N

N

Using GDT4MAS as a Formal Support for Engineering
Multi-Agents Systems

Bruno Mermet, Gaéle Simon

» To cite this version:

Bruno Mermet, Gaéle Simon. Using GDT4MAS as a Formal Support for Engineering Multi-Agents
Systems. 10th International Conference on Software Engineering and Applications (ICSOFT-EA
2015), Jul 2015, Colmar, France. 10.5220/0005556904070412 . hal-01191767

HAL Id: hal-01191767
https://hal.science/hal-01191767

Submitted on 2 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01191767
https://hal.archives-ouvertes.fr

Using GDT4MAS as a formal support for engineering
multi-agents systems

Bruno Mermet! and Gaéle Simon

1

YGREYC-UMR 6072 and University of Le Havre, Université de Caen Basse-Normandie, Campus Céte de

Nacre, Boulevard du Maréchal Juin, 14032, CAEN cedex 5, FRANCE
Bruno. Mermet@Quniv-lehavre. fr

Keywords:
Agent-Oriented Software Engineering, Formal specification, Formal verification

Abstract:
This paper focuses on multi-agent systems engineering process. An assessment of current needs in
this domain, based on the analysis of systems already developed, is performed. This assessment
shows that the formal verification of MAS is one of these needs. It is then shown how the formal
approach GDT4MAS provides answer to many of the other needs. This approach is based on a
MAS formal specification associated to a proof process allowing to establish the correctness of
properties of the system. The main purpose of this paper is to show that, unlike most other formal
approaches for MAS, GDT4MAS can at the same time propose formal aspects making a proof
possible and contribute to different general aspects of agent-oriented software engineering, even

when formal verification is not a concern.

1 Introduction

Most failures in software development are a
consequence of miss-adapted methodologies or of
the weaknesses of tools that are used. In the
domain of standard software, recent years led to
the design of new methodologies (relying on the
agile concepts) and to the development of new
tools to reduce the ratio of unsucessful develop-
ments (Beck et al., 2001; Martin, 2009).

However, as it has been explained in other
works (Ahmad and Rahimi, 2009), Multi-Agent
Systems are specific softwares and require their
own methods and tools. Moreover, we are mainly
interested in formal specification and formal veri-
fication, and these techniques, which are also very
specific, require their own methods and tools.

This led to the design of the GDT4MAS
method and model, presented in (Mermet and
Simon, 2009). GDT4MAS proposes its own lan-
guage to specify, design and implement MAS.
But, as this model relies on concepts that are
shared by most MAS architectures, it provides
characteristics that may be useful for anyone in-
terested in the development of MAS, even for peo-
ple that are not interested in formal methods.

The goal of this article is then to show how

GDT4MAS tackles many requirements that are
exhibited by several works dealing with Agent
Oriented Software Engineering and why using
GDT4MAS may help MAS designers.

In the next section, we present the concepts
of GDT4MAS that must be known to understand
this article. In section 3, we explain why it may
be interesting to verify Multi-Agent Systems, and
we show why GDT4MAS is a good candidate to
perform such a task. Then, we explain how this
model helps in the development process where
several kinds of stakeholders take place. Section 5
presents how incremental development can be in-
stanciated thanks to GDT4MAS. In the next sec-
tion, it is shown how several kinds of MAS archi-
tectures can be modeled thanks to the expressive-
ness of GDT4MAS.

2 GDT4MAS
2.1 Main Concepts

We only summarize here the essential parts of
GDT4MAS.More details can be found in (Mer-
met and Simon, 2009; Mermet and Simon, 2011;
Mermet and Simon, 2013).

When specifying MAS with GDT4MAS, 3
parts have to be specified: the environment, the
types of agents and the agents themselves, that
are instances of each type of agent, with spe-
cific initialisation values. In the sequel, we briefly
present these different parts.

The environment is specificied by a set of
typed variables and an invariant property ig.

The type of an agent is specified by a set of
typed variables, an invariant and a behaviour.

The behaviour of an agent is mainly defined
by a Goal Decomposition Tree (GDT). The GDT
is a tree of goals, whose root corresponds to the
main goal of the agent (in the standard version of
GDT4MAS, agents have only one main goal). A
plan is associated to each goal. Such a plan, when
executed with success, must achieve the goal and
is expressed either by a single action of by a set of
subgoals linked together by a decomposition op-
erator.

A goal G is mainly described by a name ng, a
satisfaction condition scg and a guaranted prop-
erty in case of failure gpf .

The satisfaction condition (SC) of a goal is
specified formally by a formula that is satisfied
when the execution of the goal succeeds. On the
other hand, the GPF of a goal specifies what hap-
pens when a goal execution fails (of course, it is
meaningless for an NS goal, that is to say a goal
that always succeed).

SC and GPF are state transition formulae
(STF), because they express a relation between
two states, called initial state and final state. In
the sequel, we will use the term non-deterministic
state transition formula when for a given initial
state, several final states satisfy the STF. For ex-
ample, formula 2’ > x is a non-deterministic STF
because, for a given initial state (z = 0 for in-
stance), several final states (' = 2, 2’ = 10)
satisfy the formula.

2.2 GDT example

Figure 1 shows an example of GDT. The goal of
this behaviour is to light a given room n (n is a
parameter of the GDT). In order to do that, the
agent tries to enter into the room. As a cellular
eye detects when someone enters into the room
and switches the light on, this looks like a suitable
plan. However, if the cellular eye does not work
as expected (this is why the goal Entering into
the room is NNS, i.e. not NS), the agent will
have to use the switch. More details can be found
in (Mermet and Simon, 2013)

L=
vl_ightedRoom;g)

%/ncSeqCN

(UsingCellularEye) ~ switch > (((UsingSwitch))
%cSqundmrn
. —_ /7 Opening \\<—————_~ Entering
opening ' [the door)/ entering X into the

- room

Figure 1: Example of a GDT

2.3 Agents

Agents are specified as instances of types of
agents, with effective values for the agent type
parameters.

2.4 Proof principles

The proof mechanism provided by GDT4MAS
aims at proving the following properties: agents
preserve invariant properties (Mermet and Simon,
2013), agents behaviour are sound, that is to say,
plans associated to goals are correct and agents
achieve liveness properties that may be associated
to their agent type.

Moreover, this proof mechanism relies on a few
important principles: proof obligations (proper-
ties to be proven) can be generated automatically
from a GDT4MAS specification, proof obligations
are expressed in first-order logic and can be ver-
ified by any adequate automatic theorem prover
and finally, the proof system is compositional: the
proof of the correctness of an agent is decomposed
into several small independent proof obligations.

2.5 Holonic GDT4MAS

An extension of GDT4MAS has been presented
in (Mermet and Simon, 2011), where it has been
shown that the execution of the goal of an agent
can be performed thanks to several sub-agents (a
holonic agent is itself made of sub-agents).

Figure 2 illustrates the usage of the ParAnd
operator. The root goal in this figure corresponds
to one of the goals of a holonic agent. To achieve
this goal, two sub-agents, A; and As, represented
by hexagons, are started by the holonic agent. A,
(whose behaviour is described by a GDT that is
not presented here) tries to achieve its main goal,
whose satisfaction condition is SC; and As tries
to achieve a goal whose satisfaction condition is
SC5. If either Ay or A, fails, the execution of
the other sub-agent is stopped. But if both sub-
agents achieve their main goal, then the parent
goal is achieved.

Figure 2: Example of a holonic agent

3 Verification of Agent behaviours

For more than ten years, many papers have fo-
cused on the necessity to bring guarantees on the
correctness of multi-agents systems. Indeed, it
appears that it is one of the main reasons explain-
ing the small acceptance of MAS in industry (Ah-
mad and Rahimi, 2009). Moreover, it is also es-
tablished that formally verifying MAS is certainly
the adequate solution (Demazeau, 2004).

However, papers dealing with formal specifi-
cation of MAS are scarce, for several reasons:

e formally verifying MAS is a very hard prob-
lem. Indeed, formal verification of standard
software is already a complex problem, and
solutions provided by formal methods cannot
be applied to whole huge systems. So, as MAS
are more complex systems, trying to formally
verifying them seem vain for many people.

e Most MAS formal verification systems con-
sider verifying the whole system behaviour
(as METATEM for instance (Fisher, 2006)),
which is certainly a too complex task on real-
size systems. On Standard softwares, formal
verification generally concern only the safety
core of the sofware (Abrial, 1996); So, try-
ing to apply formal verification techniques to
whole MAS is likely to lead to failure.

e Many formal verification works use a dedi-
cated specification language that is only used
for the specification and for the verification
and then, the system must be implemented
in a traditional programming language. As a
consequence, they may be few links between
the verified specification and the implemented
program (Ahmad and Rahimi, 2009; Abrial,
1996).

e Trying to reuse standard formal verification
methods to MAS leads to defeat. In particu-
lar, the autonomy of agents is not consistent
with the main concepts of these tools: indeed,
standard formal methods rely on the fact that
the whole system is known when the verifica-
tion is performed (Abrial, 1996). This is not

suitable to MAS, where autonomous agents
can be part of the system.

e most work so far dealing with formal verifi-
cation of MAS rely on model-checking (Rai-
mondi and Lomuscio, 2004; Kacprzak et al.,
2004), which is not the most suitable choice
in most cases. Indeed, model-checking is a
verification mechanism that is mainly dedi-
cated to finite-state systems, as it consists
in an exhaustive test of the system. But in
multi-agent systems, as agents actions are in-
terlaced, studying the whole set of possible
traces is most of the time not feasible.

GDT4MAS clearly proposes a solution to the
first problem, as it is a method designed to per-
form formal verification.

Moreover, when using GDT4MAS, it is easy
to formally specify and verify safety parts, while
not verifying less essential parts. Of course, in
this latter case, the correctness is established un-
der the assumption that non-formalized parts are
correct. This clearly provides a solution to the
second problem.

An other important characteristics of
GDT4MAS is that a generalized translation
system of a GDT4MAS specification in any
imperative language using automata has been
designed (and formally verified), and a version
for Java as been implemented. So, the verified
specification can be automatically translated into
Java to be executed, or to interact with other
Java programs. As a consequence, the formal
specification need not to be transcripted by hand
in a programming language.

In addition, as GDT4MAS has been designed
to verify MAS, the autonomy of agents is well
taken into account. Verification of agents are
performed independently of the other agents,
and only proofs depending on agents interactions
(based on external goals) take into account the
instances of agent types.

Finally, GDT4MAS relies on theorem proving,
that seems, for us, to be a quite better solution
than model-checking. Indeed, model-checking is
well suited for finite-state systems, which is not
true for MAS. When considering the potential
huge number of agents in a MAS, and the mas-
sive distributed aspect that it implies, it greatly
reduces the potential applications of techniques
relying on model-checking.

To conclude, GDT4MAS proposes a wide-
purpose method, going from the early specifica-
tion to the executable code via formal verification.

4 Separation of engineering tasks

During the whole development process of a
software, several tasks have to be performed, and
these tasks may be devoted to different persons,
according to their skills. In standard software de-
velopment processes, the following tasks are of-
ten distinguished: requirement engineering, de-
sign (preliminary and detailed), implementation
and test. When dealing with formal verification,
an other task must be added: the verification
task. However, the way the result of each task
is used by the others is often fuzzy.

Distinguishing tasks and roles is a very impor-
tant point in a software development process, for
two main reasons:

e it helps in scheduling the development process
and in parallelizing work;

e it helps in attributing to each stakeholder the
most suitable tasks.

When using GDT4MAS, the development pro-
cess is also decomposed into several steps:

e the first step consists in determining agent
types (with their capabilities) and environ-
ment variables;

e the second step consists in specifying the root
goals and the variables of the agent types;

e the third step consists in progressively decom-
posing goals of agents into sub-goals.

These steps matched more or less the require-
ment engineering, preliminary design and de-
tailed design tasks. The implementation task is
missing because it may be performed automati-
cally at the end of the third step.

The formal aspects can be handled in parallel
during each step:

e during the first step, it consists in formally
specifying the environment invariant and the
agent actions;

e during the second step, it consists in formally
specifying the main goal (satisfaction condi-
tion and gpf) of each agent type and the in-
variant of each agent type;

e during the third step, it consists in formally
specifying each subgoal, and in verifying in-
variants and goal decompositions.

The fact that formal aspects may be isolated
from the rest is very important. Indeed, a devel-
oper is seldom at ease with formal methods, and
a method that clearly separates the formal as-
pects from the other tasks has greater chances to

please. Indeed, an industrial firm may continue
to use the skills of its employees, and only a few
new ones should be hired. Moreover, when spec-
ification and verification roles are distinguished,
the hardest part (the verification) can be devoted
to an expert of the prover.

This segregation of formal aspects is seldom
present in formal verification systems that are
proposed for MAS, and this is certainly one of
the major aspects that explain they are seldom
used (Ahmad and Rahimi, 2009).

However, tests are not tackled by GDT4MAS.
Of course, when formal methods are used, tests
are less necessary. But they remain useful, as
they consider also parameters that are not taken
into account by the formal verification (the envi-
ronment of execution, the system or the compiler
for instance). So, it is the responsibilty of the de-
velopment team to manage tests. But we aim at
improving GDT4MAS in order to use it to help
in writing test cases.

5 Incremental development

For several years, it has been established that
most software development projects fail because
they are badly managed (Zeller, 2009). Thus,
recent development methods rely on incremental
technique. This is for instance the case of the “in-
cremental development”, but this is also the basis
of the Test-Driven-Development technique (Beck,
2002).

Incremental development can be considered
in two opposite directions. In standard devel-
opment, the incremental aspect is mainly imple-
mented in a bottom-up way: a small compoment
is first designed and developed to obtain a first
prototype, and then, new components are pro-
gressively designed, developed and merged with
the previous propotype.

When developing agents, it is not easy to use a
bottom-up incremental development because the
goal-oriented specification of agents and the no-
tion of plan look more like a top-down specifica-
tion. And this is exactly one of the main princi-
ples of GDT4MAS. Specifying the resolution of a
goal by a set of subgoals and a decomposition op-
erator directly implements a top-down method.
Moreover, in GDT4MAS, two principles are es-
sential to make this process efficient.

Firstly, decompositions of sibling nodes are in-
dependant. This facilitates the progressive design
of the resolution process of different subgoals of
a given goal, and this is a very important notion

to facilitate incremental development.

Secondly, decompositions rely on the refine-
ment principle. The refinement notion is a key
notion in the formal specification domain. There
are several definitions of refinement, but all the
definitions of the action refinement share a com-
mon aspect that we can informally summarize by
the following sentence: an action ag refines an
action a; if and only if all the state changes al-
lowed by ag are also allowed by a; (Back and
Sere, 1991). For instance, ' > x is refined by
2’ > x + 5, which is refined by 2’ = x + 10.

This implies that thanks to refinement, we can
reduce indeterminism of goals, and as a conse-
quence, it is completely possible to use indeter-
minism in goal specifications. In GDT4MAS, in-
determinism is allowed in goals specifications via
non-deterministic STF, and so, we have extended
the notion of action refinement to the notion of
goal refinement.

Refinement is a key notion to make incremen-
tal top-down development. Indeed, a top level
goal can be abstract and non deterministic. It is
then possible to refine it by decomposing it into
more deterministic goals, that can then be also
refined and so on. Moreover, refinement makes
possible the introduction of new variables. In-
deed, as the STF &’ > x does not specify anything
on variable y, it can be refined by the following
STF: v = 4A2' =z +y. It is so possible to
start with very high level goals, and incremen-
tally detail their implementation by reducing the
indeterminism thanks to goal refinement/goal de-
composition.

6 Modeling different agent models

As explained in section 4, when using
GDT4MAS, during the third development step,
agent behaviours must be designed. Depending
on the agent type, different models of agents may
be used. GDT4MAS gives to the designer a large
choice of models. The goal of this section is to
show how some of them can be specified with
GDT4MAS.

6.1 Specifying agents with goals

Whatever the model of agents is used, agents
are most of the time described using the notion
of goal. This is for instance the case in mod-
els relying on BDI agents, like Agentspeak (Rao,
1996). This is also the case of GDT4MAS. More-
over, goals are often divided into two categories:

achievement goals and maintain goals. Both
types are present in GDT4MAS.

Achievement goals are represented by stan-
dard goals of GDT4MAS. However, two types
of achievement goals are distinguished: progress
goals (the resulting state is expressed as a modifi-
cation of the initial state, for instance ' = z+1)
and state-reaching goal (the resulting state is ex-
pressed in an absolute way, for instance, ' = 5).

The semantics given to “maintain goals”
varies from one article to another. A maintain
goal comnsists either in guaranteeing that a prop-
erty remains always true or in re-establishing a
property each time it becomes false. The first
case can be directly expressed in GDT4MAS by
invariants. In the second case, a progress goal can
be expressed thanks to an agent whose main goal
expresses the property to establish, and whose
triggering context is the negation of this prop-
erty. So, as soon as the property becomes false,
the execution of the agent begins in order to re-
establish the desired property.

In many agent models or agent-oriented lan-
guages, when an agent must achieve a goal, it
tries a plan then perhaps another, and so on. But
it is not clear to understand why the agent tries
an other plan or not, according to the goal. Is
it because the goal has not been achieved ? Or
because the plan could not be completed ? And
when a goal is removed from the goal base, is
it because it has been achieved ? Or because it
seems it is impossible to achieve ? Or because it
is obsolete ? In GDT4MAS, we determine which
goals are non-necessarily satisfiable, and the op-
erational semantics of the GDT operators relies
on the fact that a goal has been achieved or not.
This criterion is seldom considered in agent spec-
ification models.

GDT4MAS takes into account that a goal may
be achieved even if the execution of the plan as-
sociated to this goal (ie. its decomposition) has
failed. Indeed, it has been shown that, because of
side effects, this may happen (Mermet and Simon,
2009).Forgetting this fact may lead to specify in-
correct behaviours.

6.2 Expressiveness of GDT4MAS

Through several articles, the expressiveness of
GDT4MAS seems adapted to model most prob-
lems tackled by multi-agent systems.

For instance, it has been shown in (Mermet
and Simon, 2011) that agents mixing cognitive
and reactive behaviours can be easily specified
thanks to the holonic extension of GDT4MAS.

The exception management is also a key is-
sue in MAS (Klein et al., 2003), But it is rarely
handled by MAS models and languages (Platon
et al., 2008) like AgentSpeak for instance. How-
ever, once again, thanks to the holonic extension
of GDT4MAS, this can be clearly specified with
GDT4MAS, as explained in (Mermet and Simon,
2011).

Finally, many communication styles can ben
specified with GDT4MAS. To our knowledge, this
is the only formal model dedicated to MAS that
manage this aspect of MAS. Communications are
indeed ignored in other formal systems such as
METATEM for instance.

7 Conclusion

Throughout this article, we have shown that
GDT4MAS presents very interesting characteris-
tics to help in engineering multi-agent systems.
Although this model has been designed in order
to formally verify MAS;, its characteristics can be
re-used in a wider context of MAS engineering.
It is moreover interesting to notice that, most of
the time, these characteristics were not precon-
ceptions, but they are the consequence of the will
of the designers of the model to have a usable
formal verification system.

Of course, an important requirement to use a
model to support engineering is that CASE-tools
exist for this model. We have chosen not to detail
this aspect in this article to focus on the charac-
teristics of the model. But it is important to no-
tice that GDT4MAS has been designed from the
beginning to be supported by tools. For instance,
a platform has been developed to execute specifi-
cations either automatically or step by step. This
platform also generates proof obligations in a for-
mat compatible with the automatic prover PVS.
Morover, a web application is being developed to
help in editing GDT4MAS specifications.

In order to increase the use of Multi-Agent
Systems, it is crucial to provide models that help
in designing and implementing such complex sys-
tems, and it is also important to provide tech-
niques that increase the confidence in such sys-
tems. GDT4MAS is certainly a good candidate
for that.

REFERENCES

Abrial, J.-R. (1996). The B-Book. Cambridge Univ.
Press.

Ahmad, R. and Rahimi, S. (2009). Motivation for
a new formal framework for agent-oriented soft-
ware engineering. IJAOSE, 3(2/3):252-276.

Back, R.-J. and Sere, K. (1991). Stepwise refine-
ment of action systems. Structured Program-
ming, 12(1):17-30.

Beck (2002). Test Driven Development: By Ezample.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Beck, K. et al. (2001). Manifesto for agile software
development.

Demazeau, Y., editor (2004). Systmes Multi-Agents,
volume 29 of ARAGO. OFTA.

Fisher, M. (2006). Metatem: The story so far.
In Proceedings of the Third International Con-
ference on Programming Multi-Agent Systems,
ProMAS’05, pages 3-22, Berlin, Heidelberg.
Springer-Verlag.

Kacprzak, M., Lomuscio, A., and Penczek, W.
(2004). Verification of multiagent systems via
unbounded model checking. In AAMAS’0/.

Klein, M. et al. (2003). Using domain-independent ex-
ception handling services to enable robust open
multi-agent systems: The case of agent death.
Autonomous Agents and Multi-Agent Systems,
7(1-2):179-189.

Martin, R. C. (2009). Clean Code: A handbook of
agile software craftsmanship. Prentice Hall.
Mermet, B. and Simon, G. (2009). GDT4MAS: an
extension of the GDT model to specify and to
verify MultiAgent Systems. In et al., D., editor,

Proc. of AAMAS 2009, pages 505-512.

Mermet, B. and Simon, G. (2011). Specifying recur-
sive agents with gdts. Autonomous Agents and
Multi-Agent Systems, 23(2):273-301.

Mermet, B. and Simon, G. (2013). A new proof sys-
tem to verify gdt agents. In Zavoral, F., Jung,
J. J., and Badica, C., editors, IDC, volume 511
of Studies in Computational Intelligence, pages
181-187. Springer.

Platon, E., Sabouret, N., and Honiden, S. (2008). An
architecture for exception management in mul-
tiagent systems. IJAOSE, 2(3):267-289.

Raimondi, F. and Lomuscio, A. (2004). Verification
of multiagent systems via orderd binary decision
diagrams: an algorithm and its implementation.
In AAMAS’04.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak
out in a logical computable language. In van
Hoe, R., editor, Seventh Furopean Workshop on
Modelling Autonomous Agents in a Multi-Agent
World, Eindhoven, The Netherlands.

Zeller, A. (2009). Why Programs Fail: A Guide
to Systematic Debugging. Morgan Kaufmann,
Burlington, MA, 2 edition.

