′0(b)
ww

B′(F0(a), F ′0(b))

σa,b %9

of components σf : F (f) ?′ τb ⇒ τa ?
′ F ′(f), for every f ∈ B(a, b).
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This data must satisfy the following axioms:

• For every (f, g) ∈ B(a, b)× B(b, c):

τa ?
′ F ′(f ? g)

τa ?
′ φ′f,g

�3

σf?g
,@

=

F (f ? g) ?′ τc

φf,g ?
′ τc
��

τa ?
′ (F ′(f) ?′ F ′(g))

α′τa,F ′(f),F ′(g)

EY

(F (f) ?′ F (g)) ?′ τc

α′F (f),F (g),τc

��

(τa ?
′ F ′(f)) ?′ F ′(g)

σf ?
′ F ′(g)

EY

F (f) ?′ (F (g) ?′ τc)

F (f) ?′ σg �3

(F (f) ?′ τb) ?
′ F ′(g)

α′F (f),τb,F (g)k�
F (f) ?′ (τb ?

′ F ′(g))

(6)

where we inverse the direction of an arrow in order to represent the inverse of the corresponding
2-cell.

• For every a ∈ B0:

F (Ia) ?′ τa

τa ?
′ F ′(Ia)

I ′F0(a) ?
′ τa

τa ?
′ I ′F ′0(a)

τa

σIa

ψa ?
′ τa

τa ?
′ ψ′a

L′τa

R′τa

= (7)

Definition 2.15. Let C and D be sets, and f ,g be applications from C to D. Let us define dimension
by dimension a (4, 2)-polygraph PNTrans[f ,g]. We will see in Proposition 2.18 that pseudonatural
transformations correspond to algebras over PNTrans[f ,g].

The polygraph PNTrans[f ,g] contains the union of the polygraphs PFonct[f ] and PFonct[g]. In
particular, the following cells are in PNTrans[f ,g]:

• the cells , , , , , and coming from BiCat[C],

• the cells , , , , , and coming from BiCat[D],

• the cells , , , , and coming from PFonct[f ],

• the cells , , , , and coming from PFonct[g].

Together with the union of PFonct[f ] and PFonct[g], PNTrans[f ,g] contains the following cells:

Dimension 2: For every a ∈ C, the set PNTrans[f ,g]2 contains a 2-cell a : ag(a) ⇒ a f(a)g(a).
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Dimension 3: For every a, b ∈ C, the set PNTrans[f ,g]3 contains a 3-cell: a,b : V of

1-source a bg(b).

Dimension 4: The set PNTrans[f ,g]4 contains the following 4-cells:

• For every a ∈ C, a 4-cell a of 1-source ag(a)

%9

�%

�0

8L

.B

• For every a, b, c ∈ C, a 4-cell a,b,c of 1-source a b cg(c)

ey %9ey

2F Xl

%9

_s +?

Definition 2.16. Let Alg(PNTrans) be the set of tuples (C,D, f ,g,Φ) :

• where C and D are sets,

• where f ,g : C→ D are applications,

• where Φ is a functor from PNTrans[f ,g] to sCat, such that for every c ∈ C, d ∈ D and 1-cell
: c→ d:

Φ(c d) = >

Remark 2.17. Since PFonct[f ] (resp. PFonct[g]) is a sub-polygraph of PNTrans[f ,g], every functor
Φ : PNTrans[f ,g]→ sCat induces by restriction two functors

Φ : PFonct[f ]→ sCat Φ : PFonct[g]→ sCat

Proposition 2.18. Pseudonatural transformations between pseudofuncteurs are in one to one corre-
spondence with elements of Alg(PNTrans).
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Proof. The proof is similar to that of bicategories, using the following correspondence table:

Pseudonatural transformations Alg(PNTrans)
Source and target F and F ′ Φ and Φ Restrictions

Functors τ 2-cells
Natural transformations σ 3-cells

Equalities (6) (7) 4-cells

Table 3: Correspondence for pseudonatural transformations

This result induces the following classification of the cells of PNTrans, depending on which structure
they come from. Moreover, in the following table, every linoe corresponds to a dimension.

Source bicategory
2-cells
3-cells ,
4-cells

Target bicategory
2-cells
3-cells ,
4-cells

Source pseudofunctor
2-cells
3-cells
4-cells ,

Target pseudofunctor
2-cells
3-cells
4-cells ,

Pseudonatural transformation
2-cells
3-cells
4-cells

Table 4: Classification of the cells of PNTrans

Proposition 2.19. Let f ,g : C → D be two applications. The (4, 3)-polygraph PNTrans[f ,g] 3-
terminates.

Proof. We apply Theorem 1.8. To construct the functors Xf ,g : PNTrans[f, g]∗2 → sOrd and Yf ,g :
(PNTrans[f ,g]∗2)co → sOrd, we extend the functors Xf , Xg, Yf and Yg from Proposition 2.12, by
setting:

Xf ,g( ) = 1

We now define an (Xf ,g, Yf ,g,N)-derivation df ,g of PNTrans[f ,g]∗2 as the extension of df satisfying,
for every i, j ∈ N∗:

df ,g( )[i, j] = i+ j df ,g( )[i] = i

It remains to show that the required inequalities are satisfied. Since Xf ,g (resp. Yf ,g) is an extension
Xf and Xg (resp. Yf and Yg), it only remains to treat the case of the 3-cell . For every i, j ∈ N∗, we
have:

Xf ,g( )[i] = i+ 1 ≥ i+ 1 = Xf ,g( )[i] Yf ,g( )[i] = 2i+ 1 ≥ 2i+ 1 = Yf ,g( )[i]

Concerning df ,g, the 3-cells from PFonct[f ] were already treated in Proposition 2.5. For the others
we have, for every i, j, k ∈ N∗:
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df ,g( )[i, j, k] = 2i+ j + 3k + 2 > 2i+ j + 3k = df ,g( )[i, j, k]

df ,g( ) = 3i+ 1 > i = df ,g( ) df ,g( )[i, j] = 2i+ 3j + 1 > i+ 3j + 1 = df ,g( )[i, j]

Definition 2.20. We define a weight application w as the 1-functor from PNTrans[f ,g]∗1 to N, defined
as follows on PNTrans[f ,g]1:

• for all a, b ∈ C, w(a b) = 1,

• for all a, b ∈ D, w(a b) = 1,

• for all a ∈ C and b ∈ D, w(a b) = 0.

Theorem 2.21 (Coherence for pseudonatural transformations). Let C and D be sets, and f ,g : C→ D
applications.

Let A,B ∈ PNTrans[f ,g]
∗(2)
3 be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell α : A→ B ∈ PNTrans[f ,g]
∗(2)
4 .

Note that the theorem only holds for cells A,B ∈ PNTrans[f ,g]
∗(2)
3 whose 1-target is of weight

1. In the case of Assoc, it corresponds to only considering operations of coarity 1, which are the
ones corresponding to terms. Here the 1-cells of weight 0 blur the picture, but since they have no
computational meaning, the cells whose 1-target is of weight 1 are still those corresponding to terms.

This theorem will be proven in Section 3. Contrary to the case of bicategories and pseudofunctors, we
cannot directly apply Theorem 1.22 to PNTrans[f ,g], because the following critical pair is not confluent:

%9

�.

/C

%9 %9
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3 Proof of the coherence for pseudonatural transformations
In this section we prove Theorem 2.21. We fix for the rest of this section two sets C and D, together
with two applications f ,g : C→ D. Let A,B ∈ PNTrans[f ,g]∗(2) be 3-cells whose 1-target is of weight
1. We want to build a 4-cell α : A→ B ∈ PNTrans[f ,g]∗(2).

The 1-cells of weight 1 are of one of the following forms, with a, a′ ∈ C and b, b′ ∈ D:

aa′ b b′ aa′ f(a′) aa′ g(a′) aa′ f(a′) ag(a) b a f(a) b

In Section 3.1, we show that if the common 1-target of A and B is not of the last form, then they
are generated by a sub-(4, 2)-polygraph PFonct[f ,g] of PNTrans[f ,g]. We then show using Theorem
1.22 that this polygraph is coherent.

There remains to treat the case where the 1-target of A and B is of the last form. We define
two sub-(4, 2)-polygraphs of PNTrans[f ,g]: PNTrans++[f ,g] and PNTrans+[f ,g]. The polygraph
PNTrans++[f ,g] contains all the structure of pseudonatural transformations, except for the axioms
concerning the units and , while PNTrans+[f ,g] is an intermediary between PNTrans++[f ,g] and
PNTrans[f ,g], which contains the 2-cells and . The inclusions between the polygraphs can be seen
as follows:

PNTrans++[f ,g]2 ⊂ PNTrans+[f ,g]2 = PNTrans[f ,g]2

PNTrans++[f ,g]3 = PNTrans+[f ,g]3 ⊂ PNTrans[f ,g]3

In Section 3.2 we show that PNTrans++[f ,g] satisfies the 2-Squier condition of rank 2, which allows
us to apply Theorem 1.27. Since 1-cells of the form a f(a) b are normal forms for PNTrans++[f ,g], this
concludes the case where A and B are in PNTrans++[f ,g].

We then define a sub-polygraph PNTransu[f ,g] of PNTrans[f ,g]. The rewriting system induced
by the 3-cells PNTransu[f ,g] corresponds to simplifying the units out.

Using the properties of this rewriting system, we extend the result of Section 3.2, first to 3-cells A
and B in PNTrans+[f ,g] in Section 3.3, and finally to general A and B whose 1-target is a f(a) b in
Section 3.4, thereby concluding the proof.

3.1 A convergent sub-polygraph of PNTrans[f ,g]

Definition 3.1. Let PFonct[f ,g] be the (4, 2)-polygraph containing every cell of PNTrans[f ,g], except
those corresponding to the pseudonatural transformation. Alternatively, PFonct[f ,g] is the union of
PFonct[f ] and PFonct[g].

Lemma 3.2. For every h ∈ PNTrans[f ,g]∗2, one of the following holds:

• The target of h is of the form
a1 ai f(ai) b1 bj , (8)

where i and j are non-zero integers, the ak are in C and the bk in D.

• The 2-cell h is in PFonct[f ,g]∗2.

Proof. Let us show first that the set of all 1-cells of the form (8) is stable when rewritten byPFonct[f ,g]∗2.
To prove this, we examine the case of every cell of PFonct[f ,g]∗2 of length 1:

a1 ak−1 ak+1 bj : a1 bj ⇒ a1 ak−1 ak+1 bj

a1 ak ak bj : a1 bj ⇒ a1 ak ak bj

a1 bk−1 bk+1 bj : a1 bj ⇒ a1 bk−1 bk+1 bj

a1 bk bk bj : a1 bj ⇒ a1 bk bk bj

a1 ai−1 f(ai) bj : a1 bj ⇒ a1 ai−1 f(ai−1) f(ai) f(an)

Let us now prove the lemma: we reason by induction on the length of h. If h is of length 0, it is an
identity, so h is in PFonct[f ,g]∗.
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If h is of length 1 and h is not in PFonct[f ,g]∗, then h has to be of the form . So its
target is of the form:

a1 ak f(ak)g(ak) b2 bj

which is indeed of the form (8), with b1 = g(ak).
Let now h be of length n > 1. We can write h = h1 ?1 h2, where h2 is of length 1, and h1 is strictly

shorter than h. Let us apply the induction hypothesis to h2. If the target of h2 is of the form (8), then
so is the target of h, since t(h2) = t(h). Otherwise, then h1 ∈ PFonct[f ,g]∗, and we can apply the
induction hypothesis to h2. If h2 also is in PFonct[f ,g]∗, then so is h.

It remains to treat the case where t(h1) is of the form (8) , and h2 is in PFonct[f ,g]∗. But we have
shown that the 1-cells of the form (8) are stable when rewritten by PFonct[f ,g]∗. Thus the target of h2

(which is the target of h) is of the form (8), which concludes the proof.

Lemma 3.3. For every A ∈ PNTrans[f ,g]
∗(2)
3 , one of the following holds:

• The 1-target of A is of the form (8).

• The 3-cell A is in PFonct[f ,g]
∗(2)
3 .

Proof. Let us start by the case where A is a 3-cell of length 1 in PNTrans[f ,g]∗3. If the 1-target of A
is not of the form (8) then, according to Lemma 3.2, the 2-source of A is in PFonct[f ,g]∗2. The only

3-cell in PNTrans[f ,g]3 which is not in PFonct[f ,g]3 is the 3-cell , whose 2-source is not in

PFonct[f ,g]∗2. Thus A is in PFonct[f ,g]∗3.
Suppose now that A = B−1, where B is a 3-cell of PNTrans[f ,g]∗3 of length 1. The 1-target of B is

the same as the one of A. If it is not of the form (8), B is in PFonct[f ,g]
∗(2)
3 , and so is A.

In the general case, A is a composite of 3-cells of one of the two previous forms, and all of them
have the same 1-target as A. Thus if the 1-target of A is not of the form (8), all those 3-cells are in
PFonct[f ,g]

∗(2)
3 , and so is A.

Lemma 3.4. The 4-polygraph PFonct[f ,g] is 3-coherent.

Proof. It is a sub-polygraph of PNTrans[f ,g] which is 3-terminating, therefore it is also 3-terminating.
Moreover, every critical pair in PFonct[f ,g] arises from one either in PFonct[f ] or PFonct[g]. Since
those polygraphs are confluent and satisfy the Squier condition, so does PFonct[f ,g].

Using Theorem 1.22, this means that PFonct[f ,g] is 3-coherent.

Proposition 3.5. Let f ,g : C→ D be two applications.
For every parallel 3-cells A,B ∈ PNTrans[f ,g]∗(2) whose 1-target is not of the form (8), there exists

a 4-cell α : A→ B ∈ PNTrans[f ,g]
∗(2)
4 .

In particular, for every parallel 3-cells A,B ∈ PNTrans[f ,g]∗(2) whose 1-target is of weight 1 and is
not of the form a f(a) b, there exists a 4-cell α : A→ B ∈ PNTrans[f ,g]

∗(2)
4 .

Proof. Let A,B ∈ PNTrans[f ,g]
∗(2)
3 whose 1-target is not of the form (8). We want to build a 4-

cell α : A → B ∈ PNTrans[f ,g]
∗(2)
4 . According to Lemma 3.3, A and B are actually 3-cells in

PFonct[f ,g]
∗(2)
3 . In Lemma 3.4 we showed that PFonct[f ,g] is 3-coherent, hence there exists a 4-cell

α : A→ B ∈ PFonct[f ,g]
∗(2)
4 ⊂ PNTrans[f ,g]

∗(2)
4 .

Moreover, the only 1-cells of weight 1 and of the form (8) are the 1-cells a f(a) b, which proves the
second part of the Proposition.

3.2 A sub-polygraph of PNTrans[f ,g] satifying 2-Squier condition of rank 2

Definition 3.6. Let PNTrans++[f ,g] be the sub-(4, 2)-polygraph of PNTrans[f ,g] containing every
cell from the first column of the table 4.

Lemma 3.7. The (4, 2)-polygraph PNTrans++[f ,g] satisfies the 2-Squier condition of rank 2.
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Proof. The 2-Squier condition of rank 1

Let us start by showing the 2-termination of PNTrans++[f ,g].
We define a functor τ : PNTrans[f ,g]∗1 → N3, where compositions in N3 are given by component-wise

addition, by defining:

• For all a, b ∈ C, τ(a b) = (1, 0, 0).

• For all a ∈ C, τ(a f(a)) = (0, 1, 0)

• For all a ∈ C, τ(ag(a)) = (0, 2, 0)

• For all a, b ∈ D, τ(a b) = (0, 0, 1)

The lexicographic order in N3 induces a noetherian ordering on PNTrans[f ,g]∗1. Moreover the 2-cells
are indeed decreasing for this order:

τ(s( )) = (2, 0, 0) > (1, 0, 0) = τ(t( )) τ(s( )) = (0, 0, 2) > (0, 0, 1) = τ(t( ))

τ(s( )) = (1, 1, 0) > (0, 1, 1) = τ(t( )) τ(s( )) = (1, 2, 0) > (0, 2, 1) = τ(t( ))

τ(s( )) = (0, 2, 0) > (0, 1, 1) = τ(t( ))

The following diagrams show both the 2-confluence of PNTrans++[f ,g] and the correspondence
between critical pairs and 3-cells:

a c d

�-
a b c d

0D

�.

a d

a b d

1E

a c d

�-
a b c d

0D

�.

a d

a b d

1E

a b f(b) f(c)
%9
a f(a) f(b) f(c)

�&
a b c f(c)

8L

�/

a f(a) f(c)

a c f(c)

/C

a bg(b)g(c)
%9
ag(a)g(b)g(c)

�&
a b cg(c)

8L

�/

ag(a)g(c)

a cg(c)

/C

ag(a)g(b)
%9
a f(a)g(a)g(b)

�2
a bg(b)

-A

�1

a f(a)g(b)

a b f(b)g(b)
%9
a f(a) f(b)g(b)

,@
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The 2-Squier condition of rank 2

The following diagrams show the bijection between critical triples and 4-cells.

a c d e
%9
a d e

�(

a c d e
%9

�*
=

ade

�(
a b c d e

3G

%9

�+

a b d e

4H

�*

a e
�?
a b c d e

3G

�+

a c e
%9
a e

a b c e
%9
a b e

6J

a b c e
%9

4H

a b e

6J

a c d e
%9
a d e

�(

a c d e
%9

�*
=

a d e

�(
a b c d e

3G

%9

�+

a b d e

4H

�*

a e
�?
a b c d e

3G

�+

a c e
%9
a e

a b c e
%9
a b e

6J

a b c e
%9

4H

a b e

6J

a c d f(d)
%9
a d f(d)

�/
a b c d f(d)

.B

%9

��

a b d f(d)

-A

�$

a f(a) f(d)

a b c f(c) f(d)

�0

a f(a) f(b) f(d)

EY

a b f(b) f(c) f(d)
%9

��

a b f(b) f(d)

,@

a c d f(d)
%9

�1

a d f(d)

�/
a b c d f(d)

.B

��

= a c f(c) f(d)
%9
a f(a) f(c) f(d)

%9
a f(a) f(d)

a b c f(c) f(d)

�0

)=

a f(a) f(b) f(c) f(d)

-A

%9
a f(a) f(d)

EY

a b f(b) f(c) f(d)
%9

-A
=

a b f(b) f(d)

,@
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a c dg(d)
%9
a dg(d)

�0
a b c dg(d)

.B

%9

��

a b dg(d)

-A

�%

ag(a)g(d)

a b cg(c)g(d)

�0

ag(a)g(b)g(d)

EY

a bg(b)g(c)g(d)
%9

��

a bg(b)g(d)

+?

a c dg(d)
%9

�2

a dg(d)

�0
a b c dg(d)

.B

��

= a cg(c)g(d)
%9
ag(a)g(c)g(d)

%9
ag(a)g(d)

a b cg(c)g(d)

�0

)=

ag(a)g(b)g(c)g(d)

-A

%9
ag(a)g(d)

EY

a bg(b)g(c)g(d)
%9

,@
=

a bg(b)g(d)

+?
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a cg(c)
%9
ag(a)g(c)

%9

=

a f(a)g(a)g(c)
%9
a f(a)g(c)

ag(a)g(b)g(c)

EY

%9
a f(a)g(a)g(b)g(c)

EY

�2
a b cg(c)

9M

%9

�%

a bg(b)g(c)

.B

�0

a f(a)g(b)g(c)

5I

a b f(b)g(b)g(c)
%9

�1

a f(a) f(b)g(b)g(c)

,@

&: a f(a) f(b)g(c)

EY

a b c f(c)g(c)
%9
a b f(b) f(c)g(c)

%9
a b f(b)g(c)

0D

=

��

a cg(c)
%9

�'
=

ag(a)g(c)
%9
a f(a)g(a)g(c)

%9
a f(a)g(c)

a f(a) f(c)g(c)

-A

a b cg(c)

9M

�%

a c f(c)g(c)

)=

a f(a) f(b) f(c)g(c)

EY

%9
a f(a)g(b)g(c)

EY

a b c f(c)g(c)
%9

7K

a b f(b) f(c)g(c)
%9

)=

=

a b f(b)g(c)

0D

Proposition 3.8. For every 3-cells A,B ∈ PNTrans++[f ,g]∗(2) whose 1-target is of the form a f(a) b,
there exists a 4-cell α : A→ B ∈ PNTrans[f ,g]∗(2).

Proof. Thanks to Lemma 3.7, we can apply Theorem 1.27 to PNTrans++[f ,g]∗(2), and there exists a
4-cell α : A → B in PNTrans++[f ,g]∗(2) for every 3-cells A,B ∈ PNTrans++[f ,g]∗(2) whose 1-target
is a normal form. In particular the 1-cells of the form a f(a) b are normal forms.

3.3 Adjunction of the units 2-cells
Definition 3.9. Let PNTransu[f ,g] be the sub-3-polygraph of PNTrans[f ,g] containing the same 1-
and 2-cells, and whose only 3-cells are the ones from the second column of table 4.

A 2-cell h ∈ PNTrans[f ,g]∗2 is said unitary if it is generated by the sub-polygraph of PNTrans[f ,g]
whose only 2-cells are and .
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Lemma 3.10. Let h ∈ PNTrans[f ,g]∗2 whose target is of the form a f(a) b, where a ∈ C and b ∈ D.
If there is a decomposition h = h1 ?1 h2, where h1 ∈ PNTransu[f ,g]∗ and h2 ∈ PNTrans[f ,g]∗ are

not identities, and h1 is a unitary 2-cell, then there is a 3-cell A ∈ PNTransu[f ,g]∗3 of source h which
is not an identity.

Proof. Let us start with the case where h1 is of length 1. We reason by induction on the length of h2. If
h2 is of length 1, since the target of h2 is of the form a f(a) b, h2 is one of the following 2-cells:

Hence h is one of the following 2-cells:

And all of these 2-cells are indeed the sources of 3-cells in PNTransu[f ,g]∗3.
In the general case, let us write h2 = h0 ?1 h

′
2, where h0 is of length 1. Two cases can occur.

• If there exist 1-cells u, u′, v and v′ and 2-cells h′0 : u ⇒ u′ ∈ PNTransu[f ,g]∗ and h′1 : v ⇒ v′ ∈
PNTrans[f ,g]∗ such that h1 = h′1 ?0 u (resp. h1 = u ?0 h

′
1) and h0 = v′ ?0 h

′
0 (resp. h0 = h′0 ?0 v

′).

Then h = (h′1 ?0 h
′
0) ?1 h

′
2 (resp. h = (h′0 ?0 h

′
1) ?1 h

′
2), and we can apply the induction hypothesis

to (h′1 ?0 u
′) ?1 h

′
2 (resp. (u′ ?0 h

′
1) ?1 h

′
2).

• Otherwise, h1 ?1 h0 is one of the following 2-cells,

and all of them are sources of 3-cells in PNTransu[f ,g]∗.

In the case general case where h1 is of any length, let h′1, h′′1 ∈ PNTrans[f ,g]∗2 with h′′1 of length 1
such that h1 = h′1 ?1 h

′′
1 . Then there is a non-empty 3-cell A′ ∈ PNTransu[f ,g]∗3 of source h′′1 ?1 h2, and

one can take the 3-cell h′1 ?1 A
′.

Lemma 3.11. Let h be a 2-cell in PNTrans[f ,g]∗ whose target is of the form a f(a) b, with a ∈ C and
b ∈ D.

If h is a normal form for PNTransu[f ,g], then one of the following holds:

• The 2-cell h equals the composite .

• The 2-cell h is in PNTrans++[f ,g]∗.

Proof. We reason by induction on the length of h. If h is of length 1, the cells of PNTrans[f ,g]∗2 of
length 1 and of target a f(a) b are:

Otherwise, let us write h = h1 ?1 h2, where h1 is of length 1. We can apply the induction hypothesis
to h2, which leads us to distinguish three cases:

• If h2 = , then h1 is a 2-cell in PNTrans[f ,g]∗2 whose target is of the form a f(a). The only such
cell is the identity, and h = h2 = .

• If h1 and h2 are in PNTrans++[f ,g]∗, then h is in PNTrans++[f ,g]∗.

• Lastly, if h2 is in PNTrans++[f ,g]∗ and h1 is in PNTransu[f ,g]∗, then because of Lemma 3.10,
h is the source of a 3-cell in PNTransu[f ,g]∗ of length 1, which is impossible since, by hypothesis,
h is a normal form for PNTransu[f ,g].

Definition 3.12. LetPNTrans+[f ,g] be the sub-3-polygraph ofPNTrans[f ,g] containingPNTrans++[f ,g],
together with the 2-cells and .

In particular a 3-cell in the free (3, 2)-category PNTrans+[f ,g]∗(2) is in PNTrans++[f ,g]∗(2) if and
only if its 2-source is in PNTrans++[f ,g]∗(2) too.
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Proposition 3.13. For every parallel 3-cells A,B ∈ PNTrans+[f ,g]∗(2) whose 1-target is of the form
a f(a) b and whose 2-source is a normal form for PNTransu[f ,g], there exists a 4-cell α : A → B ∈
PNTrans[f ,g]∗(2).

Proof. Given such 3-cells A and B, we use Lemma 3.11 to distinguish two cases:
If the source of A and B is , the only 3-cell in PNTrans+[f ,g]∗(2) with source is the identity.

So A = B and we can take α = 1A.
Otherwise, the source of A and B lies in PNTrans++[f ,g]∗2, so A and B lie in PNTrans++[f ,g]

∗(2)
3 .

Proposition 3.8 allows us to conclude.

3.4 Adjunction of the units 3-cells
In this section, we consider the rewriting system formed by the 3-cells of PNTransu[f ,g]. Since it
is a sub-polygraph of PNTrans[f ,g] (which 3-terminates by Proposition 2.19), PNTransu[f ,g] is 3-
terminating. The fact that it is 3-confluent is a consequence of the following more general Lemma:

Lemma 3.14. Let A ∈ PNTrans[f ,g]∗3 and B ∈ PNTransu[f ,g]∗3. There exist 3-cells A′ ∈ PNTrans[f ,g]∗3
and B′ ∈ PNTransu[f ,g]∗ and a 4-cell αA,B ∈ PNTrans[f ,g]

∗(2)
4 of the following shape:

A %9

B

��

B′

��

αA,B
o�

A′
%9

Proof. Let us start by the case where (A,B) is a critical pair of PNTrans[f ,g]3. If A and B are in
PFonct[f ,g]∗3, the result holds because PFonct[f ,g] is 3-convergent. Otherwise, the only critical pair
left is the following one:

Let us now study the case where (A,B) is a local branching of PNTrans[f ,g]3. We distinguish three
cases depending on the shape of the branching:

• If (A,B) is an aspherical branching, then one can take identities for A′ and B′, and α = 1A.

• If (A,B) is a Peiffer branching, let A′ and B′ be the canonical fillers of the confluence diagram of
(A,B), and α be an identity.

• Lastly, if (A,B) is an overlapping branching, let us write (A,B) = (f ?1 uA1v ?1 g, f ?1 uB1v ?1 g),
where (A1, B1) is a critical pair. Let A′1, B′1 and α1 be the cells associated with (A1, B1). We then
define A′ := f ?1 uA

′
1v ?1 g, B′ := f ?1 uB

′
1v ?1 g and α1 := f ?1 uα1v ?1 g.

In the general case, we reason by noetherian induction on h = s(A) = s(B), using the 3-termination
of PNTrans[f ,g].
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• If A or B is an identity, then the result holds immediately.

• Otherwise, we write A = A1 ?2 A2 and B = B1 ?2 B2, where A1 and B1 are of length 1. We now
build the following diagram:

h
A1 %9

B1

��

αA1,B1

A2 %9
B′1

��

αA2,B′1 B′′1

��A′1 %9

B2

��

αA′1,B2

A′2 %9

B′2��

αA′2,B′2 B′′2

��
A′′1

%9
A′′2

%9

In this diagram, αA1,B1
is obtained thanks to our study of the local branchings. The existence of αA2,B′1

and αA′1,B2
(followed by αA′2,B′2) then follows from the induction hypothesis.

Lemma 3.15. Let f, g be 2-cells of PNTrans[f ,g]∗, and A : f V g a 3-cell of PNTrans+[f ,g]∗. If f
is a normal form for PNTransu[f ,g], then so is g.

Proof. We prove this result by contrapositive. We are going to show that for any A ∈ PNTrans+[f ,g]∗

andB ∈ PNTransu[f ,g]∗ two 3-cells of length 1 such that t(A) = s(B), there existsB′ ∈ PNTransu[f ,g]∗

of length 1 and of source s(A):

B

��

Aey

B′

��

Two cases can occur depending on the shape of the branching (A−1, B):

• If it is a Peiffer branching, then the required cell is provided by the canonical filling.

• If it is an overlapping branching, then it is enough to check the underlying critical pair.

It remains to examine those critical pairs:

��

ey

�� ��

ey

��

�� ��

ey

�� ��

ey

�� ��

ey

�� ��

ey
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��

ey

�� ��

ey

��
��

ey

��
��

ey

��

�� ��

ey

Lemma 3.16. Let A ∈ PNTrans[f ,g]∗3. If the source of A is a formal form for PNTransu[f ,g], then
A is in PNTrans+[f ,g].

Proof. We reason by induction on the length of A:

• If A is an identity, then it is in PNTrans+[f ,g].

• Otherwise, let us write A = A1 ?2 A2, where A1 is of length 1. Since the source of A is a normal
form for PNTransu[f ,g], the 3-cell A1 can only be in PNTrans+[f ,g]∗.

According to Lemma 3.15, the normal forms for PNTransu[f ,g] are stable when rewritten by
PNTrans+[f ,g]∗. Hence the source A2 is a normal form for PNTransu[f ,g], and by induction
hypothesis, A2 is in PNTrans+[f ,g]∗. By composition, so is A.

Lemma 3.17. Let A be a 3-cell in PNTrans[f ,g]∗(2). There exist C1, C2 ∈ PNTransu[f ,g]∗3 whose
target is a normal form for PNTransu[f ,g], a 3-cell A′ ∈ PNTrans+[f ,g]

∗(2)
3 and a 4-cell α ∈

PNTrans[f ,g]
∗(2)
4 of the following shape:

A %9

C1

��

C2

��

α
o�

A′
%9

Proof. Let us write A = A−1
1 ?2 B1 ?2 A

−1
2 . . . ?2 A

−1
n ?2 Bn, where the Ai and Bi are in PNTrans[f ,g]∗3.

For every i ≤ n, we chose a 3-cell Di ∈ PNTransu[f ,g]∗3 of source s(Ai) = s(Bi) and of target a normal
form for PNTransu[f ,g].

According to Lemma 3.14, there exist for every i some 3-cells A′i, B′i in PNTrans[f, g]∗, D′i ∈
PNTransu[f ,g]∗3 and D′′i ∈ PNTransu[f ,g]∗3 and some 4-cells αi and βi in PNTrans[f ,g]∗(2) of the
form:
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Ai %9

Di

��

D′i

��

αi
o�

A′i

%9

Bi %9

Di

��

D′′i

��

βi
o�

B′i

%9

The following is a consequence of the target of Di being a normal form for PNTransu[f ,g]:

• Using Lemma 3.16, A′i and B′i are in PNTrans+[f ,g]∗,

• Using Lemma 3.15, the target A′i and B′i (thus of D′i and D′′i ) are normal forms for PNTransu[f ,g].

• Since PNTransu[f ,g] is 3-convergent, for any i < n, the cells D′′i and D′i+1 are parallel.

Since PNTransu[f ,g] is a sub-polygraph of PFonct[f ,g] which is 3-coherent, there exists, for every
i < n, a 4-cell γi : D′′i → D′i in PFonct[f ,g]

∗(2)
4 .

We can now conclude the proof of this Lemma by taking C1 = D′1, C2 = D′′n and A′ = (A′1)−1 ?2

B′2 ?2 . . . ?2 (A′n)−1 ?2 B
′
n, and by defining α as the following composite:

A1A1 B1B1 A2A2 B2B2 A3A3 Bn−1Bn−1 AnAn BnBn

D′1D
′
1

D′1D
′
1 D′′1D

′′
1

D′2D
′
2

D2D2

D′′2D
′′
2 D′nD

′
n

DnDn

D′′nD
′′
n

A′1A
′
1 B′1B

′
1 A′2A

′
2 B′2B

′
2 A′3A

′
3 B′n−1B′n−1 A′nA

′
n B′nB

′
n

. . .

. . .

· · ·

α1
β1

γ1
α2

β2

αn
βn

Proposition 3.18. For every 3-cells A,B ∈ PNTrans[f ,g]∗(2) whose 1-target is of the form a f(a) b,
there exists a 4-cell α : A→ B ∈ PNTrans[f ,g]∗(2).

Let f ,g : C→ D be two applications.
Suppose that, for every 3-cells A,B ∈ PNTrans+[f ,g]∗(2) such that:

• their 1-target is of the form a f(a) b, with a ∈ C and b ∈ D,

• their 2-source is a normal form for PNTransu[f ,g],

their exists a 4-cell α : A→ B ∈ PNTrans[f ,g]∗(2).
Then Theorem 2.21 holds.

Proof. Let A,B ∈ PNTrans[f ,g]
∗(2)
3 be two parallel 3-cells whose 1-target is a f(a) b. We are going to

build a 4-cell α : A→ B ∈ PNTrans[f ,g]
∗(2)
4 .

According to Lemma 3.17, there exist C1, C2, C
′
1, C

′
2 ∈ PNTransu[f ,g]∗ whose targets are normal

forms for PNTransu[f ,g], A′, B′ ∈ PNTrans+[f ,g]∗(2) and α1, α2 ∈ TPN [f ,g]
∗(2)
4 such that we have

the diagrams:

A %9

C1

��

C ′1

��

α1

o�

A′
%9

B %9

C2

��

C ′2

��

α2

o�

B′
%9
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The 3-cells A and B are parallel, and the 3-cells C1 and C2 (resp. C ′1 and C ′2) have the same source
and have a normal form for PNTransu[f ,g] as target. Since PNTransu[f ,g] is 3-convergent, this implies
that the 3-cells C1 and C2 (resp. C ′1 and C ′2) are parallel. This has two consequences:

• The critical pairs of PNTransu[f ,g] already appeared in PFonct[f ,g], and we showed that they
admit fillers. Hence there exist cells β1 : C1 → C2 and β2 : C ′1 → C ′2 in PNTrans[f ,g]

∗(2)
4 .

• The 3-cells A′ and B′ are parallel, their 1-target is still a f(a) b, and their 2-source is a normal form
for PNTransu[f ,g]. So by Proposition 3.13 there exists a 4-cell γ : A′ → B′.

To conclude, we define α as the following composite (where we omit the context of the 4-cells):

BB

AA

C2C2

C1C1

A′A′

B′B′

C ′2C
′
2

C ′1C
′
1

β1 γ β2

α1

α−1
2

32



4 Partial coherence and transformation of polygraphs
We now go back to the proof of Theorem 1.27. In this Section we prove a series of results in preparation
for Section 5. In order to have general enough results, we start in Section 4.1 by defining the notion of
white-category, together with the associated notion of white-polygraph. The 2-white-categories are also
known as sesquicategories (see [18]). White-categories are strict categories in which the interchange law
between the compositions ?0 and ?i need not hold, for every i > 0. That is, strict n-categories are exactly
the n-white-categories satisfying the additional condition that for every i-cells f and g of 1-sources (resp.
1-targets) u and v (resp. u′ and v′): (f ?0 v) ?i (u′ ?0 g) = (u ?0 g) ?i (f ?0 v).

In Section 4.2, we study injective functors between free white-categories. In particular, we give a
sufficient condition for a morphism of white-polygraphs to yield an injective functor between the white-
categories they generate. This result will be used in Section 5.3.

In Section 4.3, we define a notion of partial coherence for (4, 3)-white-categories. We show a simple
criterion in order to deduce the partial coherence of a (4, 3)-white-category from that of an other one.
This criterion will be used throughout Section 5. We also adapt the notion of Tietze-transformation
from [5] to our setting of partial coherence in white-categories, in preparation for Section 5.5.

4.1 White-categories and White-polygraphs
Definition 4.1. Let n ∈ N. An (n+ 1)-white-category is given by:

• a set C0,

• for every x, y ∈ C0, an n-category C(x, y). We note ?k+1 the k-composition in this category,

• for every z ∈ C0 and every u : x→ y ∈ C1, functors u?0 _ : C(y, z)→ C(x, z) and _?0 u : C(z, x)→
C(z, y), so that for every composable 1-cells u, v ∈ C1, their composite u ?0 v is defined in a unique
way,

• for every x ∈ C0, a 1-cell 1x ∈ C(x, x).

Moreover, this data must satisfy the following axioms:

• For every x ∈ C0, and every y ∈ C0, the functors 1x ?0 _ : C(x, y)→ C(x, y) and _ ?0 1y : C(x, y)→
C(x, y) are identities.

• For every u, v ∈ C1, the following equalities hold:

– u ?0 (v ?0 _) = (u ?0 v) ?0 _,

– u ?0 (_ ?0 v) = (u ?0 _) ?0 v,

– _ ?0 (u ?0 v) = (_ ?0 u) ?0 v,

An (n, k)-white-category is an n-white-category in which every (i + 1)-cell is invertible for the i-
composition, for every i ≥ k.

Definition 4.2. Let C and D be n-white-categories. An n-white-functor is given by:

• an application F0 : C0 → D0,

• for every x, y ∈ C0, a functor Fx,y : C(x, y)→ D(F0(x), F0(y)).

Moreover, this data must satisfy the following axioms:

• for every x ∈ C0, F (1x) = 1F0(x),

• for every z ∈ C0 and u : x→ y ∈ C1, the following equalities hold between functors:

– F (u) ?0 F (_) = F (u ?0 _) : C(y, z)→ D(F0(x), F0(z))

– F (_) ?0 F (u) = F (_ ?0 u) : C(z, x)→ D(F0(z), F0(y))

This makes n-white-categories into a category, that we note WCatn.
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Remark 4.3. Let us define a structure of monoidal category ⊗ on Catn, in such a way that WCatn+1

is the category of categories enriched over (Catn,⊗).
Let C,D be two n-categories. The n-categories C × D0 and C0 ×D are defined as follows:

C × D0 :=
⊔
y∈D0

C, C0 ×D :=
⊔
x∈C0

D

Let C0 × D0 be the n-category whose 0-cells are couples (x, y) ∈ C0 × D0, and whose i-cells are
identities for every i > 0. Let F : C0 × D0 → C × D0 (resp. G : C0 × D0 → C0 × D) be the n-functor
which is the identity on 0-cells.

Then C ⊗ D is the pushout (C × D0)⊕C0×D0
(C0 ×D):

C0 ×D0
F
//

G
�� p

C × D0

��

C0 ×D // C ⊗ D.

The category of n-white-categories equipped with a cellular extension, noted WCat+
n , is the limit of

the following diagram:

WCat+
n

//

��

y
Graphn+1

��

WCatn // Graphn

where the functorWCatn → Graphn forgets the white-categorical structure and the functorGraphn+1 →
Graphn deletes the top-dimensional cells.

Let Rw
n be the functor from WCatn+1 to WCat+

n that sends an (n + 1)-white-category C on the
couple (Cn, Cn Cn+1oo

oo ).

Proposition 4.4. The functor Rw
n admits a left-adjoint Lw

n : WCat+
n →WCatn+1.

Proof. Let (C,Σ) ∈WCat+
n be an n-white-category equipped with a cellular extension. The construction

of Lw
n (C,Σ) is split into three parts:

• First, we define a formal language EΣ.

• Then, we define a typing system TC on EΣ. We note ETΣ the set of all typable expressions of EΣ.

• Finally, we define an equivalence relation ≡∗Σ on ETΣ . The set of (n + 1)-cell of Lw
n (C,Σ) is then

the quotient ETΣ/ ≡∗Σ.

Let EΣ be the formal language consisting of:

• For every 1-cells u, v ∈ C1, and every (n+ 1)-cell A ∈ Σn+1, such that t0(u) = s0(A) and t0(A) =
s0(A), a constant symbol cuAv.

• For every n-cell f ∈ Cn, a constant symbol if .

• For every 0 < i ≤ n, a binary function symbol ?i.

Thus EΣ is the smallest set of expressions containing the constant symbols and such that e ?i f ∈ Σ
whenever e, f ∈ EΣ.

Let TC be the set of all n-spheres of C. For e ∈ EΣ and t ∈ TC , we define e : t (read as "e is of type
t") as the smallest relation satisfying the following axioms:

• For every 1-cells u and v in C1, and every (n + 1)-cell A ∈ Σ, such that t0(u) = s0(A) and
t0(A) = s0(A)

cuAv : (us(A)v, ut(A)v)
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• For every n-cell f ∈ Cn
if : (f, f)

• For every e1, e2 ∈ EΣ and i < n, if e1 : (s1, t1), e2 : (s2, t2) and ti(t1) = si(s2), then

e1 ?i e2 : (s1 ?i s2, t1 ?i t2)

• For every e1, e2 ∈ EΣ, if e1 : (s1, t1), e2 : (s2, t2) and t1 = s2, then

e1 ?n e2 : (s1, t2)

An expression e ∈ EΣ is said to be typable e : (s, t) for some n-sphere (s, t) ∈ TC . Moreover there is only
one such n-sphere, so the operations s(e) := s and t(e) := t are well defined. We note ETΣ be the set of
all typable expressions.

Let ≡Σ be the symmetric relation generated by the following relations on ETΣ :

• For every A,B,C,D ∈ ETΣ , and every i1, i2 ≤ n non-zero distinct natural numbers,

(A ?i1 B) ?i2 (C ?i1 D) ≡Σ (A ?i2 C) ?i1 (B ?i2 D)

• For every A,B,C ∈ ETΣ , and every 0 < i ≤ n,

(A ?i B) ?i C ≡Σ A ?i (B ?i C)

• For every A ∈ ETΣ and f ∈ Cn:

if ?n A ≡Σ A A ?n if ≡Σ A

• For every f1, f2 ∈ Cn and every i < n,

if1 ?i if2 ≡Σ if1?if2

• For every A,A′, B ∈ ETΣ and every 0 < i ≤ n, if A ≡Σ A′, then

A ?i B ≡Σ A′ ?i B

• For every A,B,B′ ∈ ETΣ and every 0 < i ≤ n, if B ≡Σ B′, then

A ?i B ≡Σ A ?i B
′

Let ≡∗Σ be the reflexive closure of ≡Σ. The (n+1)-cells of Lw
n (C,Σ) are given by the quotient ETΣ/ ≡∗Σ.

The i-composition is given by the one of ETΣ , and identities by if .

Definition 4.5. We now define by induction on n the category WPoln of n-polygraphs together with
a functor Qw

n : WPoln →WCatn.

• The category WPol0 is the category of sets, and Qw
0 is the identity functor.

• Assume Qw
n : WPoln →WCatn defined. Then WPoln+1 is the limit of the following diagram:

WPoln+1
//

��

y
WCat+

n

��

WPoln Qw
n

//WCatn,

and Qw
n+1 is the composite

WPoln+1
//WCat+

n

Lw
n
//WCatn+1
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Given an n-white-polygraph Σ, the n-white-category Qw
n (Σ) is noted Σw and is called the free n-

white-category generated by Σ.

Definition 4.6. Let WCat
w(n)
n+1 be the category of (n + 1, n)-white-categories. Once again we have

a functor Rw(n)
n : WCat

w(n)
n+1 → WCat+

n , and we are going to describe its left-adjoint Lw(n)
n+1 . Let

(C,Σ) be an n-white-category together with a cellular extension. To construct Lw(n)
n+1 (C,Σ), we adapt the

construction of the free n-white-categories as follows:

• Let FΣ be the formal language EΣ∪Σ̄, where Σ̄ consists of formal inverses to the elements of Σ
(that is their source and targets are reversed).

• The type system is extended by setting, for every 1-cells u, v in C1 and every (n + 1)-cell A ∈ Σ
such that t0(u) = s0(A) and t0(A) = s0(A):

cuĀv : (ut(A)v, us(A)v).

We note FTΣ the set of all typable expressions for this new typing system.

• We extend ≡Σ into a relation noted ∼=Σ by adding the following relations:

cuAv ?n cuĀv
∼=Σ ius(A)v cuĀv ?n cuAv

∼=Σ iut(A)v

for every u, v in C1 and every (n+ 1)-cell A ∈ Σ, such that t0(u) = s0(A) and t0(A) = s0(A).

We define categories WPol(k)
n of (n, k)-white-polygraphs and functors Qw(k)

n : WPol(k)
n →WCat(k)

n

in a similar way to Pol(k)
n and Q(k)

n .

Definition 4.7. Given an (n, k)-white-polygraph Σ, the (n, k)-white-category Qw(k)
n (Σ) is noted Σw(k)

and is called the free (n, k)-white-category generated by Σ.

4.2 Injective functors between white-categories
An injective morphism between (n, k)-polygraphs does not always induce an injective functor between
the free (n, k)-categories they generate (see Example 4.8). In what follows, we prove some sufficient
conditions so that it may be the case, in the setting of (n, k)-white-categories. This is achieved in
Lemma 4.13. This result will be used in Section 5.3.

To prove this result, we start by studying the more general case of an injective morphism I between
(n, k)-white-categories equipped with a cellular extension. When its image is closed by divisors, we show
a simple sufficient condition so that I induces an injective (n+ 1)-white-functor. We also show that the
image of the (n + 1)-white-functor induced by I is then automatically closed by divisors. Hence this
hypothesis disappears when we go back to morphisms of (n, k)-white-polygraphs. In particular we show
that every injective morphism of n-white-polygraphs induces an injective n-white-functor.

Example 4.8. We are going to define two (2, 1)-polygraphs Σ and Γ, a morphism of polygraphs F : Σ→
Γ which is injective in every dimension, and two distinct 2-cells f, g ∈ Σ∗(1) such that F ∗(1)(f) = F ∗(1)(g).

Let Σ be the following polygraph:

Σ0 = {∗} Σ1 = { : ∗ → ∗} Σ2 := { , : ⇒ }

and Γ:
Γ0 = {∗} Γ1 = { : ∗ → ∗} Γ2 := { , : ⇒ , : → 1∗}

Let F be the inclusion of Σ into Γ.
Let f = and g = . Using the exchange law, the following equality holds in Γ∗(1), where denotes

the inverse of :

F (f) = = = = = = F (g)
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For the rest of this section, we fix two n-white-categories equipped with cellular extensions (C,Σ), (C′,Σ′) ∈
WCat+, and a morphism I : (C,Σ) → (C′,Σ′) ∈ WCat+. That is, I is given by an n-white functor
I : C → C′ together with an application In+1 : Σ→ Σ′ such that the following squares are commute:

Σ
In+1

//

s

��

=

Σ′

s

��

C
I

// C′

Σ
In+1

//

t

��

=

Σ′

t

��

C
I

// C′

We note Iw (resp. Iw(n)) the (n+ 1)-white-functor Lw(I) (resp. Lw(n)(I)). By definition, Iw (resp.
Iw(n)) is induced by an application from ETΣ to ETΣ′ (resp. from FTΣ to FTΣ′), that we again denote by
Iw (resp. Iw(n)).

Using their explicit definitions, the following properties of Iw (resp. Iw(n)) hold:

• Any element of ETΣ (resp. FTΣ ) whose image is an i-composite is an i-composite.

• Any element of ETΣ (resp. FTΣ ) whose image is a an identity is an identity.

• Any element of ETΣ (resp. FTΣ ) whose image is a cu′A′v′ is a cuAv.

• Any element of FTΣ whose image by Iw(n) is a cu′Ā′v′ is a cuĀv.

Lemma 4.9. Assume that the application In+1 is injective, and that I induces an injection on C.
Then the applications Iw : ETΣ → ETΣ′ and I

w(n) : FTΣ → FTΣ′ are injective.

Proof. Let a1, a2 ∈ ETΣ such that Iw(a1) = Iw(a2). We reason by induction on the structure of Iw(a1).
If Iw(a1) = cu′A′v′ , with u′, v′ ∈ C′1 and A′ ∈ Σ′. Then there are u1, v1, u2, v2 ∈ C1 and A1, A2 ∈ Σ

such that a1 = cu1A1v1 and a2 = cu2A2v2 , and so:

I(u1) = I(u2) = u′ In+1(A1) = In+1(A2) = A′ I(v1) = I(v2) = v′.

Since I and In+1 are injective, we get:

u1 = u2 A1 = A2 v1 = v2,

which proves that a = b.
If Iw(a1) = if , with f ′ ∈ C′n. Then there exist f1, f2 ∈ Cn such that:

a1 = if1 a2 = if2 I(f1) = f ′ I(f2) = f.

Since I is injective, f1 = f2, and so a1 = a2.
If Iw(a1) = A′ ?i B

′, with i < n, and A′, B′ ∈ ETΣ′ . Then there exist A1, A2, B1, B2 ∈ ETΣ such that:

a1 = A1 ?i B1 a2 = A2 ?i B2 Iw(A1) = Iw(A2) = A′ Iw(B1) = Iw(B2) = B′.

Using the induction hypothesis, we get that A1 = A2 and B1 = B2, and so a1 = a2.
In the case of Iw(n), we reason as previously, and we have one more case to check: if Iw(n)(a1) =

cu′Ā′v′ , with u′, v′ ∈ C′1 and A′ ∈ Σ′. Then there are u1, v1, u2, v2 ∈ C1 and A1, A2 ∈ Σ such that
a1 = cu1Ā1v1 and a2 = cu2Ā2v2 , and so:

I(u1) = I(u2) = u′ In+1(A1) = In+1(A2) = A′ I(v1) = I(v2) = v′.

Using the injectivity of I and In+1, we get:

u1 = u2 A1 = A2 v1 = v2,

and finally a1 = a2.
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Definition 4.10. Let C be an n-white-category, and E be a subset of Cn. We say that E is closed by
divisors if, for any f ∈ E, if f = f1 ?i f2, then f1 and f2 are in E.

Lemma 4.11. Assume the image of I in Cn is closed by divisors, and that I and In+1 are injective.
Then, for every a′, b′ ∈ ETΣ′ such that a′ ≡Σ′ b

′, and for every a ∈ ETΣ such that Iw(a) = a′, there
exists b ∈ ETΣ such that

Iw(b) = b′ a ≡Σ b.

Assume moreover that the application In+1 is bijective and that I is bijective on the 1-cells of C.
Then, for every a′, b′ ∈ FTΣ′ such that a′ ∼=Σ′ b

′, and for every a ∈ FTΣ such that Iw(n)(a) = a′, there
exists b ∈ FTΣ such that

Iw(n)(b) = b′ a ∼=Σ b

.

Proof. To show the result on Iw we reason by induction on the structure of a′.
If there exist A′, B′, C ′, D′ ∈ ETΣ′ , 0 < i1 < i2 ≤ n and a ∈ ETΣ such that:

a′ = (A′ ?i1 B
′) ?i2 (C ′ ?i1 D

′) b′ = (A′ ?i2 C
′) ?i1 (B′ ?i2 D

′) Iw(a) = a′,

then, a = (A?i1 B) ?i2 (C ?i1 D), with A,B,C,D ∈ ETΣ . Let b := (A?i2 C) ?i1 (B ?i2 D): by construction,
we have Iw(b) = b′ and a ≡Σ b. The case where the roles of a′ and b′ are reversed is symmetrical.

If there exist A′, B′, C ′ ∈ ETΣ′ , 0 < i ≤ n and a ∈ ETΣ such that:

a′ = (A′ ?i B
′) ?i C

′ b′ = A′ ?i (B′ ?i C
′) Iw(a) = a′,

then, a = (A ?i B) ?i C, with A,B,C ∈ ETΣ . Let b := A ?i (B ?i C): By construction, we have Iw(b) = b′

and a ≡Σ b. The case where the roles of a′ and b′ are reversed is symmetrical.
If there exist A′ ∈ ETΣ , f ′ ∈ C′n and a ∈ ETΣ such that

a′ = if ′ ?n A
′ b′ = A′ Iw(a) = a′,

then a = if ?nA, with f ∈ Cn and A ∈ ETΣ . Let b := A′: by construction, we have Iw(b) = b′ and a ≡Σ b.
If there exist A′ ∈ ETΣ , f ′ ∈ C′n and a ∈ ETΣ such that

a′ = A′ b′ = if ′ ?n A
′ Iw(a) = a′,

let b := is(A) ?n a. Since b′ is well typed, we have f ′ = s(A′), hence I(s(A)) = s(Iw(A)) = s(A′) = f ′,
and so Iw(b) = b′ and a ≡Σ b. The case of the right-unit is symmetrical.

If there are f ′1, f ′2 ∈ C′n, i < n and a ∈ ETΣ such that:

a′ = if ′1 ?i if ′2 b′ = if ′1?if ′2 Iw(a) = a′,

then a = if1 ?i if2 , with f1, f2 ∈ Cn. Let b := if1?if2 : by construction, we have Iw(b) = b′ and a ≡Σ b.
If there are f ′1, f ′2 ∈ C′n, i < n and a ∈ ETΣ such that:

a′ = if ′1?if ′2 b′ = if ′1 ?i if ′2 Iw(a) = a′

then a = if , with f ∈ Cn. Since the image of I in Cn is closed by divisors, there exist f1, f2 ∈ Cn such
that

I(f1) = f ′1 I(f2) = f ′2 f = f1 ?i f2.

Let us define b′ := if1 ?i if2 : By construction, we have Iw(b) = b′ and a ≡Σ b.
If there are A′1, A′2, B′ ∈ ETΣ′ , i ≤ n and a ∈ ETΣ such that:

a′ = A′1 ?i B
′ A′1 ≡Σ′ A

′
2 b′ = A′2 ?i B

′ Iw(a) = a′

then a = A1 ?i B, with A1, B ∈ ETΣ . Using the induction hypothesis, there exist A2 ∈ ETΣ such that
Iw(A2) = A′2 and A1 ≡Σ A2. Let us define b := A2 ?i B: by construction, we have Iw(b) = b′ and
a ≡Σ b. The last case is symmetric.
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In the case of Iw(n), we reason as previously, and we have two more cases to check. If there exist
u′, v′ ∈ C′1, A ∈ Σ′ and a ∈ FTΣ such that:

a′ = cu′A′v′ ?n cu′Ā′v′ b′ = iu′s(A′)v′ Iw(n)(a) = a′

then a = cu1A1v2 ?n cu2Ā2v2 , with u1, u2, v1, v2 ∈ C1 and A1, A2 ∈ Σ such that:

I(u1) = I(u2) = u′ I(v1) = I(v2) = v′ In+1(A1) = In+1(A2) = A.

Let b := iu1s(A1)v1 . Since I and In+1 are injective, we have Iw(b) = b′ and a ∼=Σ b.
If there exist u′, v′ ∈ C′1, A ∈ Σ′ and a ∈ FTΣ such that

a′ = iu′s(A′)v′ b′ = cu′A′v′ ?n cu′Ā′v′ Iw(n)(a) = a′

Then a = if , with f ∈ Cn. Let b′ := cuAv ?i cuĀv, with u = I−1(u′), v = I−1(v′) and A = I−1
n+1(A′): by

construction, we have Iw(b) = b′ and a ∼=Σ b. The final case is symmetrical.

Lemma 4.12. Assume that In+1 and I are injective, and that the image of I in Cn is closed by divisors.
Then the functor Iw : Lw(C,Σ)→ Lw(C′,Σ′) is injective, and its image is closed by divisors.

Assume moreover that In+1 is bijective, and that I is bijective on the 1-cells of C. Then the functor
Iw(n) : Lw(n)(C,Σ)→ Lw(n)(C′,Σ′) is injective and its image is closed by divisors.

Proof. Let f1, f2 ∈ Lw(C,Σ) and a1, a2 ∈ ETΣ such that:

Iw(f1) = Iw(f2) [a1] = f1 [a2] = f2.

Then [Iw(a1)] = [Iw(a2)], that is Iw(a1) ≡∗Σ′ Iw(a2). Hence by definition, there exist n > 0 and
t′1, . . . , t

′
n ∈ ETΣ′ such that:

t′1 = Iw(a1) t′i ≡Σ′ t
′
i+1 t′n = Iw(a2).

Applying Lemma 4.11 successively, we get t1, . . . , tn ∈ ETΣ′ such that:

t1 = a1 ti ≡Σ ti+1 Iw(ti) = t′i.

In particular a1 ≡∗Σ tn and Iw(tn) = t′n = Iw(a2). Using Lemma 4.9, this implies that tn = a2, and so
a1 ≡∗Σ a2, which proves that f1 = [a1] = [a2] = f2.

It remains to show that the image of Iw is closed by divisors. Let f ′, f ′1, f ′2 ∈ Lw(C′,Σ′) and i ≤ n
such that f ′ = f ′1 ?i f

′
2, and assume that there is an f ∈ Lw(C′,Σ′) such that Iw(f) = f ′. Let a ∈ ETΣ

and b′1, b′2 ∈ ETΣ′ such that:
[a] = f [b′1] = f ′1 [b′2] = f ′2.

In particular, we have Iw(a) ≡∗Σ′ b′1 ?i b′2. Using both Lemmas 4.9 and 4.11 as before, we get an
element b ∈ ETΣ such that:

a ≡∗Σ b Iw(b) = b′1 ?i b
′
2.

Since the image of Iw is closed by divisors, there exists b1, b2 ∈ ETΣ such that b = b1 ?i b2. Let f1 := [b1]
and f2 := [f2]: by construction we have:

Iw(f1) = f ′1 Iw(f2) = f ′2 f1 ?i f2 = f.

The case of Iw(n) is identical, the only difference lying in the hypothesis needed to apply Lemma
4.11.

Lemma 4.13. Let Σ and Γ be two (n, k)-white-polygraphs and I : Σ → Γ be a morphism of (n, k)-
polygraphs such that for every j ≤ k the application Ij : Σj → Γj is injective. Then for every j ≤ k the
functor Iwj : Σw

j → Γw
j is injective, and its image is closed by divisors.

Assume moreover that I0 and I1 are bijections, and that for every j > k the application Ij : Σj → Γj

is bijective. Then for every j the functor Iw(k)
j : Σ

w(k)
j → Γ

w(k)
j is injective, and its image is closed by

divisors.
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Proof. We reason by induction on j. The case j = 0 is true by hypothesis.
Let 1 ≤ j ≤ k. By hypothesis, the application Ij is injective, and by induction hypothesis, the functor

Iwj−1 is injective with image closed by divisors. Hence Ij satisfies the hypothesis of Lemma 4.12, and Iwj
is injective with image closed by divisors.

Let j > k. Again, using the hypothesis and induction hypothesis, we get that Ij satisfies the
hypotheses of Lemma 4.12. Hence Iw(k)

j is injective and its image is closed by divisors.

In what follows, we use the fact that the image of a functor generated by a morphism of polygraphs
is closed by divisors in order to prove a characterisation of the image of such a functor.

Definition 4.14. Let C,D be two n-white-categories, F : C → D be an n-functor and f be an n-cell of
D. We say that F k-discriminates f if the following are equivalent:

1. The k-source of f is in the image of F .

2. The k-target of f is in the image of F .

3. The n-cell f is in the image of F .

Given a subset D of Dn, we say that F is k-discriminating on D if for every n-cell f in D, F
k-discriminates f .

Lemma 4.15. Assume that the image of I is closed by divisors, that I induces an injection on n-cells,
and that I is n-discriminating on Σ′.

Then, Iw (resp. Iw(n)) is n-discriminating on Lw(C′,Σ′) (resp. Lw(n)(C′,Σ′)).

Proof. Let us start with Iw. Let E be the set all (n + 1)-cells of Lw(C′,Σ′) which Iw discriminates.
Let us show that E = Lw(C′,Σ′). Since Iw commutes with the source and target applications, the
implications (3) ⇒ (1) and (3) ⇒ (2) hold for any cell in Lw(C′,Σ′). So in order to show that a cell is
in E, it remains to show that it verifies the implications (1)⇒ (3) and (2)⇒ (3).

The set E contains all units. Indeed, let A′ = 1f ′ , with f ′ ∈ C′. If s(A′) = f ′ is in the image of
Iw, there exists f ∈ C such that I(f) = f ′. Let us define A = 1f ∈ Lw(C,Σ): by construction we have
Iw(A) = 1I(f) = 1f ′ = A′, hence the implication (1) ⇒ (3) holds for A′. Moreover since t(A′) = s(A′),
the implication (2)⇒ (3) also holds for A.

The set E contains all cells of length 1. Indeed, given such a cell A′, there exist f ′k, g
′
k ∈ C′k and

A′0 ∈ Σ′ such that

A′ = f ′n ?n−1 (f ′n−1 ?n−2 . . . ?2 (f ′1A
′
0g
′
1) ?2 . . . ?n−2 g

′
n−1) ?n−1 g

′
n.

Let A′k := f ′k ?k−1 (f ′k−1 ?k−2 . . . ?2 (f ′1A
′
0g
′
1) ?2 . . . ?k−2 g

′
k−1) ?k−1 g

′
k. Suppose that the source (resp.

target) of A′ is in the image of I, and let us show that A′ is in the image of Iw. Since the image of I
is closed by divisors, we get first that f ′n, g′n and s(A′n−1) (resp. t(A′n−1)) are in the image of I. By
iterating this reasoning, we get that, for all i, f ′i , g′i and s(A′i−1) (resp. t(A′i−1)) are in the image of I.
Since Iw discriminates Σ′, there exist fk, gk ∈ Ck and A0 ∈ Σ such that:

I(fk) = f ′k I(gk) = g′k In+1(A0) = A′0.

By induction on k we show that Ak := fk ?k−1 Ak−1 ?k−1 gk is well defined and that Iw(Ak) = A′k.
Indeed, assume that it is true at rank k − 1. Then we have the equalities:

I(t(fk)) = t(f ′k) = sk−1(A′k−1) = I(sk−1(Ak−1)) I(tk−1(Ak−1)) = tk−1(A′k−1) = s(g′k) = I(s(gk))

Using the injectivity of I we get that t(fk) = sk−1(Ak−1) and tk−1(Ak−1) = s(gk), which shows that Ak
is well defined, and finally:

Iw(Ak) = f ′k ?k−1 A
′
k−1 ?k−1 g

′
k = A′k.

In particular, we have A′n = Iw(An).
The set E is stable by n-composition. Indeed let A′, B′ ∈ E, and assume that the source of A′ ?n B′

is in the image of I. Let us show that A′ ?n B′ is in the image of Iw. The source of A′ ?n B′ is none
other that the one of A′. Since A′ is in E, there exists A ∈ Lw(C,Σ) such that Iw(A) = A′. Hence the
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source of B′ is in the image of I, and since B′ ∈ E, there exists B ∈ Lw(C,Σ) such that Iw(B) = B′.
Moreover we have I(t(A)) = t(A′) = s(B′) = I(s(B)), so using the injectivity of I we get t(A) = s(B).
Hence the cell A ?n B is well defined and satisfies:

Iw(A ?n B) = Iw(A) ?n I
w(B) = A′ ?n B

′.

The case where the target of A′ ?n B′ is in the image of I is symmetrical.
This concludes the proof for Iw. Concerning Iw(n), the reasoning is the same except that we also

have to show that E is stable under inversion. Indeed let A′ ∈ E and assume that the source (resp.
target) of (A′)−1 is in the image of I. Then the target (resp. source) of A′ is in the image of I and since
A′ is in E, there exists A ∈ Lw(n)(C,Σ) such that Iw(n)(A) = A′, and so Iw(n)(A−1) = (A′)−1.

Lemma 4.16. Let Σ and Γ be two (n, k)-white-polygraphs, and I : Σ→ Γ be a morphism of polygraphs.
Let k0 such that for every j > k0, Ij is a bijection.

Assume that I satisfies the hypothesis of Lemma 4.13, and that, for every j > k0, Ij is k0-discriminating
on Γj. Then for every j ≥ k0, I

w(k)
j is k0-discriminating on Γ

w(k)
j .

Proof. Since I satisfies the hypotheses of Lemma 4.13, we know that for every j, the functor Iw(k)
j is

injective, and that its image is closed by divisors.
We reason by induction on j > k0. For j = k0 + 1, the result is a direct application of Lemma 4.15.
Let j > k0 + 1: let us show that Iw(k)

j is (j − 1)-discriminating on Γj . Let A ∈ Γj . If s(A) (resp.
t(A)) is in the image of Iw(k)

j−1 then in particular, the k0-source (resp. k0-target) of A is in the image of
I
w(k)
k0

. Since Iw(k)
j is k0-discriminating on Γj , A is in the image of Iw(k)

j . Hence we can use Lemma 4.15,
and we get that Iw(k)

j is (j−1)-discriminating on Γ
w(k)
j . Let A ∈ Γ

w(k)
j . If its k0-source (resp. k0-target)

is in the image of Iw(k)
k0

then, by induction hypothesis, the source (rep. target) of A is in the image of
I
w(k)
j−1 , and so A is in the image of Iw(k)

j , which proves that Iw(k)
j is k0-discriminating.

4.3 Partial coherence in pointed (4, 3)-white-categories
Definition 4.17. A pointed (4, 3)-white-category is a couple (C, S), where C is a 4-white-category, and
S is a subset of C2.

Definition 4.18. Let (C, S) be a pointed (4, 3)-white-category. The restriction of C to S, noted C�S, is
the following (2, 1)-category:

• its 0-cells are the 2-cells of C2 that lie in S,

• its 1-cells are the 3-cells of C3 with source and target in S,

• its 2-cells are the 4-cells of C4 with 2-source and 2-target in S,

• its compositions ?0 and ?1 are respectively induced by the compositions ?2 and ?3 of C.

Definition 4.19. Let (C, S) be a pointed (4, 3)-white-category. We say that C is S-coherent if the
(2, 1)-category C�S is 1-coherent.

Example 4.20. Every (4, 3)-white-category is ∅-coherent. A (4, 3)-white-category C is C2-coherent if
and only if it is 3-coherent.

Definition 4.21. Let C and D be two 2-categories, F : C → D a 2-functor.
We say that F is 0-surjective if the application F : C0 → D0 is surjective.
Let 0 < k < 2. We say that F is k-surjective if, for every (k − 1)-parallel cells s, t ∈ Ck−1, the

application F : Ck(s, t)→ Dk(F (s), F (t)) is surjective.

Definition 4.22. Let (C, S) and (C′, S′) be two pointed (4, 3)-categories. We say that (C′, S′) is stronger
than (C, S) if there is a functor F : C′�S′ → C�S which is 0-surjective and 1-surjective.

Lemma 4.23. Let (C, S), (C′, S′) be two pointed (4, 3)-white-categories. If there exists a 2-functor
F : C′�S′ → C�S which is 0-surjective and 1-surjective, then (C′, S′) is stronger than (C, S).
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Proof. The functor F induces a functor F̄ : C′�S′ → C�S. Since it is equal to F on objects, it is 0-
surjective. On 1-cells F̄ is the composition of F with the canonical projection associated to the quotient,
hence it is 1-surjective, and so (C′, S′) is stronger than (C, S).

Lemma 4.24. Let (C, S), (C′, S′) be two pointed (4, 3)-white-categories, and assume (C′, S′) is stronger
than (C, S).

If C′ is S′-coherent, then C is S-coherent.

Proof. Let F : C′�S′ → C�S be a functor that is 0- and 1-surjective. Let A,B : f → g ∈ (C�S)1 be
parallel 1-cells, and Ā, B̄ be their projections in C�S.

Since F is 0-surjective, there exists f ′, g′ ∈ (C′�S′)0 in the preimage of f and g under F . Since F
is 1-surjective, there exists A′, B′ ∈ (C′�S′)1 of source f ′ and of target g′ such that F (Ā′) = Ā and
F (B̄′) = B̄.

Since C′�S′ is 2-coherent, there exists α′ : A′ ⇒ B′ ∈ (C′�S′)2. Thus Ā′ = B̄′ and Ā = B̄. Hence
there exists α : A→ B ∈ C�S. This shows that C�S is 1-coherent, and therefore that C is S-coherent.

We are going to define four families of Tietze-transformations on (4, 3)-white-polygraphs. Tietze
transformations for (3, 1)-categories were introduced in [5], as a way to modify a (3, 1)-polygraph without
modifying the 2-categories they present. In particular, they preserve the 2-coherence. Here we adapt
these transformations to our setting of (4, 3)-white-polygraphs and show that they preserve the partial
coherence. This will be used in Section 5.5. We fix a 4-white-polygraph A.

Definition 4.25. Let A ∈ Aw(3)
3 . We define a 4-polygraph A(A) by adding to A a 3-cell B and a 4-cell

α, whose sources and targets are given by:

• s(B) = s(A),

• t(B) = t(A),

• s(α) = A,

• t(α) = B.

The inclusion induces a functor between (4, 3)-white-categories ιA : Aw(3) → (A(A))w(3). We call
this operation the adjunction of a 3-cell with its defining 4-cell.

Definition 4.26. Let α ∈ A4 and A ∈ A3 such that:

• t(α) = A

• s(α) ∈ (A \ {t(α)})w(3)
3 .

The 4-cell α induces an application A3 → (A3 \ {t(α)})w(3), by sending t(α) on s(α) and and that
is the identity on the rest of A3. This application extends into a 3-functor πα : Aw

3 → (A3 \ {t(α)})w.
Let A/(A;α) be the following (4, 3)-polygraph:

A0 Aw(3)
1

t
oo
s
oo Aw(3)

2
t
oo
s
oo (A3 \ {t(α)})w(3)

t
oo
s
oo A4 \ {α}

πα ◦ t
oo

πα ◦ s
oo

Then πα induces a functor Aw(3) → (A/(A;α))w(3), which sends α on the identity of s(α), and which
is the identity on the rest of A4. We call this operation the suppression of a 3-cell with its defining 4-cell.

Definition 4.27. Let α be a 4-cell in Aw(3)
4 . We define a (4, 3)-white-polygraph A(α) by adding to A a

4-cell β : s(α) → t(α). The inclusion of A into A(α) induces a functor ια : Aw(3) → A(α)w(3). We call
this operation the adjunction of a superfluous 4-cell.

Definition 4.28. Let β ∈ A4 such that there exists a 4-cell α ∈ (A \ {β})w(3) parallel to β. Let A/β
be the polygraph obtained by removing β from A. There exists a functor πβ : Aw(3) → (A/β)w(3), that
sends β on α and which is the identity on the rest of A. We call this operation the suppression of a
superfluous 4-cell.
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In those four cases, the set of 2-cells is left untouched. In particular, if S is a sub-set of Aw
2 , and that

B is constructed from A through a series of Tietze-transformations, then S still is a subset of Bw2 .

Proposition 4.29. Let A be a 4-white-polygraph, S a sub-set of Aw
2 , and B a 4-white-polygraph con-

structed from A through a series of Tietze-transformation.
If Bw(3) is S-coherent, then Aw(3) is S-coherent.

Proof. We check that if B is constructed from A through a Tietze-transformation, then the 3-white-
categories presented by A and B are isomorphic.

Suppose now that B is S-coherent, and let A,B ∈ Aw
3 be parallel 3-cells, whose source and target are

in S. Since Bw(3) is S-coherent, the images of A and B in the 3-white-category presented by B are equal.
Since it is isomorph to the 3-white-category presented by A, there exists a 4-cell α : A → B ∈ Aw(3)

4 ,
which proves that A is S-coherent.
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5 Transformation of a (4, 2)-polygraph into a (4, 3)-white-polygraph
The proof of Theorem 1.27 will occupy the rest of this article. We start with a (4, 2)-polygraph A
satisfying the hypotheses of Theorem 1.27. Let SA be the set of all 2-cells in A∗2 whose target is a normal
form. Then proving Theorem 1.27 consists in showing that A is SA-coherent.

In this section we successively transform A four times, leading to five pointed (4, 3)-white-categories,
namely (A∗(2), SA), (Bw(2), SB), (Cw(3), SC), (Dw(3), SD) and (Ew(3), SE), and we show each time that
the new pointed (4, 3)-white-category is stronger than the previous one. A brief description of each
pointed (4, 3)-white-category can be seen in Table 5. Finally in Section 5.5, we perform a number of
Tietze-transformations on the 4-white-polygraph E , leading to a 4-white-polygraph F .

Thanks to Lemma 4.24 and Proposition 4.29, we know that in order to show that A∗(2) is SA-coherent,
it is enough to show that Fw(3) is SE -coherent. This will be done in Section 6.

Name Description Commentary
A2

(A∗(2), SA) A3

A4

A2 Weakening of the
(Bw(2), SB) A3 ∪K exchange law

A4 ∪ Ω
A2 Weakening

(Cw(3), SC) A3 ∪ Aop3 ∪K ∪Kop of the invertibility
A4 ∪ Ω ∪ {ρA, λA} of 3-cells

A2 ∪ Aop2 Adjunction of
(Dw(3), SD) A3 ∪ Aop3 ∪K ∪Kop formal inverses

A4 ∪ Ω ∪ {ρA, λA} to 2-cells
A2 ∪ Aop2 Adjunction

(Ew(3), SE) A3 ∪ Aop3 ∪K ∪Kop ∪ {ηf , εf} of connections
A4 ∪ Ω ∪ {ρA, λA} ∪ {τf , σf} between 2-cells

Table 5: List of the successive transformations of A.

Example 5.1. We have already shown in Section 2 that for every sets C, D and for every applications
f ,g : C→ D, the (4, 3)-polygraph PNTrans++[f ,g] satisfies the hypothesis of Theorem 1.27.

In what follows, we will use as a running example the polygraph A = Assoc which consists of one
0-cell, one 1-cell , one 2-cell : ⇒ , one 3-cell : V , and one 4-cell :

%9

�&

%9

�)
=

�&

2F

%9

�,

5I

�)

�?

2F

�,

%9

%9

8L

%9

5I 8L

In particular, Assoc satisfies the 2-Squier condition of rank 2. The 2-category Assoc∗2 is 2-convergent
and its only normal form is the 1-cell .

The corresponding set SA is then the set of 2-cells in Assoc∗2 from any 1-cell to .

5.1 Weakening of the exchange law
We construct dimension by dimension a (4, 2)-white-polygraph B, together with a white-functor F :
Bw(2) → A∗(2). We then define a subset SB of Bw(2) and show (Proposition 5.5) using F that (Bw(2), SB)
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is stronger than (A∗(2), SA).
In low dimensions, we set Bi = Ai, for every i ≤ 2, and the functor F is the identity on generators.

Lemma 5.2. The functor F : Bw → A∗ is 2-surjective.

Proof. By construction, A∗2 is the quotient of Bw2 by the equivalence relation generated by:

(f ?0 v) ?i (u′ ?0 g) = (u ?0 g) ?i (f ?0 v
′).

And F is the canonical projection induced by the quotient.

In what follows, we suppose chosen a section i : A∗ → Bw of F , which is possible thanks to Lemma
5.2.

We extend B into a 3-white-polygraph and F : Bw → A∗ into a 3-white-functor by setting B3 :=
A3 ∪K:

• For every 3-cell A ∈ A3, the source and target of A in Bw2 are respectively sB(A) := i(sA(A)) et
tB(A) := i(tA(A)).

• The set K contains, for every strict Peiffer branching (fv, ug), where f : u⇒ u′ and g : v ⇒ v′ are
rewriting steps, a 3-cell Afv,ug of the shape:

u′g

�'Afv,ug

��

fv %9

ug %9
fv′

6J

The image of a cell of B3 under F is defined as follows:

• For every strict Peiffer branching (fv, ug), F (Afv,ug) := 1f?0g

• For every 3-cell A in A3, F (A) := A.

Lemma 5.3. Let f, g ∈ Bw
2 . There exists a 3-cell A : f V g in K

w(2)
3 if and only if the equality

F (f) = F (g) hold in A∗2.

Proof. Let f, g ∈ Bw2 . The image of any cell in K
w(2)
3 by F is an identity. So if there exists a 3-cell

A : f V g in Kw(2)
3 , necessarily F (f) = F (g).

Conversely, the set A∗2 is the quotient of Bw2 by the equivalence relation generated by:

fs(g) ?1 t(f)g = s(f)g ?1 ft(g),

for f, g ∈ Bw2 . The 3-cells Afu,vg, where (fu, vg) is a strict Peiffer branching, generate this relation, and
they are in K. Hence the result.

Lemma 5.4. The functor F : Bw(2) → Aw(2) is 3-surjective.

Proof. Let E be the set of 3-cells A ∈ A∗(2)
3 such that, for every f, g ∈ Bw2 in the preimage of s(A) and

t(A) under F , there exists a 3-cell B : f V g ∈ Bw(2)
3 satisfying F (B) = A. Let us show that E = A∗3.

We already know that E contains the identities thanks to Lemma 5.3.
The 3-cells of length 1 in A∗3 are in E. Indeed, let A ∈ A∗3 be a 3-cell of length 1, and f, g ∈ Bw2 such

that F (f) = s(A) et F (g) = t(A). There exist u, v ∈ A∗1, f ′, g′ ∈ A∗2, and A′ ∈ A3 such that

A = f ′ ?1 (uA′v) ?1 g
′.

Let ũ, ṽ, f̃ , g̃ be in the preimages respectively of u, v, f ′, g′ under F (they exist thanks to Lemma 5.2),
and let B1 := f̃ ?1 (ũA′ṽ) ?1 g̃ ∈ Bw(2)

3 . By construction, F (B1) = A, which leads to the equalities:

F (s(B1)) = F (f) F (t(B1)) = F (g).
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Thus, according to Lemma 5.3, there exist 3-cells C1 : f V s(B1) ∈ Kw(2)
3 and C2 : t(B1)V g ∈ Kw(2)

3 .
Let B := C1 ?2 B1 ?2 C2: by construction, B has the required source and target, and moreover:

F (B) = F (C1) ?2 F (B1) ?2 F (C2) = 1F (f) ?2 A ?2 1F (g) = A.

The set E is stable under composition. Indeed let A1, A2 ∈ E such that t(A1) = s(A2), and f, g ∈ Bw2
satisfying F (f) = s(A1) and F (g) = t(A2). Since F is 2-surjective, there exists h ∈ Bw2 in the inverse
image of t(A1) under F . Since A1 (resp. A2) is in E, there exists a cell B1 (resp. B2) in Bw(2)

3 such that
F (B1) = A1 (resp. F (B2) = A2), s(B1) = f (resp. s(B2) = h) and t(B1) = h (resp. t(B2) = g). Let
B := B1 ?2 B2: we get:

s(B) = f F (B) = A1 ?2 A2 t(B) = g

The set E is stable under 2-composition. Indeed let A ∈ E and f, g ∈ Bw2 such that F (f) = s(A−1)
and F (g) = t(A−1). There exists B ∈ Bw(2) such that:

s(B) = g F (B) = A t(B) = f.

Hence the cell B−1 satisfies the required property.

We now extend B into a (4, 2)-white-polygraph and F : Bw(2) → A∗(2) into a 4-white-functor by
setting B4 = A4 ∪ L:

• For every 3-cell A ∈ A4, the source and target of A in Bw(2)
3 are respectively sB(A) := i(sA(A))

and tB(A) := i(tA(A)), where i is a chosen section of the application F3 : Bw(2)
3 → Aw(2)

3 (which
exists since F is 3-surjective). And we set F (A) := A.

• For every 3-fold strict Peiffer branching (f, g, h), the set L contains a 4-cell Af,g,h, whose shape
depends on the form of the branching (f, g, h). If (f, g, h) = (f ′v, g′v, uh′), with (f ′, g′) a critical
pair, and h′ : v ⇒ v′ then Af,g,h is of the following shape:

%9

Af ′,g′v

�)
A

%9

B

�)Af ′v,uh′
�)

f ′v
5I

g′v %9

uh′ �)

Ag′v,uh′

5I

�)

Af,g,h
�?

f ′v
5I

uh′ �)

%9

Af ′,g′v
′

%9

5I 5I

%9

5I

where A and B are in Kw(2)
3 . And we define F (Af,g,h) := 1Af′,g′?0h

′ .
If (f, g, h) = (f ′v, ug′, uh′), with (g, h) a critical pair, and f ′ : u⇒ u′ then Af,g,h is of the following
shape:

%9

Af ′v,ug′

�)
A

%9

u′Ag′,h′

�)Af ′v,uh′
�)

f ′v
5I

ug′ %9

uh′ �)

uAg′,h′

5I

�)

Af,g,h
�?

f ′v
5I

uh′ �)

%9

B

%9

5I 5I

%9

5I

where A and B are in Kw(2)
3 . And we define F (Af,g,h) := 1f ′?0Ag′,h′ .

If (f, g, h) = (f ′vw, ug′w, uh′w), then Af,g,h is of the following shape, where A and B are in Kw(2)
3 :

%9

Af ′v,ug′w

�)Af ′v′w,uv′h

%9

u′Ag′w,vh′

�)Af ′vw,uvh′
�)

f ′vw
5I

ug′w %9

uvh′ �)

uAg′w,vh′

5I

�)

Af,g,h �?

f ′vw
5I

uvh′ �)

%9

Af ′v,ug′w
′

%9

5I 5I

%9

5I

And we define F (Af,g,h) := 1f ′?0g′?0h′ .
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Let now SB be the set of all 2-cells in Bw whose 1-target is a normal form.

Proposition 5.5. The pointed (4, 3)-white-category (Bw(2), SB) is stronger than (A∗(2), SA).

Proof. The functor F sends normal forms on normal forms. Hence by restriction it induces a 2-functor
F �SB : Bw(2)�SB → A∗(2)�SA.

Lemmas 5.2 and 5.4 show that it is k-surjective for every k < 2. Hence we can conclude using Lemma
4.24.

Example 5.6. In the case where A = Assoc, the set K contains in particular the following 3-cells, asso-
ciated respectively to the strict Peiffer branchings ( , ) and ( , ):

%9 %9

In L, the 4-cell associated to the strict Peiffer branching ( , , ) is the
following:

%9

�1

-A

�1
%9

-A

��

5.2 Weakening of the invertibility of 3-cells
We construct dimension by dimension a 4-white-polygraph C, together with a 3-white-functorG : Cw(3) →
Bw(2). We then define a subset SC of Cw(3) and show (Proposition 5.8) using G that (Cw(3), SC) is stronger
than (Bw(2), SB).

In low dimensions, we set Ci = Bi for i ≤ 2, with the functor G being the identity.
We extend C into a 3-white-polygraph by setting C3 := B3∪Bop3 , where the set Bop3 contains, for every

A ∈ B3, a cell noted Aop, which source and target are given by the equalities:

s(Aop) = t(A) t(Aop) = s(A)

And the functor G : Cw → Bw(2) is defined as follows for every A ∈ B3:

G(A) = A G(Aop) = A−1.

Lemma 5.7. The functor G : Cw(3) → Bw(2) is 3-surjective.

Proof. By definition, Bw(2)
3 is the quotient of Cw3 by the relations Aop ?2 A = 1 and A ?2 A

op = 1, and G
is the corresponding canonical projection.

We extend C into a 4-white polygraph by setting C4 := B4 ∪ {ρA, λA|A ∈ B3}, where the applications
source and targets s, t : C4 → Cw3 are defined as follows:

• For A ∈ B4, the cell sC(A) (resp. tC(A)) is any cell in the inverse image of sB(A) under G, which
is non-empty thanks to Lemma 5.7. And we set G(A) := A.
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• For every A ∈ B3, the cells ρA and λA have the following shape:

A�� 1s(A)

��

s(A)

�'

s(A)

7Kt(A) %9

Aop��

ρA �?

s(A)

�'

s(A)

7K
Aop�� 1t(A)

��

t(A)

�'

t(A)

7Ks(A) %9

A��

λA �?

t(A)

�'

t(A)

7K

And we set G(ρA) := 1s(A) and G(λA) := 1t(A).

Let SC be the set of all 2-cells in Cw whose 2-target is a normal form.

Proposition 5.8. The pointed (4, 3)-white-category (Cw(3), SC) is stronger than (Bw(2), SB).

Proof. The functor G restricts into a functor G�SC : Cw(3)�SC → Bw(2)�SB, which is i-surjective for i < 2
thanks to Lemma 5.7. Hence we can conclude thanks to Lemma 4.24.

Example 5.9. In the case where A = Assoc, let A = . The set C3 contains the following 3-cell:

op
: %9

And the following cells lie in C4, where A = :

op

�$
ρA

��

0D

�$λA

��

op 0D

5.3 Adjunction of formal inverses to 2-cells
Let D be the 4-white-polygraph defined as follows:

for every i 6= 2, Di := Ci D2 := C2 ∪ C̄2,

where for every f ∈ C2, the set C̄2 contains a cell f̄ with source t(f) and with target s(f). Let SD be the
set of all 2-cells of the sub-2-white-category Cw2 of Dw

2 whose target is a normal form.

Notation 5.10. The application C2 → C̄2 extends into an application Cw2 → C̄2
w which exchanges the

source and targets of the 2-cells.

For every cell f ∈ Cw2 , we note
f %9 if f is in Bw2 ,

fey if f̄ is in Bw2 , and ey f %9 for any cell
in Cw2 .

Proposition 5.11. The pointed (4, 3)-white-category (Dw(3), SD) is stronger than (Cw(3), SC).

Proof. Let us show that Dw(3)�SD = Cw(3)�SC . Let ι : Cw(3) → Dw(3) be the canonical inclusion functor.
Since the only cells added are in dimension 2, ι satisfies the hypotheses of Lemma 4.13, thus Cw is a
sub-4-white-category of Dw, which gives us an inclusion Cw(3)�SC ⊆ Dw(3)�SD.

Let us show the reverse inclusion. Let f ∈ Dw(3) be an i-cell (i ≥ 2), and suppose that f is in
Dw(3)�SD. In particular t2(f) and s2(f) are in Cw2 . Since ι also satisfies the hypotheses of Lemma 4.16,
with k0 = 2, it is 2-discriminating on Dw(3)

i . Thus f is in Cw(3), and in Cw(3)�SC since its 1-target is a
normal form.
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Example 5.12. In the case where A = Assoc, the set D2 contains one additional 2-cell:

:=

And the following cells are composites in Dw:

%9

Note that the equality Dw(3)�SD = Cw(3)�SC implies that none of these composites belongs to Dw(3)�SD.

5.4 Adjunction of connections between 2-cells
Let E be the following 4-white-polygraph:

• For i = 0, 1, 2, Ei = Di,

• For i = 3, E3 = D3 ∪ {ηf , εf |f ∈ C2}.

• For i = 4, E4 = D4 ∪ {τf , σf |f ∈ C2}.

The cells ηf , εf , τf and σf have the following shape:

• εf : f̄ ?1 f V 1t(f)

f

}�

f

!

εf

��

1t(f)

• ηf : 1s(f) V f ?1 f̄

1s(f)

"6

f
�0

ηf

�� f
n�

• τf : (f̄ ?1 ηf ) ?2 (εf ?1 f̄)→ 1f̄

f

}�

f

�*

εf

��

ηf

�� fl�

f

}�

1f̄
fl�

τf �?

• σf : (ηf ?1 f) ?2 (f ?1 εf )→ 1f .

f �2

ηf

��

εf

��

f

t�

f

�" f �2

1f

f

�"

σf �?

Notation 5.13. Let us note the 3-cell εf and the 3-cell ηf . In a similar fashion, we note for σf
and for τf :

�? �?

Let R := {σf , τf}, and Rw (resp. Rw(3)) be the sub-4-white-category (resp. sub-(4, 3)-white-
category) of Ew(3) generated by the cells in R. A 4-cell of length 1 in Rw is called an R-rewriting
step.
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Let SE be the set of all 2-cells of the sub-2-white-category Cw2 of Ew2 whose target is a normal form.
Using properties of the rewriting system induced by Rw, we are going to define a functor K : Ew(3)�SE →
Dw(3)�SD.

Lemma 5.14. Let α ∈ Ew4 and β ∈ Rw of length 1 with the same source. There exist α′ ∈ Ew4 and
β′ ∈ Rw of maximum length 1, such that:

α �?

β

��

β′

��
α′

�?

Proof. The result holds whenever (α, β) is a Peiffer or aspherical branching.
If (α, β) is an overlapping branching, then the source of α must contain an ηf or an εf . The only

cells of length 1 in Ew4 that satisfy this property are those in Rw. Hence α is in Rw. Thus the branching
(α, β) is one of the following two, and both of them satisfy the required property:

�6
(H

�6
(H

Lemma 5.15. The rewriting system generated by R is 4-convergent.

Proof. Using Lemma 5.14, the rewriting system generated by R is locally 4-confluent. Moreover, the
cells σf and τf decrease the length of the 3-cells, hence the 4-termination.

Let A ∈ Ew3 : we note Â ∈ Ew3 its normal form for R. Remark in particular that if A is in Dw
3 , then

Â = A.

Lemma 5.16. Let A be a 3-cell of Ew3 whose target is in Cw2 .

• If the source of A is in Cw2 , then Â is in Dw
3 .

• Otherwise, for every factorization of A into f1 ?1 f̄ ?1 f2, where f is a rewriting step, there exists
a factorisation of A into:

εf

f

f
f2

A1
f1

A2

Proof. We reason by induction on the length of A. If A is of length 0, then the source of A is in Cw2 , and
Â = A is in Dw

3 .
If A is of length n > 0, let us write A = B1 ?1 B2, where B1 is of length 1. We can then apply the

induction hypothesis to B2. We distinguish three cases:

• If both the sources of A and B2 are in Cw2 , then B1 is in Dw
3 , and so is Â = B1 ?2 B̂2.
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• If the source of A is in Cw2 but not that of B2, then B1 is of the form g1 ?1 ηf ?1 g2. There hence
exists a factorisation (g1 ?1 f) ?1 f̄ ?1 g2 of the source of B2. Applying the induction hypothesis to
B2, we deduce the following factorisation of A:

f
ηf

f f
εf

g2
A1

g1

A2

In particular, A is the source of an R-rewriting step. Let A′ be its target, which is thus of length
smaller than A. Applying the induction hypothesis to A′, we get that Â = Â′ is in Dw

3 .

• There remains the case where the source of A is not an element of Cw2 .

In order to treat this last case, let us fix a factorisation f1 ?1 f̄ ?1 f2 of the source of A, where f is of
length 1. We distinguish three cases depending on the form of B1.

• If B1 = f1 ?1 f̄ ?1 B
′
1, where B′1 is a 3-cell of length 1 from f2 to g2 ∈ Dw

2 , then we get a
factorisation of the source of B into f1 ?1 f̄ ?1 g2. Let us apply the induction hypothesis to B2:
there exist A′1, A′2 ∈ Ew3 and g′2 ∈ Dw

2 such that:

B2 = (f1 ?1 f̄ ?1 A
′
1) ?2 (f1 ?1 εf ?1 g

′
2) ?2 A

′
2

Thus A factorises as follows, which is of the required form by setting A1 = B′1 ?2 A
′
1 and A2 = A′2:

εf

f

f f2g2
f1

A′1

B′1

A2

• If B1 = B′1 ?1 f̄ ?1 f2, where B′1 is a 3-cell of length 1 from f1 to g1 ∈ Dw
2 . Then the source of B

factorises into g1 ?1 f̄ ?1 f2. Applying the induction hypothesis to B2, there exist A′1, A′2 ∈ Ew3 and
f ′2 ∈ Dw

2 such that:
B2 = (g1 ?1 f̄ ?1 A

′
1) ?2 (g1 ?1 εf ?1 f

′
2) ?2 A

′
2

We get the required factorisation of A by setting A1 = A′1 and A2 = (B′1 ?1 f
′
2) ?2 A

′
2.

εf

f

f
g2

A′1
f1

g1
B′1

A2

• Otherwise, we have B1 = f1 ?1 εf ?1 f
′
2, with f2 = f ?1 f

′
2. We then get the required factorisation

of A by setting A1 = 1f ′2 and A2 = B2.
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εf

f f

f ′2f1

B2

Lemma 5.17. Let β ∈ Rw, and α be a 4-cell Ew4 of same source. There exist α′ ∈ Ew4 and β′ ∈ Rw of
maximum length that of β such that we have the following square:

α �?

β

��

β′

��
α′

�?

Proof. We reason using a double induction on the lengths of β and α. If β (resp. α) is an identity, then
the result holds by setting α′ = α (resp. β′ = β).

Otherwise, let us write α = α1 ?3 α2 and β = β1 ?3 β2, where α1 and β1 are of length 1. We can then
construct the following diagram:

α1
�?

β1

��

α2
�?

β′1

��

β′′1

��
α′1

�?

β2

��

α′2

�?

β′2

��

β′′2

��

α′′1

�?

α′′2

�?

The 4-cells α′1 and β′1 exist thanks to Lemma 5.14. We can then apply the induction hypothesis to the
4-cells α2 and β′1 (resp. α′1 and β2) and we construct this way the cells α′2 and β′′1 (resp. α′′1 and β′2).
Lastly, we apply the induction hypothesis to α′2 et β′2 in order to construct α′′2 and β′′2 .

Lemma 5.18. The application A 7→ Â extends into a 1-functor K : Ew(3)�SE → Dw(3)�SD, which is the
identity on objects.

Proof. The application A 7→ Â does not change the source or target. Moreover, given a 3-cell A ∈ Ew(3),
if A is in Ew(3)�SE then in particular the source and target of A are in Cw2 . Thus Â is in Dw

3 �SD (Lemma
5.16).

Let A, B be 3-cells in Ew(3) which belong to Ew(3)�SE . We just showed that Â and B̂ are in Dw
3 �SD,

hence so is Â ?2 B̂. So Â ?2 B̂ is a normal form for R which is attainable from A ?2 B. Since R is
4-convergent, this means that Â ?2 B = Â ?2 B̂. So A 7→ Â does indeed define a functor.

Proposition 5.19. The pointed (4, 3)-category (E , SE) is stronger than (D, SD).

Proof. Let us show that K induces a functor K̄ : Ew(3)�SE → Dw(3)�SD. Let A,B be 1-cells in Ew(3)�SE ,
and suppose Ā = B̄. Let us show that K(A) = K(B), that is that there exists a 4-cell α′ : Â → B̂ ∈
Dw(3)

4 .
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Since Ā = B̄ there exists a 4-cell α : A → B ∈ Ew(3)
4 . Suppose that α lies in Ew4 . Let β ∈ Rw be a

cell from A to Â. Applying Lemma 5.17 to α and β, we get cells α′ and β′ of sources respectively Â and
B. Let B′ be their common target. By hypothesis Â is in Dw

3 , and the only cells in Ew4 whose source
is in Dw

3 are the cells in Dw
4 . Thus α′ is in Dw

4 , and so is B′. So B′ is a normal form for Rw which is
attainable from B. By unicity of the Rw-normal-form, B′ = B̂, and so α′ is a cell in Dw

4 of source K(A)
and of target K(B), hence K(A) = K(B).

In general if Ā = B̄, there exist A1, . . . , An ∈ Ew3 with A1 = A, Bn = B and for every i there exist
cells αi : A2i → A2i−1 and βi : A2i → A2i+1 in Ew4 . Hence using the previous case K(A1) = . . . = K(An),
that is K(A1) = K(An).

So K̄ : Ew(3)�SE → Dw(3)�SD is well defined, and it is 0 and 1-surjective because K is. Hence (E , SE)
is stronger than (D, SD).

Example 5.20. In the case where A = Assoc, let A = . The set E3 contains the following 3-cells:

εA %9 ηA %9

And the set E4 the following 4-cells:

εA

�'
τA

��

ηA
7K

εA

�'
σA

��

ηA
7K

5.5 Reversing the presentation of a (4, 3)-white-category
We start by collecting some results on the cells of E .

Lemma 5.21. The set E3 is composed exactly of the following cells:

• For every f ∈ A2, 3-cells ηf and εf .

• For every non-aspherical minimal branching (f, g), a 3-cell Af,g of shape:

f ′

�(Af,g

��

f &:

g $8
g′

5I

And in particular for every non-aspherical minimal branching (f, g), we have Aopf,g = Ag,f .

Proof. If (f, g) is a critical pair: if it was associated to a 3-cell in A then Af,g is this corresponding cell.
Otherwise Af,g is in fact the cell Aopg,f from Section 5.2.

If (f, g) is a strict Peiffer branching, then Af,g is the cell defined in Section 5.1. Otherwise, (g, f) is
a strict Peiffer branching, and we set Af,g := Aopg,f from Section 5.2.

Lemma 5.22. For every minimal non-aspherical branching (f, g, h), there exists a 4-cell Af,g,h ∈ Ew(3)
4

of the following shape:

%9

Af,g
�)

A

%9

B1

�)Af,h
�)

f
5I

g %9

h
�)

Ag,h

5I

�)

Af,g,h
�?

f
5I

h
�)

%9

B2

%9

5I 5I

%9

5I
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Proof. Let us first start by showing that, for every non-aspherical 3-fold minimal symmetrical branching
b, there exists a representative (f, g, h) of b for which the property holds. If b is an overlapping branching
then, using the fact that A satisfies the 2-Squier condition of rank 2, the cell Af,g,h exists for some
representative (f, g, h) of b. Otherwise b is a Peiffer branching, and we conclude using the cells defined
in Section 5.1.

It remains to show that the set of all branchings satisfying the property is closed under the action of
the symmetric group.

• If (f1, f2, f3) satisfies the property, then so does (f3, f2, f1). Indeed, let A := Af1,f2,f3 , and let us
note its source s and its target t, all we need to construct is a 4-cell from sop to top. This is given
by the following composite:

sop

sop ?2 λ
−1
t

�? top ?2 t ?2 s
op

top ?2 A
−1 ?2 s

op

�? top ?2 s ?2 s
op

top ?2 ρs

�? top

• If (f1, f2, f3) satisfies the property, then so does (f2, f1, f3). Indeed, given a cell Af1,f2,f3 , we can
construct the following composite:

f2

f1

f3

Af2,f1

Af1,f3

B1

ρ−1
B1
ρ−1
B1

f2

f1

f3

Af2,f1

Af1,f3

B1

B2

Bop2

A−1
f1,f2,f3

A−1
f1,f2,f3

f2

f3

Af2,f1

A

Bop2

f2

f1

f2

f3

Af2,f1

Af1,f2

Af2,f3

A

Bop2

λAf1,f2
λAf1,f2

Since the transpositions (1 2) and (1 3) generate the symmetric group, the set of all branchings
satisfying the property is closed under the action of the symmetric group.

We are now going to apply a series of Tietze-transformations to E in order to mimic a technique
known as reversing. Reversing is a combinatorial tool to study presented monoids [4]. Reversing is
particularly adapted to monoids whose presentation contains no relation of the form su = sv, where s is
a generator and u and v words in the free monoid, and at most one relation of the form su = s′v, for s
and s′ generators. The (4, 2)-polygraph A satisfies those properties, but only up to a dimensional shift:
there are no 3-cell in A3 of the form f ?2 g V f ?2 h, where f is of length 1 and g and h are in Aw

2 , and
there is at most one 3-cell in A3 of the form f ?2 g V f ′ ?2 h, where f and f ′ are of length 1. Hence we
adapt this method to our higher-dimensional setting.
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Adjunction of 3-cells Cf,g with its defining 4-cell Xf,g. For every non-aspherical branching (f, g),
we add a 3-cell Cf,g of the following shape:

g

�'

f

w� Cf,g

��
f ′

%9
g′

ey

using as defining 4-cell a cell Xf,g whose target is Cf,g and whose source is the composite:

εf

f g

f Ag,f g′ ηg′

f ′ g′

Adjunction of a superfluous 4-cell Yf,g. We add a 4-cell Yf,g of target Ag,f , parallel to the following
4-cell:

f f ′

g g′

f g′ηf Cf,g εg′

g

f
f f g′ g′

g′

f ′

ηf

εf
Ag,f

ηg′

εg′

g

f
f g′

g′

f ′

1f Ag,f 1g′

X−1
f,gX−1
f,g

σfσf σg′σg′

Deletion of the superfluous 4-cell Xf,g. We delete the 4-cell Xf,g, using the fact that it is parallel
to the following composite:

f g

f g′

f ′ g′

εf Ag,f ηg′

g
f

f f g′ g′
g′

f ′
εf

ηf
Cf,g εg′

ηg′

f ′

f
f g′

g′

g

1f Cf,g 1g′

Y −1
f,gY −1
f,g

τfτf τg′τg′
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Deleting of the 3-cell Ag,f with its defining 4-cell Yf,g. This last step is possible because Ag,f is
the target of Yf,g and does not appear in its source.

We note F the 4-white-polygraph obtained after performing this series of Tietze-transformations
for every non-aspherical branching (f, g), and Π : Ew(3) → Fw(3) the 3-white-functor induced by the
Tietze-transformations. We still note Ag,f the composite in Fw(3)

4 , image by Π of Af,g ∈ E4.

Example 5.23. In the case where A = Assoc, the cells and op respectively associated to the
branchings ( , ) and ( , ) have been replaced by cells of the following shape:

%9 %9
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6 Proof of Theorem 1.27
This Section concludes the proof of Theorem 1.27. In Section 6.1, we study the 4-cells of the (4, 3)-white-
category Fw(3), and in particular study the consequence of A satisfying the 2-Squier condition of rank
2.

In Section 6.2, we define a well-founded ordering on N[Fw
1 ], the free commutative monoid on Fw

1 .
Using this ordering together with two applications p : Fw

2 → N[Fw
1 ] and wη : Fw

3 → N[Fw
1 ], we proceed

to complete the proof by induction in Section 6.3.

6.1 Local coherence
Definition 6.1. We extend the notation Cf,g from Section 5.5 by defining, for every local branching
(f, g) of Bw2 , a 3-cell of the form Cf,g : f̄ ?1 g V f ′ ?1 ḡ

′ ∈ Fw
3 , where f ′ and g′ are in Bw2 .

• If (f, g) is a minimal overlapping or Peiffer branching, then Cf,g is already defined.

• If (f, g) is aspherical, that is f = g, then we set Cf,f = εf .

• If (f, g) is not minimal, then let us write (f, g) = (uf̃v, ug̃v), with (f̃ , g̃) a minimal branching, and
we set Cf,g := uCf̃ ,g̃v.

Definition 6.2. We say that a 3-fold local branching (f, g, h) of A2 is coherent if there exists a 4-cell
Cf,g,h ∈ Fw(3)

4 of the following shape, where A and B are 4-cells in Fw
3 .

f
g g hηg

Cf,g Cg,h

A

f h

Cf,h

B
Cf,g,hCf,g,h

Lemma 6.3. Every 3-fold local branching of Bw2 is coherent.

Proof. Let (f, g, h) be a minimal local branching. We first treat the case where (f, g, h) is an aspherical
branching. If f = g, then Cf,g = εf , and the following cell shows that the branching is coherent:

f
f f

h

f ′ h′

f ′

ηf

εf Cf,h

1f ′

f h

f ′ h′
Cf,hτfτf

The case where g = h is symmetrical. Assume now g 6= f, h and f = h. Then (f, g) is either an
overlapping or a Peiffer branching. In any case there exists either a cell Af,g or Ag,f in Ew3 . In the
former case, we can construct the following cell in Fw(3)

4 .
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f
g g

fηg

Cf,g Cg,f
εg′

f f f g g
f

εf
ηf ηg

Cf,g Cg,f
εg′ εf ′

ηf ′

εf
ηf ′

τ−1
fτ
−1
f τ−1

f ′τ
−1
f ′

Π(ρAf,g
)Π(ρAf,g
)

In the latter, we can construct the same cell, only replacing Π(ρAf,g
) by Π(λAf,g

).
Suppose now that (f, g, h) is not aspherical. Using the cell Af,g,h described in Lemma 5.22, we build

the following composite in Fw(3)
4 :

Cf,g

ηg

Cg,h

ε
Π(A) η

εf
ηf

Cf,g

ηg

Cg,h

ε
η

ε
Π(A) 1

η

εf
ηf

Cf,h

ε

η

ηΠ(B1)
Π(B2)

Cf,h

ε

η

ηΠ(B1)
Π(B2)

τ−1
fτ
−1
f τ−1τ−1

Π(Af,g,h)Π(Af,g,h)

τfτf

Finally, if (f, g, h) is not aspherical, then there exists a 3-fold minimal branching (f̃ , g̃, h̃) of Bw2 and
1-cells u, v ∈ Bw1 such that (f, g, h) = (uf̃v, ug̃v, uh̃v). Then the cell uCf̃ ,g̃,h̃v shows that (f, g, h) is
coherent.
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6.2 Orderings on the cells of Fw

Definition 6.4. Let E be a set. The set of all finite multi-sets on E is N[E], the free commutative
monoid over E. For every e ∈ E, let ve : N[E]→ N be the morphism of monoids that sends e to 1 and
every other elements of E to 0.

If E is equiped with a strict ordering >, we note >m the strict ordering on N[E] defined as follows:
for every f, g ∈ N[E], one has f >m g if

• f 6= g

• For every e ∈ E, if ve(f) < ve(g), then there exists e′ > e such that ve′(f) > ve′(g).

Lemma 6.5. Let E be a set and a ∈ E. The set of all f ∈ N[E] such that f < a is equal to the set of
all f ∈ N[E] satisfying the following implication for every b ∈ E:

vb(f) > 0⇒ b < a.

In particular, this set is a sub-monoid of N[E].

Proof. Let f ∈ N[E] such that for every b ∈ E the implication vb(f) > 0 ⇒ b < a is verified. Let us
prove that f <m a. Necessarily va(f) = 0, otherwise we would have a < a. Thus in particular f 6= a.
Moreover, let b ∈ E such that vb(f) > vb(a) ≥ 0. By definition of f this implies that b < a, and since
0 = va(f) < va(a) = 1 we get that f < ma.

Conversely, let f <m a. Let us show by contradiction that va(f) = 0. If va(f) 6= 0, we distinguish
two cases:

• If va(f) = 1, then since f 6= a, there exists b 6= a ∈ E such that vb(f) > 0. Thus because f < a,
there exists c > b ∈ E such that vc(f) < vc(a). So we necessarily have vc(a) ≥ 1, which implies
that c = a. The condition vc(f) < vc(a) thus becomes va(f) < 1, which contradicts the hypothesis
that va(f) = 1.

• If va(f) > 1, then there exists b > a such that vb(a) > vb(f), which is impossible.

Hence necessarily va(f) = 0.
Let b ∈ E such that vb(f) > 0, and let us show that b < a. We just showed that b 6= a, and so

vb(f) > vb(a). Thus there exists c > b such that vc(a) > vc(f). In particular this implies vc(a) > 0. So
c = a and finally a > b.

Lemma 6.6. Let (E,<) be a set equipped with a strict ordering. The relation >m is compatible with the
monoidal structure on N(E), that is, for every f, f ′, g ∈ N(E), if f >m f ′, then f + g >m f ′ + g.

Proof. Let f, f ′, g ∈ N(E), and suppose that f >m f ′. Let us show that f +g >m f ′+g. Firstly, f 6= f ′,
hence f + g 6= f ′ + g.

Let e ∈ E such that ve(f + g) < ve(f
′ + g). Since ve is a morphism of monoids, this implies that

ve(f) < ve(f
′). Hence there exists e′ > e such that ve′(f) > ve′(f

′), and so ve′(f + g) > ve′(f
′+ g)

The proof of the following theorem can be found in [1].

Theorem 6.7. Let (E,>) be a set equipped with a strict ordering. Then >m is a well-founded ordering
if and only if > is.

Since A is 2-terminating, the set A∗1 is equipped with a well-founded ordering⇒. This induces a well
founded ordering⇒m on N[A∗1]. We now define two applications p : Fw

2 → N[A∗1] and wη : Fw
3 → N[A∗1].

Using ⇒m, those applications induce well-founded orderings on Fw
2 and Fw

3 . We then show a number
of properties of these applications in preparation for Section 4.3.

Definition 6.8. We define an application p : Fw
2 → N[A∗1]:

• for every f ∈ Fw
2 of length 1, we set p(f) := s(f) + t(f),

• for every composable f1, f2 ∈ Fw
2 , we set p(f1 ?1 f2) := p(f1) + p(f2).

For every f, g ∈ Fw
2 , we set f > g if p(f)⇒m p(g). The relation > is a well-founded ordering of Fw

2 .
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Definition 6.9. We define an application wη : Fw
3 → N[A∗1] by setting:

• For every f ∈ Bw2 of length 1, wη(ηf ) = s(f).

• For every 3-cell A ∈ F3 and u, v ∈ A∗1, if A is not an ηf then wη(uAv) = 0.

• For every f1, f2 ∈ Fw
2 and A ∈ Fw

3 , wη(f1 ?1 A ?1 f2) = wη(A).

• For every A1, A2 ∈ Fw
3 , wη(A1 ?2 A2) = wη(A1) + wη(A2).

Definition 6.10. A product of the form f̄ ?1 g ∈ Fw
2 , where f and g are nonempty cells in Bw2 is called

a cavity. It is a local cavity if f and g are of length 1. Let CF be the set of all cavities.

Lemma 6.11. Let f, g ∈ Bw2 . Suppose f is not an identity and t(f) = s(g). The following inequality
holds:

s(f) > p(g)

Proof. We reason by induction on the length of g. If g is empty, then p(g) = 0 < s(f).
Otherwise, let us write g = g1 ?1 g2, with g1 of length 1. Then p(g) = p(g1) +p(g2) and by induction

hypothesis p(g2) < s(f ?1 g1) = s(f). Moreover we have f : s(f) ⇒ s(g1) and f ?1 g1 : s(f) ⇒ t(g1).
Hence s(f) > p(g1), s(g2), t(g2) and, by Lemma 6.5, we get s(f) > p(g1) + s(g2) + t(g2) = p(g).

Lemma 6.12. Let f1, f2, g1, g2 ∈ Bw2 , with f1 and f2 non-empty and of same source u. For every 3-cell
A : f̄1 ?1 f2 V g1 ?1 ḡ2 ∈ Fw

3 , the following inequalities hold:

p(s(A)) > u > p(t(A)).

In particular for every cell Cf,g, we have s(Cf,g) > t(Cf,g).

Proof. Considering the first inequality, we have p(s(A)) = p(f1) + p(g2) ≥ 2u > u.
Considering the second one, using Lemma 6.11, we have the inequalities u = s(f1) > p(g1) and

u = s(f2) > p(g2). By 6.5, we then have u > p(g1) + p(g2) = p(t(A)).

Definition 6.13. Let h ∈ Fw
2 . A factorisation h = h1 ?1 f̄1 ?1 f2 ?1 h2 of h, with f1, f2 ∈ Bw2 of length

1 and h1, h2 ∈ Fw
2 is called a cavity-factorisation of h. Thus a cavity-factorisation is represented as

follows:

h1

f1 f2

h2

Lemma 6.14. Let h ∈ Fw
2 be a 2-cell which is not an identity, and whose source and target are a normal

form for A2. Then there exists a cavity-factorisation of h.

Proof. By definition of Fw
2 , there exist n ∈ N∗ and g1, . . . , g2n ∈ Bw2 all not identities, except possibly

g1 or g2n, such that h = ḡ1 ?1 g2 ?1 . . . ?1 ḡ2n−1 ?1 g2n.
Let us show that g1 and g2n are not identities:

• If g1 is an identity, then since h isn’t, either n ≥ 2 or n = 1 and g2n is not an identity. In both
cases g2 is of length at least 1, and has s(h) as target, which contradicts the fact that s(h) is a
normal form for A2.

• The case where g2n is an identity is symmetric.

Therefore the 2-cells g1 and g2 are of length at least 1. So we can write g1 = f1 ?1 g
′
1 and g2 = f2 ?1 g

′
2,

with f1, f2 ∈ Bw2 of length 1. Let h1 := ḡ′1 and h2 := g′2 ?1 ḡ3 ?1 g4 ?1 . . . ?1 ḡ2n−1 ?1 g2n. We finally get:
h = h1 ?1 f̄1 ?1 f2 ?1 h2.

Lemma 6.15. Let h ∈ Fw
2 be a 2-cell of source and target û, a normal form for A2. There exists a

3-cell A : hV 1û such that wη(A) = 0.
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Proof. We reason by induction on h using the ordering >. If h is minimal, then h = 1û and we can set
A := 1h.

Otherwise by Lemma 6.14 there exists a cavity-factorisation h = h1 ?1 f1 ?1 f2 ?1 h2 of h. Let
A1 := Cf1,f2 : we have wη(A1) = 0 and by Lemma 6.12, s(A1) > t(A1). Since the ordering is compatible
with composition, we get h > h1 ?1 t(A1) ?1 h2. By induction hypothesis, there exists a 3-cell A2 :
h1 ?1 t(A1) ?1 h2 V 1û ∈ Fw

3 such that wη(A2) = 0.
Let A := (h1 ?1 A1 ?1 h2) ?1 A2. We have wη(A) = w(h1 ?1 A1 ?1 h2) + w(A2) = w(A1) + 0 = 0.

Lemma 6.16. Let h ∈ Fw
2 of source and target û a normal form for A2, and A : h V 1û ∈ Fw

3 . For
every cavity-factorisation h = h1 ?1 f̄1 ?1 f2 ?1h2, there exists a factorisation of A = (h1 ?1A1 ?1h2)?2A2,
with A1, A2 ∈ Fw

3 , and either A1 = Cf1,f2 or A1 = f̄1 ?1 ηf3 ?1 f2, with f3 ∈ Bw2 of length 1.

Proof. We reason by induction on the length of A. If A is of length 0, then there is no cavity-factorisation
of h = 1û and the result holds.

If A is not of length 0, let h = h1 ?1 f̄1 ?1 f2 ?1 h2 be a cavity-factorisation of h. Let us write
A = B ?1 C, where B is of length 1. If B is not of the required form, then either B = B′ ?1 f̄1 ?1 f2 ?1 h2,
or B = h1 ?1 f̄1 ?1 f2 ?1 B

′. Let us treat the first case, the second being symmetrical. The source of C
admits a cavity-factorisation s(C) = t(B′) ?1 f̄1 ?1 f2 ?1 h2. By induction hypothesis, we can factorise C
as follows:

C = (h′1 ?1 A1 ?1 h2) ?2 C
′,

with A1 = Cf1,f2 or A1 = f̄1 ?1 ηf3 ?1 f2. Let A2 := (B′1 ?1 t(A1) ?1 h2) ?2 C2: we then have A =
(h1 ?1 A1 ?1 h2) ?2 A2.

h1 f1 f2

h2
B A1

C ′

Lemma 6.17. Let h ∈ Fw
2 and u ∈ A∗1 such that u > p(h), u > s(h) and u > t(h). For every 3-cell

A ∈ Fw
3 of source h, the inequality u > wη(A) holds.

Proof. We reason by induction on the length of A. If A is of length 0, wη(A) = 0 and the result holds.
Otherwise, let us write A = A1 ?2 A2, with A1 of length 1. We distinguish two cases depending on

the shape of A1.

• If A1 = h1 ?1 ηf ?1 h2, with h1, h2 ∈ Fw
2 and f ∈ Bw2 of length 1.

If h1 and h2 are empty, then s(A2) = f ?1 f̄ . Thus p(s(A2)) = 2s(f) + 2t(f) ≤ 4s(f) = 4s(h).
Since s(h) < u, using Lemma 6.5, we get that p(s(A2)) < u. Applying the induction hypothesis to
A2, we get wη(A2) < u. Moreover, wη(A) = wη(A1) + wη(A2) = s(f) + w(A2), and we showed
that w(A2) < u and s(f) = s(h) < u. Thus according to Lemma 6.5, we get wη(A) < u.
Otherwise, suppose for example that h1 is not an identity (the case where h2 is not an identity being
symmetrical). Then we have vt(h1)(p(h1)) > 0, so vt(h1)(p(h)) > 0. Since p(h) < u, we have by
Lemma 6.5 that s(f) = t(h1) < u. So p(s(A2)) = p(h1)+p(h2)+2s(f)+2t(f) < p(h)+4s(f) < u.
By induction hypothesis, we thus have wη(A2) < u, and finally wη(A) = s(f) + wη(A2) < u.

• Otherwise, we have on the one hand that wη(A1) = 0, and on the other hand that s(A2) = t(A1) <
s(A1) = h < u by Lemma 6.12. Thus wη(A) = wη(A2) < u.

Lemma 6.18. Let (f1, f2, f3) be a 3-fold local branching, u ∈ A∗1, and A,B ∈ Fw
3 two 3-cells such that

there exists a 4-cell:

Cf1,f3,f2 : f̄1 ?1 ηf3 ?1 f2 ?2 (Cf1,f3 ?1 Cf3,f2) ?2 A→ Cf1,f2 ?2 B.

Then wη(A),wη(B) < u.

61



Proof. Using Lemma 6.12, we have p(t(Cf1,f2)),p(t(Cf2,f3)),p(t(Cf1,f3)) < u. So p(s(A)) = p(t(Cf1,f2)+
p(t(Cf2,f3)) < u et p(s(B)) = p(t(Cf1,f3)) < u, and using 6.17, we get wη(A),wη(B) < u

6.3 Partial coherence of Fw(3)

Proposition 6.19. For every 2-cell h ∈ Fw
2 with source and target û a normal form for A2, and for

every 3-cells A,B : hV 1û ∈ Fw
3 , there exists a 4-cell α : A→ B ∈ Fw(3)

4 .

Proof. We reason by induction on the couple (wη(A) + wη(B),p(h)), using the lexicographic order. If
h = 1û, then A = B = 1h. Thus setting α = 1A = 1B shows that the property is verified.

Suppose now that h is not an identity. Using Lemma 6.14, there exists a cavity-factorisation h =
h1 ?1 f̄1 ?1 f2 ?1 h2. By Lemma 6.16, there exist A1, A2, B1, B2 ∈ Fw

3 , such that A = (h1 ?1A1 ?1 h2)?2A2

and B = (h1 ?1 B1 ?1 h2) ?2 B2. Using this Lemma , we distinguish four case depending on the shape of
A1 and A2.

If A1 = B1 = Cf1,f2 . Then in particular we have:

s(A2) = s(B2) wη(A) = wη(A2) wη(B) = wη(B2) t(A1) < s(A1),

where the last inequality is a consequence of Lemma 6.12. Hence we get p(s(A2)) = p(h1) +p(t(A1)) +
p(h2) < p(h1) + p(s(A1)) + p(h2) = p(h), and finally (wη(A2) + wη(B2),p(s(A2))) < (wη(A) +

wη(B), h)). Using the induction hypothesis there exists α : A2 → B2 ∈ Fw(3)
4 , and by composition we

construct A1 ?2 α : A→ B.

If A1 = f̄1 ?1 ηf3 ?1 f2 and B1 = Cf1,f2 . We are going to construct the following composite:

h1

f1 f2
h2

h1 h2
h1

f1 f2
h2

h1 h2

1û

h1 ?1 Cf1,f2 ?1 h2h1 ?1 Cf1,f2 ?1 h2h1 ?1 f̄1 ?1 ηf3 ?1 f2 ?1 h2h1 ?1 f̄1 ?1 ηf3 ?1 f2 ?1 h2

D1D1 D2D2

A2A2 B2B2

D3D3

α1

α2 α3

According to Lemma 6.3, there exists a 4-cell

Cf1,f3,f2 : f̄1 ?1 ηf3 ?1 f2 ?2 (Cf1,f3 ?1 Cf3,f2) ?2 D
′
1 → Cf1,f2 ?2 D

′
2,

with D′1, D′2 ∈ F
w(3)
4 . Let us define D1 := h1 ?1 (Cf1,f3 ?1 Cf3,f2) ?2 D

′
1) ?1 h2, D2 := h1 ?1 D

′
2 ?1 h2, and

α1 := h1 ?1 Cf1,f3,f2 ?1 h2. The existence of D3 is guaranteed by Lemma 6.15, which also proves that we
can choose D3 such that wη(D3) = 0.

In order to construct the 4-cells α1 and α2, let us show that we can apply the induction hypothesis
to the couples (A2, D1 ?2 D3) and (D2 ?2 D3, B2). Let v be the common source of f1 and f2.

• Using Lemma 6.18, wη(D1 ?2 D3) = wη(D1) = wη(D′1) < v, and so:

wη(A2) + wη(D1 ?2 D3) < wη(A2) + w(η3) = wη(A) ≤ wη(A) + wη(B).
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• As previously wη(D2 ?2 D3) = wη(D2) = wη(D′2) < v, and so:

wη(B2) + wη(D2 ?2 D3) < wη(B2) + w(η3) ≤ wη(B) + wη(A).

If A1 = Cf1,f2 and B1 = f̄1 ?1 ηf3 ?1 f2. This case is similar to the previous one, only using C−1
f1,f3,f2

rather than Cf1,f3,f2 .

If A1 = f̄1 ?1 ηf3 ?1 f2 and B1 = f̄1 ?1 ηf4 ?1 f2. We are going to construct the following composite:

h1

f1 f2
h2

h1

f1 f2
h2 h1

f1 f2
h2

h1

f1 f2
h2

1û

h1 ?1 f̄1 ?1 ηf3 ?1 f2 ?1 h2h1 ?1 f̄1 ?1 ηf3 ?1 f2 ?1 h2 h1 ?1 f̄1 ?1 ηf4 ?1 f2 ?1 h2h1 ?1 f̄1 ?1 ηf4 ?1 f2 ?1 h2

D1D1 D2D2

A2A2 B2B2

D3D3

α1

α2 α3

Let us set
D1 := h1 ?1 f̄1 ?1 f3 ?1 f̄3 ?1 ηf4 ?1 f2 ?1 h2

D2 := h1 ?1 f̄1 ?1 ηf3 ?1 f4 ?1 f̄4 ?1 f2 ?1 h2.

We then have

(h1 ?1 A1 ?1 h2) ?2 D1 = h1 ?1 f̄1 ?1 ηf3 ?1 ηf4 ?1 f2 ?1 h2 = (h1 ?1 B1 ?1 h2) ?1 D2.

Hence we define α1 as an identity. Let now D3 be as in Lemma 6.15, with wη(D3) = 0, and v be the
common source of f1, f2, f3 and f4. We then have the inequalities:

wη(A2) + wη(D1) + wη(D3) = wη(A2) + v < wη(A2) + wη(B2) + 2v = wη(A) + wη(B),

wη(B2) + wη(D2) + wη(D3) = wη(B2) + v < wη(B2) + wη(A2) + 2v = wη(A) + wη(B).

Hence we can apply the induction hypothesis to the couples (A2, D1 ?2 D3) and (D2 ?2 D3, B2), which
provides α2 and α3.

Proposition 6.20. The (4, 3)-white-category Fw(3) is SE -coherent.

Proof. Let A,B : f V h ∈ Fw
3 whose 1-target is a normal form û, with f, g ∈ Bw2 .

The 3-cells (h̄ ?1 A) ?2 εh and (h̄ ?1 B) ?2 εh are parallel, and their target is 1û. In particular they
verify the hypothesis of Proposition 6.19. So there exists α : (h̄ ?1 A) ?2 εh → (h̄ ?1 B) ?2 εh. Then the
following composite is the required cell from A to B:

63



f

h

A

f

h
h

hηh εh

A

f

h
h

hηh εh

B
f

h

B

τ−1
hτ
−1
h

αα

τhτh

We can now complete the proof of Theorem 1.27. Indeed we showed that Fw(3) is SE -coherent.
Using Proposition 4.29, that means that Ew(3) is SE -coherent, and finally using Lemma 4.23 that A∗(2)

is SA-coherent, that is that for every 3-cells A,B ∈ A∗(2)
3 , there exists a 4-cell α : A→ B ∈ A∗(2)

4 .
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