
HAL Id: hal-01191622
https://hal.science/hal-01191622

Submitted on 2 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An ECG T-wave Anomalies Detection Using a
Lightweight Classification Model for Wireless Body

Sensors
Medina Hadjem, Farid Naït-Abdesselam

To cite this version:
Medina Hadjem, Farid Naït-Abdesselam. An ECG T-wave Anomalies Detection Using a Lightweight
Classification Model for Wireless Body Sensors. IEEE ICC 2015 - Workshop on ICT-enabled services
and technologies for eHealth and Ambient Assisted Living, Jun 2015, London, United Kingdom.
pp.278-283, �10.1109/ICCW.2015.7247191�. �hal-01191622�

https://hal.science/hal-01191622
https://hal.archives-ouvertes.fr


An ECG T-wave Anomalies Detection Using a

Lightweight Classification Model for Wireless Body

Sensors

Medina Hadjem and Farid Naït-Abdesselam

Paris Descartes University, France

{firstname.lastname}@parisdescartes.fr

Abstract—Various wearable devices are foreseen to be the key
components in the future for vital signs monitoring as they
offer a non-invasive, remote and real-time medical monitoring
means. Among those, Wireless Body Sensors (WBS) for cardiac
monitoring are of prominent help to early detect CardioVascular
Diseases (CVD) by analyzing 24/24 and 7/7 collected cardiac data.
Today, most of these WBS systems for CVD detection, include
only limited automatic anomalies detection, particularly regarding
ECG anomalies. Severe CVD, such as Myocardial Infarction or
Ischemia, needs to achieve an advanced analysis of ECG waves
known as P, Q, R, S and T. In particular, the T-wave and its specific
changes. In this paper, we focus on T-wave anomalies detection in a
context of WBS. Our study suggests an accurate and lightweight T-
wave changes detection model which suits well an ECG monitoring
system based on WBS architecture. We performed a comparative
study of 7 well-known supervised learning classification models,
on real ECG data sets from 7 different leads. We compared the
results from both perspectives of classification and processing
times. Our results show that the C4.5 Decision Tree technique
performs better results with 92.54% Accuracy, 96.06% Sensibility,
55.41% Specificity and 7.41% Error Rate.

Index terms— ECG, T-wave, WBS, Supervised Learning.

I. INTRODUCTION

Recent technological advances in wireless technologies, sen-

sors conception and miniaturization are revolutionizing the way

how healthcare services are delivered. In fact, existing sensors

are able to collect various physiological parameters in real-

time and with wireless transmission capabilities, such as Heart

Rate, Respiration Rate, Temperature, Oxygen Saturation, Blood

Pressure, Electromyogram, Electrocardiogram, etc. These Wire-

less Body Sensors (WBS) can be attached to the human body

and transmit collected data to a gateway device (Smartphone,

Tablet, etc.), which processes and transmits gathered informa-

tion in real-time to remote healthcare professionals so they can

make appropriate medical decisions.

Various applications of WBS can be considered. One of

the most promising is remote monitoring and detection of

Cardiovascular Diseases (CVD). According to the World Health

Organization [1], these diseases are the leading causes of death

worldwide. In 2008, 17.3 million people died from CVD and

almost 23.3 million people will die annually by 2030. This area

of research is very challenging and strategic for medical sector

and is highly supported by governments.

Today, diagnosis of heart defects is done after physical

symptoms that lead patients to consult doctors or during

a routine medical examination, where the Electrocardiogram

(ECG) is recorded. The ECG represents the contraction and

relaxation of cardiac muscle, resulting from depolarization and

re-polarization of myocardial cells. These electrical changes are

recorded via electrodes placed on the limbs and chest wall and

are transcribed on a graph paper.

The most widely used ECG recording technique is the 12-

lead ECG. This technique uses 10 reconrding sites from which

are derived 12 signals called leads. Among which, 6 Precordial

Leads (V1, V2, V3, V4, V5, V6), 3 Limb leads (I, II, III) and

3 augmented Limb leads (aVR, aVL, aVF). Each lead views

the heart from a different angle, and is composed of 5 waves

symbolized P, Q, R, S, and T. These waves are separated by

intervals and segments as shown on Figure 1 that illustrates a

typical one-cycle ECG waveform.
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Fig. 1. An ECG heart beat with waves and segments

T-wave is a significant ECG wave, it corresponds to the

ventricular re-polarization and its changes are one of the most

common noted on an ECG. These changes may be normal for

some healthy individuals because of age, body configuration

and medications or may indicate several heart anomalies based

on their abnormal shape or amplitude.

Four cases of T-wave changes are generally identified [2] :



– Elevated : An increase in T-wave amplitude may indicate

an early stage of myocardial infarction (MI), occurring in

the first few minutes after occlusion of a coronary artery.

Intervention at this early stage can prevent infarction and

improve the outcome of treatment. In practice, most patients

consult after chest pain which is generally the stage of ST

segment elevation, this is why ST elevation is often consid-

ered as the most sensitive marker of MI. Other anomalies

can be related to a prominent T-wave such : hyperkalemia

(Excess of potassium in the blood), Bundle Branch Block,

Left Ventricular Hypertrophy.

– Inverted: T-wave inversion may indicate Ischemia or Acute

Coronary Syndrome (ACS) resulting from complete or partial

thrombotic occlusion of a coronary artery. In general, Deep

T-wave inversion in some leads usually relates to a serious

underlying cardiac lesion. T-wave inversion may also be

indicative of hyperventilation or pulmonary embolism.

– Flattened or Biphasic : The two main causes of biphasic

T-waves are Myocardial Ischemia and Hypokalaemia (Potas-

sium deficiency in the blood). Flattened T-waves are a non-

specific finding, they may indicate Ischemia in some cases.

There is no clearly established normality parameters of the T-

wave amplitude and duration. Usually, specialists are interested

in changes of amplitude over time, by comparing ECG with

previous recordings. The observation of these changes, only

at a given time, can’t lead to an automatic diagnosis and

other medical examinations are often necessary. Therefore,

the relevance of T-wave analysis resides in the possibility of

time tracking of its parameters, as it is the case using WBS.

Therefore, this study should be considered in a context of

continuous ECG monitoring system for a purpose of medical

alerting and not diagnosis.

The aim of this study is to find an efficient and lightweight

model for T-wave changes detection. This model should distin-

guish between normal, elevated and inverted T-waves (Flattened

or biphasic T-wave will not be studied in this paper), and

offers the best classification performance with a processing time

suitable to real-time constraint of WBS systems.

The rest of this paper is organized as follows: Section II

surveys related work. Section III presents the proposed ap-

proach and Section IV discusses experimental results. Finally,

Section V concludes this paper.

II. RELATED WORKS

With the development of e-Health in recent years, wireless

body sensors monitoring systems have been the subject of

various research in both public and industry sector. Regarding

ECG monitoring, these systems are able to capture patient’s

ECG wirelessly and send it in real-time to remote applications,

so that it can be analyzed by specialists. Many prototypes

and frameworks were proposed, for example, MyHeart [3]

and MEDISN [4]. More recently, these systems are evolving

to incorporate cardiac anomalies detection like arrhythmia, as

in [5] and [6]. Some systems are already on the market such

as CardioNet [7] and BodyGuardian [8]. Other contributions

propose to detect more complex anomalies as Myocardial

Infarction like in [9] and [10].

The detection methods proposed in such ECG monitoring

systems are generally based on temporal characteristics of

ECG waves (P, Q, R, S, T). Most of them analyze the RR

Interval as an indicator of heart rate, or ST segment elevation or

depression, which is generally a sign of Myocardial Infraction

or Ischemia. Other studies analyze the P-wave and PR Interval

anomalies to detect Arrhythmia. Among these works, little

focus on T-wave analysis changes, which are yet very used by

doctors in the diagnosis process of various cardiac anomalies

as mentioned in section I.

The most significant works on T-wave analysis, focus on

the T-wave alternans (TWA) detection, which is a periodic

beat to beat variation in T-wave amplitude or shape. This is

related to cardiac instability and may indicate a risk of sudden

cardiac death. Several contributions on TWA detection were

proposed, especially under the 2008 Physionet/Computing In

Cardiology Challenge [11]. The proposed solutions are based

on different techniques of signal processing, data mining or

machine learning. Good scores were obtained with Principal

Component Analysis (PCA) [12], Spectral Method [13] and

Fast Fourier Transform (FFT) [14]. Many other TWA detection

techniques are compared and discussed in [15]. T-wave analysis

was also used for Myocardial Ischemia detection, as an addi-

tional parameter to ST segment, like in [16]. Other contributions

propose a general detection of T-wave changes episodes like

in [17]. According to our research, there is very little ECG

monitoring systems including T-wave analysis. A proposal was

made in [18] to develop a real-time ECG anomalies diagnosis,

including T-wave analysis on a sensor node platform.

In this study, we experiment 7 supervised learning methods

(Naïve Bayes, Support Vector Machine, Logistic Regression,

K-Nearest Neighbors, AdaBoost, Decision Trees and Random

Forest). The goal is to suggest a model that is both accu-

rate to detect T-wave changes (Elevation and Inversion) and

lightweight to suit a context of WBS implementation.

III. PROPOSED APPROACH

The proposed approach consists of three main steps. ECG

Pre-processing and features extraction, test of 7 classification

methods to select the most suitable, and finally propose an

integration algorithm of the selected model in a WBS ECG

monitoring system.

A. ECG Pre-processing and Features Extraction

Pre-processing is a required step for any ECG analysis in

order to remove various noises. Theses noises can seriously

affect the quality of collected ECG and distort the analysis

results. They interfere with the ECG components in the fre-

quency domain, specifically in the range [0.01Hz-150Hz]. The

most significant are:

– Power line interference around 50Hz or 60Hz.

– Baseline wandering with a frequency bellow 0.5Hz.

– Electrodes motion artifacts ranging from 1Hz to 10Hz.



– Electromyographic (EMG) noise from 25Hz to 100Hz.

Power line noise comes from electronic circuits of ECG

recorder. It is a narrow-band signal centered at a frequency

of 50Hz or 60Hz with a bandwidth of less than 1Hz, it has a

form of a sinusoid with a significant amplitude compared to

the magnitude of the digitized signal. Generally, this noise is

filtered by ECG signal acquisition hardware.

Baseline wandering is usually due to patient movements and

respiration. It ranges between 0.15Hz and 0.5Hz and causes

changes in ECG isoelectric line. It can be removed, without

loss in original signal quality, by a highpass digital filter or by

a standard Wavelet Transform (WT). In this study, we use a

0.5Hz FIR highpass filter (Finite Impulse Response).

Electrodes motion artifacts and EMG noise are more difficult

to remove because they may be a complex stochastic processes

within a wideband, and traditional digital filters can’t remove

them. Instead, Discrete Wavelet Transform technique (DWT)

is widely used. In this study, we use Undecimated Wavelet

Transform (UWT), a variant of DWT with better balance

between smoothness and accuracy and ensures no loss of signal

sharpest features. UWT for ECG denoising is described in [19].

After pre-processing, an ECG segmentation is performed to

estimate time positions of the main ECG waves (QRS com-

plex, P-wave and T-wave). These time positions will serve to

calculate ECG features used in the classification stage. To avoid

the effect of any changes introduced by the pre-processing, the

preprocessed ECG signal is only used to detect QRS complexes

positions, other ECG waves positions are estimated using the

original signal. The method used for segmentation is the ECG

Feature Extractor technique developed by Labview [20], which

is inspired by the well known Pan & Tompkins technique for

QRS peaks detection [21]. Table I synthesizes the temporal

parameters extracted for each ECG beat.

TABLE I
TEMPORAL PARAMETERS EXTRACTED FROM EACH ECG BEAT

Parameter Description

Ponset Start time of the ECG P-wave

Poffset End time of the ECG P-wave

QRSonset Start time of the ECG QRS complex

QRSoffset End time of the ECG QRS complex

Tonset Start time of the ECG T-wave

Toffset End time of the ECG T-wave

Based on previous temporal parameters, we calculate the

ECG features used in classification stage. In order to both

reduce the data size to process and increase the classifier

accuracy, only the most relevant features related to T-wave

abnormalities are selected. After collecting various medical

information about T-wave abnormalities, mainly from [2], we

selected the ECG features described in table II.

B. T-wave Classifier selection

As there is no established parameters of normality to easily

classify T-wave changes, supervised learning approaches seem

to be suitable. These machine learning techniques allow to build

TABLE II
SELECTED ECG FEATURES FOR T-WAVE CLASSIFICATION

Feature Description

Tamp T-wave amplitude in mV calculated by peak research between
Tonset and Toffset

Tdur T-wave duration in seconds between Tonset and Toffset

STamp ST segment amplitude in mV approximated by averaging the
extrema between QRSoffset and Tonset

QTdur QT interval duration in seconds between QRSonset and Toffset

a predictive model on observed data in order to make prediction

on new unknown data. More formally, a supervised learning

classification problem, consists in a set X of objects called

the input space and a finite set C of classes called the output

space. We consider a sample E = {(x1, c1), ..., (xn, cn)} with

an unknown probability distribution D over X×C. The goal of

the classification is to find the function h ∈ CX that defines the

relation between objects and classes, based only on the sample

E and drawn independently at random according to D. As we

are looking for a model suitable for an implementation in a

WBS context, we focus, in addition to accuracy, on processing

time of classification. To find the classifier that best suits this

objective, we compare 7 ones : 3 linear classifiers (NBC, SVM

and Logistic Regression) generally characterized by a lower

complexity, 2 non-linear classifiers (k-NN and AdaBoost) and

2 Decision Trees classifiers (C4.5 and RF) that generally have

good performances. An overview of these classifiers can be

found in [22]. The results are detailed in section IV.

C. Integration of the model in a WBS ECG monitoring system

We consider a WBS ECG monitoring system composed of

wireless ECG sensors transmitting data to a smartphone in real-

time. The selected classification model can be implemented

as a mobile application running on the smartphone. This ap-

plication receives ECG wirelessly from sensors, pre-processes

and extracts ECG features related to T-wave (Tamp, Tdur,

STamp, QTdur), and finally classifies these features using the

selected model. The model is first built based on annotated

real ECG data, and updated in real-time with the classification

results of the received ECG. The application raises an alarm to

medical assistance only if a minimum number of ECG beats

are classified as abnormal during a windows time w (to define

in the application). Algorithm 1 summarizes all steps achieved

by the mobile application of the target WBS system.

IV. EXPERIMENTAL RESULTS

In order to experiment our proposed approach, we used the

European ST-T ECG Database (EDB) from Physionet [23]. It’s

a collection of real patients ECG records, specifically intended

for evaluation of ST and T-wave changes algorithms. This

database consists of 90 annotated ECG recordings from 79

men and women of different ages. It contains a representative

selection of ECG T-wave abnormalities, including 367 ST

segment and 401 T-wave change episodes. Each episode ranges

from 30 seconds to several minutes. Each record is 2 hours

duration (∼7200 ECG beats) and contains 2 leads sampled at



Algorithm 1 Mobile application algorithm for a WBS system

Build the classification model on an initial training set TS ;

Set the windows size w; i = 0;

while Captured ECG beat k do

Denoise ECG k with 0.5Hz Highpass filter and UWT;

Extract Peaks, Onsets and Offsets of P, QRS and T;

Calculate the classification features Tamp, Tdur, STamp,

QTdur;

Apply the built Model on these features to classify the

beat as Normal, Elevated or Inverted T-wave;

if i = w then

if (Number(Class 6= Normal) > Min) then

Raise an alarm;

end if

i = 0;

Update the model with the new classification results;

else

i = i+ 1;

end if

end while

250 per second. The leads are different for each record so there

is 7 distinct leads in the entire database (I, III ,V1 ,V2 ,V3 ,V4

,V5). Two cardiologists annotated each record beat-by-beat for

changes in ST segment, T-wave morphology, rhythm, and signal

quality. An anomaly code is associated to each beat : (N) if the

beat is normal and (T) if a T-wave change is observed. The

direction of the change, (T+) for an elevation and (T-) for an

inversion, is indicated at specific beats that delimit a current

episode (Onset, Extrema and End beats), and this direction is

associated to all beats in the episode.

For each record in the EDB database, the pre-processing and

features extraction is performed for each lead by a script we

developed using Labview [24]. It’s a graphical programming

platform that offers many modules named Virtual Instruments

(VI). For our experiments, we use the Filtering VI (0.5Hz

FIR high-pass filter), the Wavelet Denoise VI (UWT with

the Daubechies6 wavelet) and ECG Feature Extractor VI. The

result of this stage is a series of ECG temporal parameters

characterizing each beat of each lead. From these parameters,

we calculate, for each beat, the relevant T-wave features Tamp,

STamp, Tdur, QTdur.

Figure 2 shows examples of normal, elevated and inverted

T-wave ECG signals, extracted from the EDB record e0104.

Figure 3 shows the previous signals processed by a 0.5Hz

FIR highpass digital filter and UWT. We can see that the base-

line wandering was removed since the baseline was restored

to Iso-level, while the main characteristics of the original ECG

signals were kept. We can see also that the signal is less noisy,

due to removal of wideband noises without its distortion.

Figure 4 shows the extracted temporal parameters Ponset,

Poffet, R peak, QRSonset, QRSoffet, Tonset and Toffet of the

previous ECGs. As described in Section III, these values were

obtained by extracting QRS complex peaks, and then deduct P
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Fig. 2. Normal, Elevated and Inverted T-wave ECGs from the EDB database
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Fig. 3. ECGs after pre-processing
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and T peaks and their corresponding onsets and offsets.

Figure 5 shows the variation of calculated T-wave amplitude



and duration parameters, during normal, elevation and inversion

episodes. As we can see, the variation of features specific to

T-wave (Tamp and Tdur) are significantly representative of the

occurrence or not of elevation and inversion episodes. This is

less significant in the case of the two other parameters (STamp

and QTdur), since these parameters are less specific to T-wave

but stay very related to it.
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Fig. 5. Variation of extracted T-wave features for each class

In order to build the data corpus for the classification,

we associate to each beat, in addition to the four T-wave

parameters, the annotation code associated to the beat (We

implemented a script to read and extracted annotations from

EDB). These annotations represent the classes of data (Normal

(N), Elevated (T+), Inverted (T-)). To obtain more relevant

results, we grouped the records by lead, so we can analyze

the performance by lead on a greater number of beats. We get

7 sets of leads (V1, V2, V3, V4, V5, I, III). Each composed

between a total of 45.000 to 359.526 beats. Classification is

performed on each record separately, then the final results, per

lead, are obtained by averaging the results of all records of a

given lead. Table III summarizes the obtained corpus.

TABLE III
COMPOSITION OF THE CORPUS

ECG
Lead

Total
records

Total
beats

Total
“N”

beats

Total
“T+”

beats

Total
“T-”

beats

V1 11 71165 64111 2642 4413

V2 10 78762 55006 11969 1788

V3 7 46609 41470 3269 1872

V4 34 223843 200703 10514 12627

V5 51 355428 335088 10654 9693

I 19 129914 126112 1182 2621

III 46 309388 286613 16443 6338

To perform the classification experiments, we choose

Weka [25], a well-known machine learning tool. It is a large

collection of machine learning algorithms for classification,

clustering, association rules, regression and visualization.

To compare the performance results of the seven classifiers

selected, we use the ROC parameters described in the table IV.

TP , FP , TN , FN are respectively, the number of True

Positives, False Positives, True Negatives and False Negatives.

TABLE IV
ROC PARAMETERS USED FOR CLASSIFICATION RESULTS COMPARISON

Parameter Significance Formula

Accuracy(Acc) Correctly Classified
Instances Rate

TP+TN

TP+TN+FP+FN

Sensibility(Se) True Positive Rate TP

TP+FN

Specificity(Sp) True Negative Rate TN

FP+TN

Error Rate
(Err)

Incorrectly Classified
Instances Rate

FP+FN

TP+TN+FP+FN

Table V shows the results obtained by lead for each classifier.

In addition to ROC parameters, we give the time T elapsed for

classification of 10 minutes ECG (about 600 beats).

The results show that Accuracy and Sensitivity parameters

are greater than 90%. This indicates a good anomalies detection

rate for most of classifiers and leads (performance are slightly

lower for V2 lead). Error Rate varies by method and lead, but is

generally below 10%. Specificity varies around 50%, this rate is

caused by False Positives FP , which are not critical errors but

may cause false alarms. To reduce this problem, we propose to

raise an alarm, only if the number of T-wave changes detected is

greater than a minimum Min in a time windows w. Regarding

the performance of each classification method, it appears that

C4.5 achieves the best results with the lowest processing time

T . NBC is the worst performer, with a processing time 11

to 14 times higher than C4.5 time, for all ECG leads. This

may suggest that all studied leads are equivalent for the T-wave

analysis. The performance of RF is close to C4.5, but with a

longer processing time, 4 to 6 times. Other methods perform

less than C4.5 and RF and have equivalent performance, but

with a large disparity in processing time. LR and AdaBoost are

2 to 4 times slower than C4.5, while K-NN is about 500 times

slower and SVM nearly 300 times slower. It appears from these

initial results that C4.5 is a good choice for an implementation

of a T-wave changes detection model in a WBS ECG system.

V. CONCLUSION

In this paper, we study the T-wave changes detection problem

for a wireless ECG monitoring system implementation. We first

present the ECG pre-processing stage done in order to remove

various noises, using digital highpass filter and Undecimated

Wavelet Transform (UWT). Then, we achieve an ECG temporal

parameters extraction to calculate 4 ECG features related to T-

wave (Tamp, STamp, Tdur and QTdur). These features are used

to test 7 supervised learning classifiers (NBC, SVM, LR, K-

NN, AdaBoost, C4.5 and RF), to select the best one both in

terms of classification performance and processing time. We

test our proposed approach using the EDB medical database

composed of 90 real ECG records, and we use the ROC

parameters to compare the models. Experimental results show

that C4.5 performs the best results both in classification and



TABLE V
RESULTS OF THE CLASSIFICATION

Lead Method Acc(%) Se(%) Sp(%) Err(%) T(ms)

V1 BNC 89.13% 93.47% 57.30% 10.87% 0.013
V1 LR 90.99% 97.39% 41.38% 9.01% 0.003
V1 K-NN 91.17% 94.76% 58.65% 8.83% 0.507
V1 AdaBoost 90.20% 97.69% 36.38% 9.80% 0.002
V1 C4.5 92.65% 96.84% 53.37% 7.35% 0.001
V1 RF 92.52% 96.78% 55.57% 7.48% 0.005
V1 SVM 89.98% 99.07% 23.26% 10.02% 0.290

V2 BNC 80.43% 78.42% 64.36% 19.57% 0.013
V2 LR 83.47% 85.32% 62.08% 16.53% 0.004
V2 K-NN 83.24% 85.13% 71.89% 16.76% 0.508
V2 AdaBoost 83.67% 86.21% 63.99% 16.33% 0.002
V2 C4.5 86.67% 90.04% 72.41% 13.33% 0.001
V2 RF 86.20% 90.10% 71.00% 13.80% 0.008
V2 SVM 83.57% 86.61% 54.98% 16.43% 0.523

V3 BNC 86.58% 88.72% 62.68% 13.42% 0.013
V3 LR 91.86% 98.10% 44.17% 8.14% 0.003
V3 K-NN 90.75% 94.65% 60.81% 9.25% 0.580
V3 AdaBoost 90.44% 98.84% 34.57% 9.56% 0.002
V3 C4.5 92.97% 97.44% 56.04% 7.03% 0.001
V3 RF 92.79% 97.36% 56.21% 7.21% 0.006
V3 SVM 90.45% 99.56% 26.95% 9.55% 0.314

V4 BNC 90.30% 94.07% 58.77% 9.70% 0.012
V4 LR 92.84% 96.67% 51.71% 7.16% 0.004
V4 K-NN 92.96% 95.08% 66.29% 7.04% 0.537
V4 AdaBoost 91.50% 95.86% 45.89% 8.50% 0.002
V4 C4.5 94.12% 96.53% 64.11% 5.88% 0.001
V4 RF 94.24% 96.94% 64.20% 5.76% 0.005
V4 SVM 92.06% 97.12% 38.01% 7.94% 0.279

V5 BNC 90.00% 93.67% 45.84% 10.00% 0.014
V5 LR 92.84% 97.74% 36.02% 7.16% 0.004
V5 K-NN 92.50% 95.23% 55.56% 7.50% 0.580
V5 AdaBoost 92.98% 96.99% 40.20% 7.02% 0.002
V5 C4.5 93.96% 97.36% 49.58% 6.04% 0.001
V5 RF 93.87% 97.31% 51.55% 6.13% 0.005
V5 SVM 92.54% 98.40% 27.02% 7.46% 0.265

I BNC 91.46% 95.15% 35.61% 8.54% 0.014
I LR 93.29% 98.76% 20.19% 6.71% 0.003
I K-NN 92.47% 95.66% 48.34% 7.53% 0.545
I AdaBoost 93.11% 97.83% 25.60% 6.89% 0.002
I C4.5 93.78% 98.08% 33.73% 6.22% 0.001
I RF 93.83% 98.00% 38.20% 6.17% 0.006
I SVM 93.31% 99.63% 12.70% 6.69% 0.229

III BNC 88.63% 93.24% 50.26% 11.37% 0.011
III LR 92.16% 97.44% 34.16% 7.84% 0.003
III K-NN 92.42% 94.59% 60.48% 7.58% 0.476
III AdaBoost 92.57% 96.13% 44.19% 7.43% 0.002
III C4.5 93.94% 96.19% 58.29% 6.06% 0.001
III RF 93.89% 96.54% 57.67% 6.11% 0.004
III SVM 92.77% 97.62% 29.51% 7.23% 0.232

time processing, with an average of 92.54% Accuracy, 96.06%

Sensibility, 55.41% Specificity and 7% Error rate. To validate

these results in a real user environment, we are currently

working on an end-to-end implementation of C4.5 based model

using market wireless ECG sensors.
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