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Comparison between thick level set 
(TLS) and cohesive zone models
Andrés Parrilla Gómez1, Nicolas Moës1* and Claude Stolz1,2

Background
Modeling the failure of quasi-brittle structures is an important aim of numerical simula-
tions. Two main kind of models have been developed [1]: crack based ones, as the cohe-
sive zone model, and damage based ones. The first ones deals with crack evolution in 
elastic materials whereas damage models consider a continuous transition from sound 
to totally damaged materials.

Quasi-brittle structures are characterized by the existence of a non-negligible fracture 
process zone. Linear elasticity fracture mechanics (LEFM) does not apply as it requires 
this zone to be negligible. In cohesive zone models (CZM), it is assumed that the process 
zone is concentrated over a line (2D problems) or a surface (3D), that defines the crack 

Abstract 

Background:  Two main families of methods exist to model failure of quasi-brittle 
structures. The first one consists on crack based models, like cohesive zone models. 
The second one is a continuum damage approach that leads to a local loss of stiffness. 
Local damage models need some regularization in order to avoid spurious localization. 
A recent one, the thick level set damage model, bridges both families by using level-
sets. Cohesive and TLS models are presented. The cohesive one represents quasi-brittle 
behaviors with good accuracy but requires extra equations to determine the crack 
path. The TLS has proved its capability to model complex crack paths while easily rep-
resenting cracks (i.e. displacement jumps); contrary to most damage models.

Methods:  A one-dimensional analytical relationship is exhibited between TLS and 
cohesive models. The local damage behavior needed to obtain the same global behav-
ior of a bar than with cohesive model is derived. It depends on the choice of some 
TLS parameters, notably the characteristic length ℓc. This local behavior is applied to 
bi-dimensional simulations of three point bending as well as mixed-mode single edge 
notched specimens are performed. Results are compared to cohesive simulations, 
regarding both crack paths and force-CMOD curves.

Results:   Force-CMOD curves obtained are very similar with both models. Theoretical 
analysis in 1D and numerical results in 2D indicates that, as ℓc goes to zero, TLS results 
tend to CZM ones.

Conclusions:  The TLS model yields very similar results to the cohesive one, without 
the need for extra equations to determine the crack path.
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path. Damage models make no strong assumption on its size and shape; damaged zone 
length and width are a priori not negligible compared to the size of the material domain.

The CZM definition needs to know the crack path. If it is unknown, LEFM based 
methods exist to predict it. Even if most cohesive models cannot handle complex crack 
paths, such as branching, some adaptations [2, 3] allow to do so. Regarding damage 
models, there exist different families. Indeed, purely local damage presents spurious 
localization and different regularization methods have been proposed: strain or damage 
averaging, higher-order gradient, phase-field, variational models... These models are able 
to deal with complex damaged zone shape evolution but present important difficulties to 
deal with jump in displacement. Moreover, as damage evolution law has to be enforced 
over the whole material domain, computational cost is more important than for cohesive 
models.

The crack band model [4] is an intermediate between the cohesive model and classical 
damage ones, as damage is represented as a non-linear behavior of some elements that 
defines the crack path. However, damage band width is only dependent on the chosen 
elements that have a non-linear behavior and the crack path has to be previously deter-
mined. More recently, a level-set based damage model, the thick level set (TLS) model, 
has been presented [5]. This damage model bridges both families of models as it is able 
to recover complex crack paths while introducing jumps in displacement in a natural 
way. Contrary to the crack band model, the width of the damage band is here a param-
eter that is not related to the mesh.

The goal of this paper is to establish a one-dimensional equivalence between the cohe-
sive zone model and a damage model with TLS regularization. Note that similar analysis 
concerning cohesive and gradient damage models has been performed by Lorentz in [6]. 
Thus, based on this equivalence, a method to derive a local damage behavior to use in 
TLS from any cohesive behavior will be exhibited. Later, it will be used in two-dimen-
sional simulations and results will be compared to classical cohesive simulations, that 
have proved their capability to reproduce experimental results.

We consider structures under quasi-static load. We restrict the study to small strain 
and displacement and no particular shear behavior is considered, unlike in [7]. The rela-
tionship between cohesive and TLS models is analyzed. A one-dimensional equivalence 
is analytically first established. Then, these results are used to compare two-dimensional 
behaviors.

Let us start with the one-dimensional comparison between the cohesive and the TLS 
models. We consider an elastic bar of length 2L: x ∈ [−L, L] and Young modulus E. Deg-
radation in this bar will be modeled either with a cohesive zone located at x = 0 or with 
an evolving damage layer centered at x = 0. Due to symmetry, only half of the bar needs 
to be considered: x ∈ [0, L]. Let u(x) denote the displacement along the bar and in par-
ticular u(L) = uL the displacement of the extremity. The stress σ is here a scalar variable.

In the cohesive zone model, the displacement at x = 0 is discontinuous and the cohe-
sive zone opening is given by w = 2u(0+). Regarding the TLS model, the extent of the 
damage layer over the half-bar is denoted by [0, l] where x = l corresponds to the cur-
rent damage front location. An example of the displacement u(x) for both cohesive and 
TLS models is shown in Fig. 1.
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Cohesive zone model

The cohesive zone model was first introduced by Dugdale in [8] for ductile materials and 
by Barenblatt in [9] for concrete. The model represents the progressive fracture process 
by condensing over a crack the effect of the whole fracture process zone. A cohesive 
behavior is imposed between the crack lips (see Fig. 2a). The bi-linear cohesive law, well-
known for concrete behavior, is presented in Fig. 3a. This model is widely used [1] and 
is considered to have good capabilities to fit experimental results when the crack path is 
known. If it is not previously known, a complementary method, like the maximum tan-
gential stress (MTS) criterion [10], has to be applied.

Let us consider the following free energy of the cohesive zone, located at x = 0.

where k > 0 and gCZM is a decreasing dimensionless function that characterizes the 
stiffness of the cohesive zone. We derive the dual quantities t (tension) and A

(1)�CZM(w,α) =
1

2
gCZM(α)kw2

(2)σ =
∂�CZM

∂w
= gCZM(α)kw

−L −l 0 l L

w

position x
di
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la
ce
m
en
t
u
(x
)

TLS
CZM

Fig. 1  Displacement over the whole bar for CZM and TLS models for a partially damaged bar. L is the length 
of the bar and l the position of the damage front in TLS model.

σ

a Cohesive zone. b Thick level set model.

Fig. 2  Representation of an open crack with a cohesive zone (left) and with a TLS damage zone (right). Dark 
(light) gray indicates (un) damaged.
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The evolution of α is governed by the criterion fCZM(A,α) = A− Ac(α) with the associ-
ated law:

where Ac(α) is supposed to be finite for all α.
The model depends on two functional parameters: gCZM(α) and Ac(α). When they are 

known, and assuming the uniqueness of evolution of α for any opening history, we can 
derive a tension-opening curve f that describes the tension of the cohesive zone under a 
monotonously increasing opening w. We will denote by F the corresponding dimension-
less function:

The relation between gCZM, Ac and f writes from (2), (3), (4) and (5):

Here, we will only consider cohesive behaviors with infinite initial stiffness and null stiff-
ness for α = 1 (see Fig. 4), that is

We define two characteristic values: σf  and wf

(3)A =−
∂�CZM

∂α
= −

1

2
g ′CZM(α)kw2

(4)fCZM(A,α) ≤ 0, α̇ ≥ 0 and fCZM(A,α)α̇ = 0

(5)σ = f (w)

(6)∀α, kgCZM(α)

√

−2Ac(α)

kg ′CZM(α)
= f

(√

−2Ac(α)

kg ′CZM(α)

)

(7)lim
α→0+

gCZM(α) = +∞ and gCZM(1) = 0

(8)wf = lim
α→1−

w(α) = lim
α→1−

√

−2Ac(α)

kg ′CZM(α)

w

σ

wfw1wk

σf

σk

σ2

σf

ε

σ
lc =15 mm

lc =30 mm

lc =60 mm

lc =100 mm

a Cohesive bi-linear law. b TLS equivalent local behavior for different �c values.

Fig. 3  Cohesive bi-linear law and TLS local behavior for different ℓc.
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which are supposed to be finite. Thus, as gCZM(α) is monotonous, (7) implies

We denote by F the dimensionless cohesive function depicted on Fig. 4 and associated to 
f by

Thick level set damage model

The bar is made of a material with the following free energy density

where gdam is a decreasing dimensionless function respecting gdam(0) = 1 that charac-
terizes the remaining stiffness for a given amount of damage d. We can derive the stress 
σ and the local energy release rate Y

We can write a local damage evolution criterion fdam(Y , d) = Y − h(d)Yc and an associ-
ated law:

(9)σf = lim
α→0+

σ(α) = lim
α→0+

(

gCZM(α)

√

−2kAc(α)

g ′CZM(α)

)

(10)lim
α→0+

g ′CZM(α) = −∞ and lim
α→0+

w(α) = 0

(11)σ = f (w) = σf F

(

w

wf

)

(12)�dam(ε, d) =
1

2
gdam(d)Eε

2

(13)Y =
∂�dam

∂ε
= −

1

2
gdam(d)Eε

(14)Y = −
∂�dam

∂d
= −

1

2
g ′dam(d)Eε

2

(15)fdam(Y , d) ≤ 0, ḋ ≥ 0 and fdam(Y , d)ḋ = 0

α ↗

α = 0

α = 1

w/wf

σ/σf

1

1

0
0

Fig. 4  Response of a typical cohesive zone model for an imposed increasing crack opening.
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Yc is a constant. The dependence on d of the critical energy release rate is concentrated 
on the dimensionless function h(d). The interest of making the critical energy release 
rate depend on d has been shown in [11, 12].

This local damage model is dependent on two functional parameters: gdam(d) and 
h(d). When they are fixed, we can derive a strain-stress curve σ = f (ε) that describes 
the local behavior under a monotonously increasing strain ε. An example of strain-stress 
curve is shown in Fig.  5a. The function h(d) is chosen to be 1 for d = 0. So, damage 
begins when Y is locally equal to Yc. In order to ensure uniqueness of the history of dam-
age for a given strain history, we must ensure that ḋ > 0 implies ε̇ > 0. This condition 
writes

This corresponds to curves without snap-back. An example of strain-stress curve for 
which this condition is not ensured, is illustrated in Fig. 5b.

Local damage models are well-known for their spurious localization due to softening. 
Therefore some regularization is required. The thick level set damage model [5, 13–15] 
is one of them. The main idea is to consider a damage front that drives damage evolution 
over the non-local damage zone. A level set function φ is defined over the domain as the 
signed distance to a curve, called the damage front. If φ ≤ 0 the material is undamaged 
and if φ > 0, it is damaged (see Fig. 2b). The value of damage d is chosen to depend only 
on the level set value:

where ℓc is a given material length. The condition of irreversibility ḋ ≥ 0 is thus equiva-
lent to φ̇ ≥ 0. An example of damage law is given in Fig. 6.

As damage is not a free variable any more and φ is a signed distance function, dam-
age evolution cannot occur independently at each point of the damage band. In the 
one-dimensional case of the bar, φ̇ is uniform over the whole domain and its value is ℓ̇. 

(16)g ′′damh− g ′damh
′ ≥ 0

(17)d(φ/ℓc≤0) = 0, d′(0<φ/ℓc<1) ≥ 0 and d(φ/ℓc≥1) = 1

σ

ε
a Strain-stress curve from an acceptable and
continuous h function.

σ

ε
b Strain-stress curve from a non acceptable h function.
Red dashed line corresponds to the forbidden part of the
curve.

Fig. 5  Strain-stress curves.
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Indeed, damage is simply driven by the position l of the damage front. In 2D or 3D prob-
lems, φ̇ is only uniform over lines perpendicular to the damage front. The local damage 
evolution criterion is enforced in an averaged way:

Methods
In this section, we establish relations that must be satisfied in order to have equivalent 
models for the particular problem of the bar. Then, the relations will be specialized for a 
particular choice of gdam(d), d(φ/ℓc) and finally two examples of cohesive tension-open-
ing functions f.

One‑dimensional equivalence

Imagine that, in a quasi-static analysis, some displacement uL is imposed. We say that a 
CZM and a TLS models are equivalent if, for a given displacement uL, the same stress is 
applied and they have the same energy and dissipation [16–19].

The displacement, energy and dissipation of the bar are computed in the following sec-
tions, first for cohesive model and secondly for TLS one. The stress can be directly calcu-
lated from the constitutive models (2) and (13)

Cohesive zone model

Equilibrium enforces uniformity of stress which value is σ. The displacement at the end 
of the bar writes

where the second equality stems from the constitutive model. The energy of the half-bar 
has two terms: the contribution of the elastic energy of the bar and the energy of the 
cohesive zone.

(18)

fTLS = fdam =

∫

ℓ

φ=0 fdam(Y , d)d′(φ/ℓc) dφ
∫

ℓ

φ=0 d
′(φ/ℓc) dφ

, fTLS ≤ 0, ℓ̇ ≥ 0 and fTLSℓ̇ = 0

(19)uCZML =

∫ L

x=0+
εCZM dx +

w

2
=

Lσ

E
+

σ

2kgCZM(α)

d

φ

1

0
lc0

Fig. 6  TLS classical damage profile.



Page 8 of 22Parrilla Gómez et al. Adv. Model. and Simul. in Eng. Sci.  (2015) 2:18 

The dissipation writes

Thick level set model

The same computations that have been done for the cohesive model are here performed 
for the TLS. Equilibrium leads to σ(x) = σ. The displacement at the end of the bar writes

The energy of the half-bar is

The dissipation writes

Let us remark that in the one-dimensional case of the bar, the TLS variable φ is related to 
the coordinate of a point of the bar x and the position of the damage front l by

Moreover, we remind for a better comprehension of the following developments that at 
the center of the bar (x = 0), the value of damage is d(ℓ/ℓc).

General relationships

We have determined the displacement uL, the total energy of the half-bar E and the dis-
sipation D linked to the evolution of the internal variable (α or d) for both cohesive and 
TLS models. The equality of each one of these three quantities for both models leads to 
(26) and (27). In order to close the system, we need to remind the normality rule for one 
of the models (28). The second one is redundant.

(20)ECZM(u,w,α) =

∫ L

x=0+

1

2
Eε(u)2 dx +

1

2
�CZM(w,α) =

σ
2L

2E
+

σ
2

4gCZM(α)k

(21)DCZM =
1

2
Aα̇ =

1

2
Ac(α)α̇

(22)uTLSL =

∫ L

x=0
εTLS dx =

∫ L

0

σ

Egdam(d)
dx

(23)ETLS(u, d) =

∫ L

x=0
�dam(u, d) dx =

∫ L

x=0

σ
2

2gdam(d)E
dx

(24)DTLS(Y , ḋ) =

∫ L

x=0
Y ḋ dx = Ycℓ̇

∫

ℓ

φ=0
h(d)

d′(φ/ℓc)

ℓc
dφ

(25)φ = ℓ− x

(26)
1

2kgCZM(α)
=

1

E

∫

ℓ

φ=0

(

1

gdam(d(φ/ℓc))
− 1

)

dφ

(27)
1

2
Ac(α)α̇ = Ycℓ̇

∫ d(ℓ/ℓc)

d̃=0
h(d̃) dd̃

(28)Ac(α)α̇ =−
σ
2

2k

g ′CZM(α)

g2CZM(α)
α̇
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These equations summarize the relations between the two models. They link the cohe-
sive parameters α, gCZM and Ac to the damage ones ℓ, gdam and h and the TLS regulariza-
tion function d(φ/ℓc). As these equations hold during the whole damage process, that 
is for all possible values of α or ℓ, it is possible to derive a TLS damage model from a 
cohesive one (and vice versa) by fixing four of the parameters. For example, if d(φ/ℓc), 
gdam(d), gCZM(α) and Ac(α) are known, the function h(d) can be deduced (Table 1 pre-
sents a summary of the main parameters).

In what follows, we look for h by only using the stress-opening function f and the 
opening w, instead of fully describing gCZM and Ac and α [see (6)]. By differentiating Eq. 
(26) with respect to time and by combining Eqs. (27) and (28), one obtains

Moreover, as σ = kgCZMw, the system of equations is rewritten as

where the parameters are w and f for cohesive model and ℓ, gdam and h for damage 
model, d for TLS regularization and σ as a general variable.

Making ℓ tend to 0 leads to σ =
√

2EYc
−g ′dam(0)

, w = 0 and σ = σf . Thus

By defining dimensionless quantities

(29)−
1

2k

g ′CZM(α)

g2CZM(α)
α̇ =

1

E
ℓ̇

(

1

gdam(d(ℓ/ℓc))
− 1

)

(30)2Ycℓ̇

∫ d(ℓ/ℓc)

d̃=0
h(d̃) dd̃ =−

σ
2

2k

g ′CZM(α)

g2CZM(α)
α̇

(31)σ = f (w)

(32)w =
2σ

E

∫

ℓ

0

(

1

gdam(d(φ))
− 1

)

dφ

(33)σ =

√

2EYc
gdam(d(ℓ/ℓc))

1− gdam(d(ℓ/ℓc))

∫ d(ℓ/ℓc)

d̃=0
h(d̃) dd̃

(34)σf =

√

2EYc

−g ′dam(0)

(35)σ̂ =
σ

σf
, ŵ =

w

wf
, φ̂ =

φ

ℓc
, ℓ̂ =

ℓ

ℓc
, � =

2σf ℓc

Ewf

Table 1  Summary of cohesive and damage functions

Cohesive model Damage model

gCZM(α) gdam(d)

Ac(α) h(d)

TLS regularization

d(φ/ℓc), ℓc
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and

the system (31), (32) and (33) can be written in a dimensionless and condensed form

These equations hold for all dimensionless position of the damage front in the bar ℓ̂, and 
therefore for any value of φ̂. Using φ̂ instead of ℓ gives a more general formulation, not 
constrained to the bar case.

Meaning of �

The dimensionless quantity � includes the main parameters of both models and in par-
ticular the TLS characteristic length ℓc. Different lengths have been defined to charac-
terize the size of the fracture process zone [20–22] in quasi-brittle materials. For the 
specific case of cohesive models, Smith estimated its length ℓcoh in [23] for a crack evolv-
ing in an infinite body and for a large range of cohesive laws:

Thus, the parameter � is close to the ratio between damage band width and cohesive 
zone length (see Fig. 7).

(36)I(ℓ̂) =

∫

ℓ̂

0

1− gdam(d(φ̂))

gdam(d(φ̂))
dφ̂,

(37)σ̂ = F(�I σ̂ ) and

∫

ℓ̂

φ̃=0
h(d̃) dφ̃ = −g ′dam(0)

1− gdam(d(ℓ̂))

gdam(d(ℓ̂))
σ̂
2

(38)σ̂ = F(�I σ̂ ) and

∫

φ̂

0
h(φ̂) dφ̂ = −g ′dam(0)

1− gdam(d(φ̂))

gdam(d(φ̂))
σ̂
2

(39)ℓcoh ≈
3

2

Ewf

2σf

(40)� ≈
3

2

ℓc

ℓcoh

2 �c

�coh

Fig. 7  Classical shape of a damaged zone and lengths definitions.
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The value of � will be chosen to be less than 12. Indeed, as it is explained in "Appendix 2", 
the condition of uniqueness of the solution enforces values of � that are close or smaller 
than 12. It corresponds to the choice of a small enough damage band width in comparison 
to the fracture process length. Writing � � 1

2 and Eq. (40) leads to

From general to particular relations

These general relations are now derived in the case of a particular choice of gdam(d). 
Later, a particular form of d(φ̂) is assumed. Finally, the equations are particularized for 
two cohesive softening functions F: the linear and the bi-linear ones.

A choice of damage function gdam
A classical choice is made:

The admissibility condition (16) becomes

and

The system of Eq. (38) can be rewritten as follows.

Moreover,

A choice of TLS damage profile d(φ̂)

We consider a parabolic damage law (see Fig. 6)

and

(41)ℓc �
1

3
ℓcoh

(42)gdam(d) = 1− d, and then �dam(ε, d) =
1

2
(1− d)Eε2

(43)h′(d) ≥ 0

(44)I(φ̂) =

∫

φ̂

0

d

1− d
dφ̂

(45)σ̂ = F(�I σ̂ ) and

∫

φ̂

0
h(φ̂) dφ̂ =

d(φ̂)

1− d(φ̂)
σ̂
2

(46)σf =
√

2EYc

(47)d(φ̂) = 2φ̂ − φ̂
2

(48)I(φ̂) =
φ̂
2

1− φ̂
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The system (45) writes now

This choice is motivated by a damage distribution obtained from non-local damage and 
fracture equivalence [18], damage profiles obtained by lattice model simulations [24] and 
their similarity with some acoustic emission profiles [25, 26].

Two examples of cohesive laws

Two particular cases of cohesive stress-opening functions are derived from previous 
relationships: the linear and the bi-linear ones.

Linear cohesive law

We consider first a linear cohesive law F(ŵ) = 1− ŵ (see Fig. 8). The softening function 
is obtained by (49).

Bi‑linear cohesive law

The bi-linear cohesive law is considered as it is one of the most popular laws to describe 
concrete [27–32]. It is presented in Fig. 3a. The method to obtain h is the same as pre-
viously. The result is a discontinuous and increasing h function. Corresponding strain-
stress curves are shown in Fig. 3b. All of them present a discontinuity that appears as 
a linear zone where strain and stress increase while damage value remains constant. 

(49)σ̂ = F

(

�
φ̂
2

1− φ̂
σ̂

)

and

∫

φ̂

0
h(φ̂) dφ̂ =

2φ̂ − φ̂
2

(φ̂ − 1)2
σ̂
2

(50)σ̂ (φ̂) =
1− φ̂

1− φ̂ + �φ̂2
and

∫

φ̂

0
h(φ̂) dφ̂ =

2φ̂ − φ̂
2

(1− φ̂ + �φ̂2)2

w

σ

wf

σf

a Cohesive linear law.

σf

ε

σ

lc

b TLS equivalent local behavior for different �c values.
Increasing values of �c are indicated by the arrow.

Fig. 8  Cohesive linear law and TLS local behavior.
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This plateau of damage is caused by the discontinuity of slope of the cohesive behavior. 
Details of the calculations are given in the "Appendix 1". Some conditions on the choice 
of the cohesive and TLS parameters are analyzed in "Appendix 2".

Results and discussion
The main numerical issues for implementing the TLS approach are

• • the necessity of representing jumps in displacement, for which classical X-FEM 
enrichment is used [33];

• • the calculation of non-local energy release rate Y , performed by the resolution of a 
variational problem described in [13];

• • the propagation of the damage front, that is performed by an explicit algorithm with 
prediction described in "Appendix 3".

• • The only difference with what is described in [13] is this last point. Concerning dam-
age initiation for an initial sane structure, it is not numerically possible to initiate 
damage at a single material point. So, it is chosen to introduce a very small damaged 
zone of about one element size. Moreover, let us precise that the potential given in 
(12) was symmetric in tension and compression for the sake of simplicity. Whereas, 
concrete is known to have a dissymmetric behavior. Thus, it is replaced by the fol-
lowing one.

where � and µ are the Lamé elasticity coefficients, εi the eigenvalues of the strain tensor 
and

It is important to note that the h function derived in the previous section from a one-
dimensional equivalence between cohesive model and TLS is used here in bi-dimen-
sional simulations. The results are compared to cohesive simulations found in the 
literature. The results are compared in terms of local behavior in the "Simulations and 
results—influence of ℓc" and global behavior in "Simulations and results—comparison 
under mixed-mode load". In this case, the non-rectilinear crack path and the global 
force-CMOD curves are compared.

Simulations and results—influence of ℓc
Simulations concern a three point bending test (see Fig.  9) of concrete which Young 
modulus is 37 GPa and Poisson ratio is 0.21. The equivalent cohesive zone properties 
of the TLS simulations performed are wf = 10−4 m, w1 = 4 · 10−5 m, σf = 3.5 GPa and 
σk = 1.0 GPa. An example of the results is plotted in Fig.  10. All simulations are per-
formed with the same ratio lmesh

ℓc
= 1

20 where lmesh is the characteristic length of the mesh 
over the center of the beam where the damage band should evolve. The local TLS behav-
ior equivalent to those CZM parameters is plotted in Fig. 3b for four values of ℓc: 15, 30, 
60 and 100 mm.

(51)�dam(ε, d) = µ(1− αid)ε
2
i +

�

2
(1− αd)tr(ε)2

(52)

{

αi = 0 if εi < 0
= 1 if εi ≥ 0

and

{

α = 0 if tr(ε) < 0
= 1 if tr(ε) ≥ 0
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Global behavior: three point bending tests It is interesting to observe global CMOD-force 
curves shown in Fig. 11. The CMOD is here defined as the relative displacement of two 
points symmetrically located at the bottom face of the beam and separated by a distance 
equal to the beam depth. The global behavior is very close for the four values of ℓc. The 
main difference is the value of the maximum load. However this difference is slight: the 
maximum gap to the mean value 24.6 kN is less than 3%.

Damage zone shape at maximum load It is interesting to analyze the shape of the dam-
aged zone at the maximum load. For different ℓc values, the position of the damage front 
is drawn in Fig. 12. The width of that zone is wider as ℓc is bigger. It is consistent with the 

x

y

Fig. 9  Three point bending (TPB) test.

Fig. 10  Damage over the deformed specimen at a given step of the simulation. Blue is undammaged mate-
rial. Red is damage close to 1. The white locates the crack.
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Fig. 11  Global behavior of TLS simulations of TPB test for different ℓc. Raw data is drawn.
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fact that in TLS, the width of the fracture process zone is driven by ℓc. For example, the 
width of the damaged zone corresponding to a propagating crack is 2ℓc. The length of 
the damaged zone ahead of the crack tip is significantly the same for all ℓc. The depth is 
in fact driven by the equivalent cohesive behavior. We can conclude in which concerns 
the fracture process zone that its length is probably the same that in cohesive simula-
tions and its width, neglected in CZM, is now driven by TLS parameter ℓc.

Agreement of the damage model with local cohesive behavior Cohesive theoretical local 
behavior is compared to TLS simulated one. As the cohesive zone model is concentrated 
over a line and has no width, it is necessary to determine which TLS quantities, denoted 
σ
TLS and wTLS, are compared to CZM ones, that is σxx and w. All over the evolving zone 

of the damage band, the stress and the opening are computed for different positions y. 
Let ymax be the maximum value of y where d > 0. For y < ymax, about 15 positions are 
analyzed for the four ℓc values.

It is chosen to take the value of the stress σxx on the damage front, for a given value 
of y. By denoting l(y) the width of the damage band at a given y and Sy the points of the 
damage band where d(x, y) > 0 and y is fixed (see Fig. 13),

Concerning the opening, it is necessary for TLS to consider the whole width of the dam-
aged zone. So it is chosen to compare displacement, perpendicular to the crack lips, at 
the boundaries of Sy. Thus, an additional term has to be added to cohesive opening to 
have comparable quantities:

(53)σ
TLS

(y) = σxx

(

x =
l(y)

2
, y

)

(54)wCZM
(y)+

∫

Sy

ε
CZM
xx (x, y) dx can be compared to

∫

Sy

ε
TLS
xx (x, y) dx

Fig. 12  Position of the damage front at the maximum load for different ℓc values.

Sy

x

y

Fig. 13  Definition of Sy.
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where 
∫

Sy
ε
CZM
xx (x, y) dx is the displacement caused by the deformation of the sane matter 

around the cohesive crack. We can write

Thus we define:

The opening-stress curves obtained for different characteristic lengths ℓc are shown in 
Fig. 14. It can be observed that scatter plot is close to the equivalent cohesive law for 
small values of ℓc. The TLS model behavior around the damaged zone tends to the cohe-
sive one as ℓc gets smaller. Simulation for much smaller ℓc values is difficult. Indeed, as 
ℓc goes to zero, displacement and damage gradients become extremely high and are dif-
ficult to capture numerically.

Simulations and results—comparison under mixed‑mode load

In order to verify the consistency of global results for both models, a mixed-mode test is 
performed on single edge notched specimens. As the crack path is not a priori known, 
the cohesive model is coupled with classical fracture model under MTS criterion. Con-
cerning TLS, no modification or enhancement is needed. The test, initially described in 
[34], is simulated with a cohesive model in [35]. The damage front evolution during the 
simulation is shown in Fig. 15. Note that the gradient of damage is not parallel to the 
boundary of the domain, whereas it is for phase-field models [36].

A first TLS simulation is performed with the smallest initial damaged zone considered 
here, that is of radius 0.10 ℓc (see Fig.  16). It can be observed that the cohesive crack 
path is close to the TLS crack lips even if some differences exist. Concerning the load-
CMOD curve, there is an overestimation of the maximum load and of the end of the 
post-peak curve. The experimental envelope given by [35] of the tests described in [34] 
is also drawn.

(55)ε
CZM
xx = (1− d)εTLSxx

(56)wTLS
(y) =

∫

Sy

εxx(x, y) dx −

∫

Sy

(1− d)εxx(x, y) dx =

∫

Sy

d(x, y)εxx(x, y) dx
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Fig. 14  Stress distribution in the process zone for TLS damage model with different ℓc. Abscissa is an equiva-
lent cohesive displacement jump. The continuous black line is the cohesive bi-linear model.
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The cohesive model used in [35] forces the crack to be in the continuity of the notch. 
In the TLS model, no particular assumption is done on the damage zone path. This 
could explain the difference in the results presented in Fig. 16. To check this assumption, 
another TLS simulation is presented in Fig. 17, where initial damage is bigger than pre-
viously. Here, its radius is 0.75ℓc. The CZM crack path is here overlapped with the TLS 
crack lips. Furthermore, load-CMOD curves are coincident until about the first half of 
the post-peak curve. Below that point, the TLS curve remains in the experimental enve-
lope whereas cohesive one does not. It can be concluded that TLS simulation without an 
important initial damage give results slightly different from the CZM ones, but whose 
load-CMOD curve is closer to experimental one. Forcing similar crack paths by intro-
ducing a more important initial damage leads to very close global results.

Fig. 15  Damage evolution in TLS simulation.

a Zoom on the ligament of the
specimen. TLS damage iso-values
are drawn. Totally damaged zone is
white. For comparison, CZM result
from [35] is drawn.

1 · 10−4 2 · 10−4 3 · 10−4
0

0.2

0.4

0.6

0.8

1

1.2
·104

CMOD (m)

fo
rc
e
(N

)

TLS
CZM
experimental envelope

b Load-CMOD curve. Plain curve is TLS (raw data), dashed one is CZM
and dotted ones are the experimental envelope.

Fig. 16  Comparison between TLS and CZM results. Initial damage radius in TLS simulation is equal to 0.10 ℓc.
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Conclusions
It has been shown that it is possible within the TLS framework to derive an equiva-
lent one-dimensional damage behavior from any cohesive model. The damage model 
depends on the characteristic length ℓc. The damage behavior tends to the cohesive one 
when ℓc is close to zero. Furthermore, global response of structures is independent on 
ℓc for a given one-dimensional equivalent cohesive law. CMOD-force curves and crack 
path are the same for both models.

The TLS model is able to provide results of the same quality as the cohesive zone 
model, that is well-known for its accuracy. Besides, it has already proven its capability to 
determine accurate crack paths without supplementary hypothesis or models. Moreover, 
it is able to represent branching, coalescence and initiation of damaged zones [5, 13]. 
Even if this paper only deals with quasi-brittle materials, as damaged zone is concen-
trated over a damage band, recent developments couple local and non-local damage and 
allows diffuse damage prior to localization [11].
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Fig. 17  Comparison between TLS and CZM results. Initial damage radius in TLS simulation is equal to 0.75 ℓc.
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Appendix
Appendix 1: Bi‑linear cohesive law

We define the following dimensionless quantities

where wk = f −1
(σk). By construction, we have the following relation

The tension opening relation is

For the first and second part of the law, we solve (49) for each part of the tension-open-
ing function:

where

It remains to determine for which value φ̂k of φ̂ we move from the first to the second 
function. This value must ensure the continuity of H. Thus

with a =
ŵk
�σ̂k

 and φ̂k between 0 and 1.

Appendix 2: Conditions on the parameters

It has been shown that h must verify condition (43) to ensure uniqueness of the solution. 
In the particular case of a linear cohesive model, uniqueness condition writes

If � >
1
2, there exists a critical value φ̂k above which h′ < 0 (corresponding to the red part 

of the curve in Fig. 5b). It is difficult to obtain an explicit form of its value.
Concerning bi-linear model, two parameters are defined

(57)ŵ1 = w1/wf , ŵk = wk/wf , σ̂k = σk/σf

(58)σ̂k = 1− ŵk/ŵ1

(59)σ̂ = f (ŵ) = 1− ŵ/ŵ1, 0 ≤ ŵ ≤ ŵk

(60)σ̂ = f (ŵ) =
σ̂k

1− ŵk
(1− ŵ), ŵk ≤ ŵ

(61)σ̂ = 1− �σ̂ I/ŵ1 =
1

1+ (�/ŵ1)I
⇒ H =

2φ̂ − φ̂
2

(1− φ̂ + (�/ŵ1)φ̂
2)2

(62)σ̂ =
σ̂k

1− ŵk

(1− �σ̂ I) =
σ̂k/(1− ŵk )

1+ σ̂k/(1− ŵk )�I
⇒ H = (

σ̂k

1− ŵk

)
2

2φ̂ − φ̂
2

(1− φ̂ +
�σ̂k

1−ŵk

φ̂2)2

(63)H(φ̂) =

∫

φ̂

0
h(φ̂) dφ̂

(64)φ̂k =
a

2
(

√

1+ 4/a− 1)

(65)� ≤
1

2
, it
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The first one, �1, characterizes the first slope of the cohesive law and �2 the second one. 
Let us consider �1 > 1

2. Then, as seen above, there exists a critical value of φ̂ that must 
not be exceeded. This value corresponds to a point of the cohesive law that must not 
be reached. If the position of the slope-discontinuity point is located before the criti-
cal point, the condition h′ ≥ 0 is respected for the first part of the cohesive law. Finally, 
choosing �2 ≤ 1

2 ensures the condition for the whole local behavior. Some examples of 
equivalent one-dimensional strain-stress curves for a bi-linear cohesive law are shown 
in Fig. 8b.

Appendix 3: Damage evolution in TLS and load factor

We rewrite the evolution criterion (18) by defining the averaged quantities

where (s,φ) is a local basis, s a curvilinear abscissa of the front and ρ(s) the curvature of 
the damage front. Let fn denote the evolution criterion (18) at a given time step n

where Yn is the local release rate at the same iteration for a unitary load and µn is the 
load factor. The load factor at step n is computed in order to have

where Ŵ is the damage front. Thus

According to (18), only a single point of the front would evolve. However, as moving a 
single point of the front is not possible for a time-discretised problem [13], it is chosen 
to predict fn+1 and to apply a discretised version of the evolution law (18):

and we impose

where �φmax is chosen to be about 0.25 of the mesh characteristic length and

(66)
�1 =

2σf ℓc

Ew1
, �2 =

2σ2ℓc

Ewf
=

2σkℓc

E(wf − wk)

(67)Y =

∫

ℓ

φ=0
Y

d′(φ/ℓc)

ℓc

(

1−
φ

ρ(s)

)

dφ

∫

ℓ

φ=0

d′(φ/ℓc)

ℓc

(

1−
φ

ρ(s)

)

dφ

and h(d)Yc = Yc

∫

ℓ

φ=0
h(d)

d′(φ/ℓc)

ℓc

(

1−
φ

ρ(s)

)

dφ

∫

ℓ

φ=0

d′(φ/ℓc)

ℓc

(

1−
φ

ρ(s)

)

dφ

(68)fn = µ
2
nY n − h(d)Yc

(69)max
Ŵ

(fn) = 0

(70)µn =

√

√

√

√

h(d)Yc

max
Ŵ

(Y n)

(71)∀ step n,











f
pred
n+1 ≤ 0
�φ ≥ 0

f
pred
n+1 �φ = 0

(72)max�φ = �φmax

(73)f
pred
n+1 = Y

pred
n+1 − h(d)Yc

pred
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In order to approximate f predn+1 , a first order development and two hypothesis are made:

• • strain derivative following the front is only influenced by the variation of the load 
factor;

• • the boundary variations are neglected, because of the numerical difficulties linked to 
their computation, so 

∫ bn+1

an+1
Xn+1 dφ ≈

∫ bn
an

(Xn +�Xn) dφ.

Thus

with

that are computed all over � with the same variational formulation than Y . Among all 
the quantities in (74), only �µ has a unique value over the whole domain. So, as all fn+1 
are wanted to be negative and 0 < �φn < �φmax, it can be determined that

This quantity is well defined since ∀s, αn > 0 which is true for µn > 0. Equation (72) 
imposes

As it is possible to have µ determined by a point of the front that is not advancing, it is 
chosen to replace its value by the point that has determined �µ

pred
n , that is

Finally, the front advance is chosen to be

in order to have f predn+1  as close to 0 as possible while verifying (71). αcorr
n  denotes α value 

computed with µcorr instead of µ. Let us remark that �µ
pred
n  is just a “prediction” and is 

different from µn+1 − µn. Moreover, its value is always positive even if the load factor 
is decreasing over steps. Once �φ is known over the front, the level-set is updated [13].

(74)f
pred
n+1 ≈ fn + αn�µ

pred
n − βn�φn

(75)



















αn = 2µn

�

ℓ

φ=0
1
2 εn:C:εn

d′(φ/ℓc)
ℓc

�

1− φ

ρ(s)

�

dφ
�

ℓ

φ=0
d′(φ/ℓc)

ℓc

�

1− φ

ρ(s)

�

dφ

βn = Yc

�

ℓ

φ=0 h
′
(d) d

′
(φ/ℓc)
ℓc

�

1− φ

ρ(s)

�

dφ
�

ℓ

φ=0
d′(φ/ℓc)

ℓc

�

1− φ

ρ(s)

�

dφ

(76)�µ
pred
n < min

Ŵ

fn +�φmaxβn

αn

(77)�µ
pred
n = min

Ŵ

fn +�φmaxβn

αn

(78)µ
corr = arg min

Ŵ

fn +�φmaxβn

αn

(79)�φ = max

(

0,
fn + α

corr
n �µ

pred
n

βn

)
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