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A Comparison of Decomposition Methods
for the Maximum Common Subgraph Problem

Maél MINOT
LIRIS UMR 5205 CNRS
Université de Lyon
INSA de Lyon, France
mael.minot@liris.cnrs.fr

Abstract—The maximum common subgraph problem is an
NP-hard problem which is very difficult to solve with exact ap-
proaches. To speed up the solution process, we may decompose
it into independent subproblems which are solved in parallel.
We describe a new decomposition method which exploits the
structure of the problem to decompose it. We compare this
structural decomposition with domain-based decompositions,
which basically split variable domains. Experimental results
show us that the structural decomposition leads to better
speedups on two classes of instances, and to worse speedups
on one class of instances.

Keywords-Maximum Common Subgraph; Constraint Pro-
gramming; Decomposition; Graph Triangulation

I. INTRODUCTION

Searching for a maximum common subgraph has
many applications, for example, in chemoinformatics, bio-
informatics, or image processing where it gives a measure
of the similarity between objects represented by graphs.
However, this problem is A“P-hard and very challenging.
To speed up the solution process, we may decompose the
problem into independent subproblems which are solved
in parallel, as proposed, for example, in [1], [2], [3] for
the maximum clique problem, or in [4], [5] for constraint
satisfaction problems. In most cases, the decomposition is
done by splitting variable domains. In order to balance the
workload on the workers, EPS ([4], [5]) splits the initial
problem in a very large number of subproblems whose
resolution time can be shared by workers: all subproblems
are put in a queue and workers take subproblems when
they need work. Experiments in [4], [5] show us that a
good decomposition is generally obtained, with EPS, by
generating about 30 subproblems per worker. In [5], the
average speedup reported with EPS is close to 0.5k, where
k is the number of workers, on a large benchmark of
instances. This is much better than the speedup obtained
with a work stealing approach, where subproblems are
dynamically generated by splitting the subproblem currently
solved by a worker, whenever another worker has finished
its own work. However, even when decomposing the initial
problem into 30 subproblems per worker, it may happen that
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one subproblem is much more difficult than the others and
becomes a bottleneck for the speedup. Let ¢,,,, be the time
needed to solve the hardest subproblem, and ¢, be the time
needed to solve the initial problem; the speedup cannot be
higher than o /¢maz-

A first goal of this paper is to study subproblem balance
for the maximum common subgraph problem, and to show
that the decomposition proposed in [4], [5] leads to very un-
balanced subproblems: on our benchmark, to/t,q. is equal
to 4 when decomposing problems into 400 subproblems or
so. As a consequence, the speedup cannot be higher than
these bounds. Actually, with 30 subproblems per worker,
we observe an average speedup of 3.

This motivates us to introduce and experimentally evaluate
two new decomposition methods for the maximum com-
mon subgraph problem. The first one is a straightforward
modification of EPS: instead of creating a subproblem for
every possible value in a variable domain (while removing
inconsistent subproblems), we introduce a binary decompo-
sition where domains are split in two parts. The second one
is fundamentally different and borrows features from the
structural decomposition proposed in [6] and extended in
[7], where a constraint satisfaction problem is decomposed
into independent subproblems by exploiting the structure
of its microstructure. Experimental evaluations show us
that these two new decompositions lead to more balanced
subproblems, and that structural decomposition allows us to
increase the speedup with a reasonable number of workers
for two classes of instances, whereas it slightly decreases it
for one class.

The next section of this paper presents the background
of this work: the maximum common subgraph problem, the
domain decomposition method of [4], [5], and the structural
decomposition method of [6]. Sections III and IV introduce
two new decompositions for the maximum common sub-
graph problem. Section V presents an experimental com-
parison of these two new decompositions with the original
decomposition of [4] on a classical benchmark.



II. BACKGROUND
A. Maximum common subgraph

An undirected graph G is defined by a finite set of nodes
N¢ and a set of edges Fg C Ng X Ng. Each edge is an
undirected couple of nodes. In a directed graph, E¢ is a set
of arcs, which are directed couples of nodes. In the following
definitions, we will only be considering undirected graphs.
However, these notions may be applied to directed graphs
as well.

Definition 1: Let G and G’ be graphs. G is isomorphic to
G’ if there exists a bijective function f : Ng — Ng which
preserves edges, i.e.

V(u,v) € Ng x Ng,{u,v} € Eg < {f(u), f(v)} € Ecr

Definition 2: G’ is an induced subgraph of G if Ng: C
N¢ and Eg = Eg N (Ng» X Ng/). We say that G’ is the
subgraph of G induced by N¢/, denoted G|, -

In other words, G’ is obtained from G by removing all
nodes of G which are not in Ng/ and keeping only edges
whose extremities are both in Ng-.

Definition 3: A common subgraph of two graphs G and
G’ is a graph isomorphic to subgraphs of G and G'.

Definition 4: A Maximum Common Induced Subgraph
(MCIS) is a common induced subgraph which has a maxi-
mum number of nodes.

Figure 1 displays an example of MCIS.

In this article, we restrict ourselves to the MCIS, but the
results can easily be extended to the maximum common
partial subgraph problem as shown in [8].

There exist two main approaches for solving MCIS:
the first approach (described in II-B) explores the search
space by branch and bound, and this may be achieved by
using constraint programming (CP); the second approach
(described in II-C) is based on a reformulation of MCIS
into a maximum clique problem.

B. CP model for the MCIS

CP solves problems modelled as Constraint Satisfaction
Problems (CSPs): a CSP is defined by a triple (X, D, C)
such that X is a finite set of variables, D associates a
domain D(x;) with every variable z; € X, and C is a set
of constraints such that each constraint is defined over a
subset of variables and gives lists of values these variables

Figure 1. Example of MCIS. A bijection between MCIS nodes can be
defined as follows: 2 <> d, 3 <> e, 4 <> b, 5 <> ¢, 6 <> a.

can be assigned simultaneously. A solution is an assignment
of all variables satisfying every constraint. CP solves CSPs
by building a search tree and propagating constraints at each
node of the search tree in order to prune branches.

[8] introduces a CSP model for solving MCIS with CP.
Given two graphs G and G’, this CSP associates a variable
x,, with every node u of GG, and the domain of this variable
contains all nodes of G’, plus an additional value | : variable
x,, is assigned to L if node u is not matched to any node of
G’; otherwise x,, is assigned to the node of G it is matched
with. A set of edge constraints is introduced in order to
ensure that variable assignments preserve edges between
matched nodes, i.e., Y{u,v} C Ng,(x, = L)V (z, =
L)V ({u,v} € Eg < {xy, 2.} € Eg).

MCIS is an optimization problem, the goal of which is to
maximize the number of matched nodes. To ensure that, the
CSP also contains:

e a variable cost which corresponds to the number of
nodes of G which are not matched;

o a variable 2, whose domain is D(z, ) = { L} so that
it is forced to be assigned to L;

e a soft constraint softAllDiff {zu,u € Ng} U
{x},cost) which ensures that all x, variables are
assigned to values different from L whenever it is
possible, and that the cost variable is equal to the
number of x, variables that should change their value
so that they all have different values.

A solution is an assignment of all variables which satisfies
all edge constraints while minimizing the value of cost.

[8] experimentally evaluates different constraint propaga-
tion techniques for this CSP modelling of the MCIS. The
combination “MAC+Bound” generally obtains very good
results and outperforms the state-of-the-art branch and bound
approach of [9]: Maintaining Arc Consistency (MAC) [10] is
used to propagate hard constraints; “Bound” checks whether
it is possible to assign distinct values to enough x,, variables
to surpass the best cost found so far (it is a weaker version
of GAC(softAlIDiff) [11] which computes the maximum
number of variables that can be assigned distinct values).

C. Reformulation of MCIS as a maximum clique problem

We may solve MCIS by introducing a compatibility graph
and searching for cliques in it [12], [13], [14].

Definition 5: A compatibility graph of two graphs G
and G’ is an undirected graph G¢ whose set of nodes
is Ngo, = Ng x Ng and whose set of edges is
Nep = {{(u,'), (v,v")} € Ng., (u,u’) and (v,v’) are
compatible }, where two nodes (u,u) and (v,v’) of Ng,
are compatible if u # v and u’ # v’, and if they preserve
edges (i.e. {u,v} € Eqg & {u/,v'} € Eg).

A clique is a subgraph whose nodes are all linked pair-
wise. A clique is maximal if it is not strictly included in any
other clique, and it is maximum if it is the biggest clique of
a given graph, with respect to the number of nodes.



As illustrated in Figure 2, a clique in G¢ corresponds
to a set of compatible matchings of nodes in G and G’.
Therefore, such a clique corresponds to a common induced
subgraph, and a maximum clique of G¢ is a MCIS of G and
G’. Tt follows that any method able to find a maximum clique
in a graph can be used to solve the MCIS problem. This
yields similar results than a branch and bound approach [15].

D. Domain decomposition for CP

To speedup the solution process of CP, we may parallelize
it as proposed in [4], [S]. The idea is to split the initial
CSP into a large number of independent subproblems which
are solved in parallel by workers. A key point to balance
the workload is to generate more subproblems than workers
(typically, 30 subproblems by worker). The decomposition
into subproblems is computed by selecting a subset of
variables and by enumerating the combinations of values
of these variables that are not detected inconsistent by the
propagation mechanism of a CP Solver. More precisely,
a Depth-Bounded Depth-First Search (DBDEFES) is used to
compute subproblems. A DBDEFS is a Depth-First Search
that never visits nodes located at a depth greater than a given
value. First, we consider a static ordering of the variable
(usually, by non decreasingly domain sizes). Then, the main
step of the algorithm is applied: define a depth p and perform
a DBDFS with p as limit. This search triggers the constraint
propagation mechanism each time a modification occurs. For
each leaf of this search which is not a failure, the first p
variables are assigned and so the subproblem defined by
this assignment is consistent with the propagation. Thus
the set of leaves defines a set S of subproblems. Next,
if S is large enough, then the decomposition is finished.
Otherwise, the main step is applied again until the expected
number of subproblems is reached. From here onward, we
will designate this method with “domain decomposition”
(DOM) for clearer comparisons with other methods.

E. Structural decomposition for CSPs

A dual approach to decompose a CSP is to exploit its
structure. A first way to do that is to compute a tree de-
composition of the constraint hypergraph (which associates
a node with each variable, and an hyperedge with each

Figure 2. Two graphs and their compatibility graph G . For example,
since {a, ¢} is not an edge while {1, 3} is an edge, the edge {(a, 1), (¢, 3)}
does not belong to G¢. One of the many maximum cliques in G¢ is
{{a,3},{b,2}} and it corresponds to a MCIS.

constraint) in order to identify independent subproblems,
as proposed in [16]. However, this kind of approach is
useless for solving MCIS because the scope of the softAllDiff
constraint is the whole set of variables, so that the tree
decomposition contains only one node (i.e. one subproblem).

Another structural approach for decomposing a CSP into
independent subproblems has been proposed by [6] and is
called TR-decomposition. The idea is to reformulate the
CSP as the problem of finding a clique of size n (with n
the number of variables in the CSP) in its microstructure.
The microstructure of a CSP is a graph similar to the com-
patibility graph described in II-C. Each node is associated
with a (variable, value) couple. There is an edge between
two nodes if and only if the corresponding assignments are
compatible, i.e. if every constraint of the problem is satis-
fied when those two assignments are made simultaneously.
Thereby, a clique of size n in the microstructure is a solution
of the CSP.

The main idea behind TR-decomposition is to triangulate
the microstructure to generate subproblems more easily.
Indeed, a triangulated graph G cannot contain more than
| N | maximal cliques, whereas non triangulated graphs may
contain an exponential number of maximal cliques.

Definition 6: A graph G is triangulated if and only if
every cycle whose length is 4 or more has a chord. A chord
is an edge whose extremities are two non-consecutive nodes
of a same cycle.

The process of turning a given graph into a triangulated
graph only by adding edges is called triangulation. Since
triangulation adds edges without removing any, the maximal
cliques of the original graph can still be found, included in
the maximal cliques of the triangulated graph. To proceed
with TR-decomposition, one must recover these cliques
within the newly formed ones.

To sum up, TR-decomposition consists in building the
microstructure of the problem, triangulating it, computing
the maximal cliques of the triangulated microstructure and
solving separately the subproblems induced by those cliques.

III. BINARY DOMAIN DECOMPOSITION FOR MCIS

The DOM decomposition introduced in [4] basically
creates subproblems by assigning some variables while
removing inconsistent subproblems. When applying this
decomposition method to the CP model of the MCIS recalled
in II-B, we obtain subproblems by assigning a subset of
variables X, C {z,,u € Ng} to nodes of G’ or to L.
First experiments (reported in Section V) have shown us that
this decomposition leads to very unbalanced subproblems,
and therefore very low speedups. Actually, assigning a
variable x, to a node v € Ng often strongly reduces
variable domains, as the propagation of edge constraints
removes from the domains of the variables associated with
neighbours of u all nodes of Ng/ which are not neighbours
of v. However, assigning a variable z,, to L (i.e., deciding



that « will not be matched) never reduces the domains of
the other variables (except when the number of variables
assigned to L becomes equal to the cost bound so that L is
removed from all other domains). This explains why some
subproblems are very easy to solve whereas others are much
harder, even though they all have the same search space size.

In order to try to generate more balanced subproblems,
we introduce another way of decomposing domains, called
BIN hereafter. It is a straightforward adaptation of the
decomposition of [4]. We perform a DBDFS, but instead
of creating [Ng/| + 1 branches at each node (one for each
possible value in the domain of the variable), we only create
two branches: one where the variable is assigned to L, and
one where L is removed from the variable domain.

IV. STRUCTURAL DECOMPOSITION FOR MCIS

We introduce a new way to decompose MCIS into
independent subproblems, guided by the structure of the
problem. This method, called STR, is an adaptation of the
TR-decomposition of [6] to the CP model of [8]. While
TR-decomposition was initially defined for binary CSP
instances, the CP model of [8] is a soft CSP. Nevertheless,
MCIS may be solved by finding a maximum clique in
the compatibility graph. Likewise [6], we propose to use
the class of triangulated graphs to take advantage of their
property to have a few maximal cliques.

More precisely, we triangulate the compatibility graph
with the MinFill algorithm [17]. This algorithm adds edges,
called fill edges. The fill edges add erroneous compatibilities
so that a maximum clique in the triangulated graph is
not invariably the best solution anymore, but simply is a
subproblem in which we might find solutions. Actually,
a maximum clique of the original compatibility graph is
still a clique (not necessarily maximum or maximal) in the
triangulated graph. Moreover, it is bound to appear in at
least one maximal clique of the triangulated compatibility
graph. Therefore, each maximal clique of the triangulated
graph defines a subproblem (actually an induced subgraph of
the compatibility graph) in which we may find a maximum
clique of the initial compatibility graph. Such a subproblem
can be seen as MCIS instances, with smaller graphs, that
can be solved using the CP model of [8].

Figure 3. A triangulated version of the compatibility graph of Figure 2.
The edges that were added (fill edges) are shown with dashed lines.

Algorithm 1: STR decomposition

Input: 2 graphs G and G’, a number & of subproblems
Output: A set of subproblems
Build the compatibility graph G¢ associated with G and G’
Triangulate G¢ (with MinFill [17]) to obtain G
Compute the set S of all maximal cliques of Gr
Mark all cliques of S as decomposable
while |S| < k and S contains decomposable cliques do
Remove from S its largest decomposable clique K
Let Go i be the subgraph of G¢ induced by K
Triangulate G¢x (with MinFill [17]) to obtain Gk
Compute the set Sk of all maximal cliques of Gk
if Sk = {K} then mark K as non decomposable;
else mark all cliques of Sk as decomposable;
for each clique K' € Sk do

| if VK" € S,K' Z K" then add K’ to S;

e N A R W N -

-
W N =D

return the set of all subproblems associated with cliques of S

—
'S

More precisely, given a maximal clique K of the trian-
gulation of the compatibility graph associated with G and
G’, we define a subproblem which has the same variables
and constraints as the initial problem (described in II-B).
However, the domain of every variable z,, is restricted to

D(w.) = {v € Nov | (u,v) € K} U{L}

The domains of x; and cost remain unchanged. For exam-
ple, in Figure 3, the subset of nodes {(b, 1), (b,3), (¢,2)} is
a maximal clique of the triangulated graph. In the associated
subproblem, D(z,) = {1,3,1}, D(z.) = {2,L1}, and
D(x,) = {L}. Every solution of every subproblem corre-
sponds to a maximal clique of the compatibility graph, and
therefore to a common induced subgraph. In our example,
the subproblem has two solutions of cost 1 (ie., {z, =
L,xpy =12, =2} and {2, = L,z = 3,2, = 2}) which
are optimal and correspond to two maximal cliques of the
compatibility graph (i.e., {(b,1), (c,2)} and {(b,3), (¢, 2)})
as edge {(b,1),(b,3)} is a fill edge which has been added
by the triangulation.

STR may generate subproblems with very unbalanced
sizes. In order to generate better balanced subproblems,
and also to control the number of subproblems that are
generated, we propose to recursively decompose the largest
subproblems by running TR-decomposition on them again.
This is described in Algorithm 1. We first triangulate the
compatibility graph G¢ and store all its maximal cliques in
aset S (lines 1-3). Then, while | S| is lower than the required
number of subproblems, we remove from it its largest clique
K, triangulate the subgraph of G¢ induced by K and
compute the set Sk of all its maximal cliques (lines 6-9).
If there is only one maximal clique in the triangulation of
the subgraph of G¢ induced by K, it means that K cannot
be decomposed any more (line 10). Some cliques in Sk
may be subsets of cliques in S. These non maximal cliques
are not added to S; all other cliques of Sk are added to S



(lines 12-13). Finally, once S contains enough cliques (or
no more clique is decomposable), we build a subproblem
for each clique, and return this set of subproblems (line 14).

Some maximal cliques may have large intersections. In
such a case, the corresponding subproblems also have large
intersections, meaning that we might solve a same part of
subproblems several times. In order to reduce redundancies,
some subproblems are merged, i.e. they are replaced by
a new subproblem obtained by merging their variables’
domains. Note that any solution will still be present in the
resulting subproblem, since domains can only get bigger
during this process. To prevent subproblems from growing
back to the size of the initial problem, we introduce the
notion of gain, which expresses the evolution of the size
during an hypothetical fusion.

Definition 7: Let S1 and Ss be two distinct subproblems.
The gain offered by the fusion of S; and S, is given by the
following quotient: gain(Sy, Se) = %, where
size(S;) is the product of the sizes of variable domains of
S;, and S7 U Sy represents the subproblem that would be
created if .S; and S; were to be merged.

We merge two subproblems if the gain is greater than 1,
giving priority to pairs offering the largest gains.

V. EXPERIMENTAL EVALUATION
A. Experimental setup

Our algorithms are developed in C and compiled with
GCC’s -03 optimization option. Programs are executed
with a time limit of three hours on an Intel® Xeon® CPU
E5-2670 0 at 2.60 GHz processor, with 20,480 KB of cache
memory and 4 GB of RAM.

Instances are taken from the benchmark presented in [15]
and are used in their labeled and directed versions. The
number of different labels equals 15 % of the number of
nodes in each graph. We take these labels into account
like it is done in [8], by ensuring matched nodes have
the same label. By similar rules, edges between pairs of
matched nodes must also have the same label. Each domain
is therefore reduced to values associated to nodes having the
exact same label than the node associated to the variable.

The benchmark contains three classes of instances (see
[15] for details):

bvg  Bounded Valence Graphs, where degrees cannot be
higher than a given value for each graph.

rand Random graphs, in which edges are set at random.

mnD Meshes with two (m2D), three (m3D) or four
(m4D) dimensions.

We consider instances such that graphs have a number of
nodes n ranging from 10 up to 100, and maximum common
subgraphs have a number of nodes ranging from 0.1n to
0.3n.

The MCIS is an optimization problem. As pointed out in
[1], when solving an optimization problem with a parallel

approach, a key point is to solve first the most promising
subproblems (which contain better solutions) in order to al-
low more pruning when solving the remaining subproblems.
In this experimental study, our goal is to evaluate the capabil-
ity of DOM, BIN and STR to generate balanced independent
subproblems, and we don’t want to introduce a bias with
ordering heuristics for choosing the most promising subpro-
blems. Furthermore, heuristic algorithms are able to very
quickly find near-optimal solutions to MCIS. For example,
the AntClique algorithm of [18] is able to find a maximum
clique (corresponding to a MCIS) for 90 % of our instances
in a few seconds. However, proving the optimality of these
optimal solutions with our baseline sequential approach
(MAC+Bound [8]) is still very challenging. Therefore, in
this experimental study, we consider the problem of proving
the optimality of a common subgraph. We selected instances
which are solved within our time limit of three hours by our
baseline sequential method. Since decomposition approaches
are specifically designed for instances that are hard to solve,
we reduced the scope to instances that are not solved in 100
seconds by the standard method. These constraints brought
us to the final number of 109 instances.

For each instance, we began by testing STR. STR aims
to generate a number of subproblems close to a parameter k
by successive clique decompositions. In these experiments,
k has been set to 1,500. This number is then brought down
to k' by subproblem fusions, as explained in Section IV.
To keep our study as fair as possible, BIN and DOM are
then asked to generate k' subproblems, thus solving as many
subproblems as STR. Once the number of subproblems is
fixed in this way (with a possibly different number for each
instance), we try to solve those instances with different
numbers of subproblems per workers (hence with different
numbers of workers).

B. Notations

For an initial instance ¢ defined by two graphs G and G,
we introduce the following notations:

e 5o is the size of i, i.e., the product of the sizes of its
domains;

e tg is the time to solve i;

o k' is the number of subproblems remaining after STR’s
fusions for ¢ (at most 1, 500);

o tgec is the time to decompose 7 into k' subproblems;

e Sq 1s the sum of sizes of all subproblems of i;

e tgy is the sum of times to solve all subproblems of i;

o tmaq 1S the time to solve the hardest subproblem of i;

o tmin 1S the time to solve the easiest subproblem of :.

C. Search space size and decomposition time

When decomposing the initial instance into subproblems,
some inconsistent values are filtered out, either by propagat-
ing constraints during DBDFS (for DOM and BIN), or when
reconstructing domains from cliques (for STR). For each



Table I
REDUCTION OF SIZE AND DECOMPOSITION TIME.

bvg mesh rand all instances
S0 tdec S0 tdec S0 tdee S0 tdec
Sall to Sall to Sall to Sall to

DOM 3¢ 2e* 1¢? le* 1¢ 6e* 6¢’ 4e*
BIN 1 3e” 1 3e” 1 1e* 1 Ted
STR 5¢° 2¢7 6¢e 3e? 1e° 8e? 28 5e?

(a) DOM/STR

(b) DOM/BIN

(c) BIN/STR

Figure 4.  Speedup bounds without t4e.: Each point (x,y) in (a) (resp.
(b) and (c)) corresponds to an instance such that x = tg/tmaz for DOM
(resp. DOM and BIN) and y = to/tmaz for STR (resp. BIN and STR).

decomposition method, Table I displays sq/sq1, followed by
tdec/to, on average for all instances of each class. It shows
us that BIN does not filter domains at all so that the search
space is not reduced (as pointed out in Section III). DOM
(resp. STR) reduces the search space by a factor of 600 (resp.
200 millions), on average for all instances in all classes.
This factor depends on instance classes and decomposition
methods. In particular, for DOM (resp. STR), the search
space reduction is lower than the average reduction on bvg
and mesh (resp. mesh and rand) instances, whereas it is
higher on rand (resp. bvg) instances.

Search space reduction should be considered together with
the time spent for the decomposition (¢4..). Decomposition
times of DOM and BIN are similar, and represent less than
0.04 % of ty (on average for all instances) for DOM and
0.007 % for BIN. Decomposition times of STR tend to be
higher, and are close to 5 % of .

D. Speedup bounds

The time needed to solve the initial problem divided
by the time needed to solve the hardest subproblem (i.e.,
to/tmaz) provides a first upper bound on the speedup. For
each decomposition method, Table II displays this bound
(minimum, average and maximum values for each class

Table 11
SPEEDUP BOUND WHEN IGNORING tgec (i.€., t0/tmax)-

bvg mesh rand all
min avg max [ min avg max [ min avg max ||avg
DOM| 1.6 4.9 45014 49 152|133 29 155|/4.1
BIN | 1.1 4.0 80| 0.7 46 10.5| 0.5 3.7 11.6 (/4.0
STR | 1.5 11.1 54.3| 1.5 9.1 25.1| 2.4 5.5 30.2 || 8.4

Table III
SPEEDUP BOUND WHEN INTEGRATING tge. (i-e., to/(tdec + tmaz))-

bvg mesh rand all
min avg max |min avg max |min avg max || avg

DOM | 1.6 4.8 446| 1.4 4.9 152| 1.3 2.9 154 4.1

BIN | 1.1 4.0 80| 0.7 4.6 10.5| 0.5 3.7 11.5|| 4.0

STR | 1.5 8.6 289| 1.4 82 24.1| 1.2 4.0 13.1|| 6.7
Table IV

SUBPROBLEM SOLVING TIME: MIN (ty,in /t0), AVG (tq11/ (k' X to))
AND MAX (tmaa/t0)-

bvg mesh rand
min avg max min avg max min avg max
DOM | 0.05¢3 4¢3 32067 [0.167 Ted 293e3 [0.1e3 4¢3 49167
BIN 6e7 48¢3 2733 2¢3 44¢d 3177 | 14e3 78¢° 30667
STR | 0.1e7 15¢7 175¢7 [0.1e® 12e7 179e7 [0.3¢” 387 265¢7°

of instances). On average for all instances of all classes,
the largest speedup bound is obtained with STR (8.4), the
second largest by DOM (4.1), and the smallest by BIN (4.0).
However, all these speedup bounds are rather low when
considering the fact that each instance has been decomposed
into 470 subproblems in average (min. 192, max. 1053).
Again, we observe differences depending on the classes. In
particular, for DOM and STR, the speedup bound is higher
than the average on bvg and mesh instances, whereas it is
lower on rand instances.

Figure 4(a) compares DOM with STR for each instance
separately. It shows us that if for a majority of instances the
speedup bound is larger with STR than with DOM, there are
some instances (mainly of the bvg and mesh types) for which
the bound is larger with DOM than with STR. Figure 4(b)
and (c) compare DOM with BIN, and BIN with STR, and
the same remark holds for these plots.

However, if the time spent by the decomposition step
(tgec) is rather small for DOM and BIN, it is larger for
STR. Hence, a tighter upper bound on the speedup may
be obtained by dividing tg by tg4ec + timaz- These speedups
are displayed in Table III. It can be noticed that STR still
obtains the largest average speedup bounds, though DOM
obtains rather close bounds.

E. Time needed to solve subproblems

If the time needed to solve the hardest subproblem is a
bottleneck, the speedup also depends on the hardness of all
subproblems. To give an insight into this hardness, Table IV
displays the time ratio between the easiest subproblem and
the initial instance (¢, /to), the average time ratio between
a subproblem and the initial instance (¢q;/(k’ X tp)), and
the time ratio between the hardest subproblem and the initial
instance (¢4 /o), on average for all instances of each class.

On average, STR generates harder subproblems than
DOM: 4 times as hard for bvg, twice as hard for mesh and
10 times as hard for rand. On the other hand, the hardest
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Figure 5. Size w.ur.t. time: for each decomposition method

d € {DOM, BIN, STR}, and each instance class ¢ € {bvg, mesh,rand},
the subfigure d/c plots a point (z,y) for each subproblem obtained when
decomposing an instance of ¢ with d, where z is the size of the search
space of this subproblem, and y is the time needed to solve it.

Table V
SPEEDUP WITH 30 SUBPROBLEMS PER WORKER.

bvg mesh rand all
min avg max |min avg max |min avg max || avg

DOM| 15 32 92|08 35 64|13 25 11.9]| 3.0
BIN | 0.2 1.0 22|01 09 22|01 06 3.2(0.8
STR | 0.3 4.8 254 | 0.6 4.0 148| 0.3 1.5 8.1} 3.3

subproblem for each instance is easier when decomposing
with STR than when decomposing with DOM.

F. Correlation between time and search space size

Table IV shows us that the subproblems obtained when
decomposing an initial instance are of very fluctuating
difficulty. Actually, in most cases, there are a lot of very
easy subproblems, and only very few hard subproblems.
To obtain a speedup as close as possible to the bounds
displayed in Table III, a key point is to be able to identify
these hard instances so that we can solve them first and
better balance the workload. Therefore, we plot in Figure 5
the relation between the size of the search space of a
subproblem, and the time needed to solve it. It demonstrates
that two subproblems with a same size may be of very
different difficulty. However, we note that, for STR, the
rightmost points (corresponding to the largest subproblems)
tend to have large y values (corresponding to the hardest
subproblems). This remark still holds for DOM, to a lesser
extent. This is no longer true for BIN, for which there is
no satisfying correlation between size and time. Note that
for all decomposition methods, there are subproblems which
have rather small sizes but which are hard to solve.

bvg  +
meshes

(a) DOM/STR (b) DOM/BIN (c) BIN/STR

Figure 6. Speedups with 30 subproblems per worker: Each point (z,y)
in (a) (resp. (b) and (c)) corresponds to an instance such that x is the
speedup for DOM (resp. DOM and BIN) and y for STR (resp. BIN and
STR).

G. Speedup with 30 subproblems per worker

Table V displays the speedup observed with 30 sub-
problems per worker, for each decomposition method, and
each class of instances (minimum, average and maximum
speedups). This number of subproblems per worker was
described as generally efficient by [5]. Let ¢,..,; be the total
time spent by the last worker which has completed its work.
The speedup is to/(tgec + treal)-

We note that BIN has very low speedups. STR has better
speedups than DOM on bvg and mesh instances, whereas it
has a lower speedup on rand instances. These rankings ba-
sically correspond to rankings observed on speedup bounds
for DOM and STR.

Let us finally note that these speedups are quite low, even
for the best decomposition method STR. As a comparison,
[4] reports results on 20 CSPs (and many instances for each
CSP). With 40 workers and 40x 30 = 1, 200 subproblems by
instance, the average speedup is 21.3, and the worst speedup
is 8.6.

H. Speedup with different numbers of workers

Experiments in [4], [5] show us that a good EPS decompo-
sition is generally obtained by generating about 30 subpro-
blems per worker. In this study, we generated approximately
as many subproblems with each method and tried solving
them with different numbers of workers, thus varying the
number of subproblems per worker.

Figure 7 compares speedups obtained with STR and DOM
when varying the number of subproblems per worker from 1
to 50. When the number of subproblems per worker is higher
than 35, speedups with DOM are higher than speedups with
STR. However, when the number of subproblems per worker
is lower than 35, STR obtains better speedups than DOM.
This may come from the fact that even though STR generates
harder subproblems, on average, than DOM (see Table IV),
its hardest subproblems are easier.

VI. CONCLUSION

We have introduced a structural decomposition method
for the MCIS problem derived from the TR-decomposition
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Figure 7. Observed speedups with different numbers of workers, for DOM
and STR.

method defined in [6]. It relies on a triangulation of the
compatibility graph of the problem and allows to decompose
the problem into several independent subproblems. We have
experimentally compared this structural decomposition with
the domain decomposition method proposed by [4], showing
that it leads to higher speedups for two classes of instances,
and to weaker speedups for one class.

The decomposition of the initial instance into subproblems
is time-consuming. In this paper, this decomposition step
has not been parallelized. [5] proposes to parallelize this
decomposition step, and this allows them to obtain better
speedups. Our structural decomposition method could be
parallelized. In particular, instead of treating each clique K
separately (in the loop lines 5—13 of Algorithm 1), we could
treat several cliques in parallel.
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