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Abstract 
According to a study of The Standish Group International, 44% of software projects cost more and last longer 
than expected. More accurate the effort estimation is; the better the enterprise gets organized and the more 
the software project respects the commitments on budget, time and quality. Enhancing the accuracy of effort 
estimation remains an ongoing challenge to software professionals. Several factors can influence the accuracy 
of effort estimation, namely the immaterial aspect of information system projects, new technologies and the 
lack of return on experience. However, the most important factor of cost and delay increase is software risks. A 
software risk is an uncertain event with a negative consequence on the software project. In this article, we 
propose a methodology to take into account risk exposure analysis in the effort estimation model. In the 
literature, this issue is little addressed and few approaches are investigated. In this research work, we first 
present an overview of these approaches and their limits. Then, we propose an effort estimation model that 
improves the accuracy of estimation by integrating software risks. We finally apply this model to a case study 
and compare its results to the results of a classic model. 
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1 INTRODUCTION 
Effort estimation is an important activity in the bidding 
process and throughout the entire software development 
life cycle. Both project managers and client use effort 
estimation to predict the effort, duration and cost required 
to develop their software projects in order to establish 
contracts. Various effort estimation methods may be used, 
however they do not produce sufficiently accurate results, 
hence, approximately 44% of software projects, according 
to The Standish Group International, fail to meet the 
commitments on quality, time and cost.  Therefore, it is 
important to identify and analyze factors underlying this 
failure in order to improve the effort estimation accuracy. In 
fact, several factors have been identified and addressed in 
literature such as the choice of estimation technique, the 
estimator’s experience, the precision of user’s 
requirements details, the use of new technologies, etc. 
However, a very crucial factor is not sufficiently addressed 
which is software risks. Risks in software projects are 
numerous and may have a deep negative impact on the 
projects progress and so on the cost, quality and time.  
According to Nguyen and al. software risk must be taken 
into consideration in two main situations. First, during the 
software development when faced with a risk situation, the 
manager has to choose a strategy to treat the risk and to 
keep project on budget and on time. Then, in the response 
to a bidding, risks have to be correctly identified and 
assessed and the strategies adequately chosen to obtain a 
realistic software project effort and cost estimations [1].  
For the first situation, various software risk management 
approaches and tools have been proposed. They allow 
project managers to manage risks throughout the 
development software life cycle. These approaches 
provide methodologies to identify potential software risks, 
to measure their possible impacts on the project progress 
and to choose the adequate risk treatment strategies. 
However, for the second situation, taking into account 
software risks in the effort estimation process is little 
addressed. In fact, the uncertain and evolutionary nature of 

software risks makes it difficult to take it into account in the 
effort estimation process. 
This study addresses this issue and proposes a process to 
take into account software risks in effort estimation and an 
approach to establish effort estimation model integrating 
software risks. 
The present paper is organized as follows: Section 2 
presents literature review on effort estimation process, 
software risk management approaches, and existing effort 
estimation approaches taking into account software risks. 
Section 3 presents the proposed process of effort 
estimation taking into account risk, then, focuses on the 
establishment process of the effort estimation model 
integrating software risks. Section 4 presents a case study 
of the proposed approach taking into account software 
risks in effort estimation. The results of the case study 
show that the proposed effort estimation model taking into 
account software risks is more accurate than the traditional 
effort estimation model. Section 5 draws some final 
conclusions and prospects. 
2 LITERATURE REVIEW 
2.1 Estimation in software projects 
Estimation in software project aims to predict the 
development effort, cost and time of a software project. 
The estimation process is based on the approach shown in 
Figure 1. This process consists of three activities: 
-The estimation or the measure of the functional size 
-The determination of the development efforts 
-The calculation of the duration, cost and resources 
required at the global level or by sub-assemblies. 
Functional size expresses the size of the software which is 
derived from the quantification of functional requirements 
specified by users [ISO/IEC14143]. Functional size can be 
calculated by several methods and techniques of functional 
measurement such as FPA (Function Point Analysis) and 
COSMIC FP (COSMIC Function Point), thus it can be 
expressed in different units such as function points (FP) 
and source lines of code (SLOC). 
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The development effort is a function of the functional size 
[2], it is expressed in man-hours, man-days or man-
months. The development effort estimation makes it 
possible to predict the number of man-months required to 
perform the software development project. Several 
estimation models can be used to estimate development 
effort based on functional size and other project 
parameters. Otherwise, the multiplication of functional size 
with a productivity factor can be used to convert functional 
size to development effort. 
The development effort once estimated, enables to 
determine the duration, staffing, and cost required for 
software development because development effort is a 
function of the duration and staffing. Therefore, duration 
and staffing can be easily determined either by balancing 
them, or using duration-staffing curves. 
Various effort estimation methods and models that can be 
used in the estimation process are presented above, they 
can be classified as expert judgment, parametric models, 
analogy methods, and machine learning methods.  
Expert judgment is a widely used technique in various 
fields, it is based on the expert intuition and experience 
drawn from previous executed project. Thus, this technique 
is subjective especially when performed by a single expert. 
To mitigate this aspect of subjectivity, expert judgment 
techniques performed by a group of experts such as 
wideband Delphi and planning poker were developed. 
Parametric and algorithmic models are mainly based on 
equations expressing the effort as a function of 
discriminant parameters influencing the effort called effort 
drivers. Parametric models are established using historical 
data from complete projects, based on this data, effort 
drivers that influence strongly the effort are determined 
then effort estimation equations are expressed.  
In analogy methods, the effort required by a project (or a 
task) is estimated using analogy with executed projects ( or 
tasks).  
Machine learning methods such as case based raisonning 
and neural network techniques have recently been used in 
conjonction or as alternative to algorithmic models [3]. 
These methods are trained using historical data of 
previous projects to produce accurate estimation by 
automatically adjusting their parameter to better fit the new 
project to estimate. 
2.2 Software project risks 
A software risk is an event that may or may not take place 
and that results in negative consequences on a software 
project [4][5]. It may affect all aspects of the software 
project, namely the organization, the technology, the 
personal, etc. [6]. 
Risk is defined as a measure of the probability and severity 
of adverse effects [7]. The multifaceted aspect of software 
risk makes it difficult to measure it.  
Several risk identification methods have been proposed to 
support project manager in risk management. Many 
researchers proposed checklists that help project manager 

in risk identification. Based on a survey of several 
experienced project managers, Boehm developed a list of 
ten most important risks in software project [8]. Other 
methods classify risks into classes according to the project 
element they affect, such as taxonomy-Based Risk 
Identification. Taxonomy-Based Risk Identification is 
established by the Software Engineering Institute (SEI), It 
regroups risk events in three major classes: Product 
engineering, development environment, and program 
constraints. Other researchers classify risks into various 
dimensions used the multifaceted aspect of software risk. 
In that way, McFarlan identified three dimensions of 
software risks that are project size, technology experience, 
and project structure [9]. Barki and al., based on a data 
base of 120 projects, classify risks into five dimensions: 
technological newness, application size, expertise, 
application complexity and organizational environment 
[10]. Wallace and al. identify 27 software risks that they 
classify into six dimensions [11]. 
After the identification of risk events, the risk assessment 
process consists in the quantification of the importance of 
these risk events. It measures and quantifies the degree of 
importance and criticality of software risk. Various 
techniques can be used for risk assessment.  The majority 
of methods use both risk impact on the project 
performance and the probability of occurrence to express 
the importance of software risk.  
The most well-known software risk assessment methods 
are Boehm’s method, SRE, SERIM and DoD. These 
methods are detailed below. 
The Boehm’s method focuses on the concept of risk 
exposure to determine the perceived importance of the risk 
event at the time of assessment. Risk exposure is defined 
as the product of the loss probability and the loss 
magnitude (i.e. impact) of each identified risk. In this 
method, the loss probability and the loss magnitude is 
assessed using numerical scale or based on categories 
with associated numerical value for each category, such as 
for loss probability: improbable (0.0-0.3), probable (0.4-
0.6), or frequent (0.7-1.0). Boehm’s method can be used in 
all the phases of software development, but it doesn’t 
handle generic risk implicitly [8]. 
The software Risk Evaluation (SRE) method uses the 
same concept of the risk exposure. The probability of 
occurrence is assessed based on a scale of one to three, 
while the impact is determined on the basis of the risk 
effects on the technical performance, cost, schedule and 
support. SRE method was developed by SEI, therefore it 
can be applied to any software project. 
Karolak proposed Software Engineering Risk Management 
(SERIM) method based upon Just-In-Time (JIT) strategy. 
The JIT software aims to minimize risks and their 
contingencies, and to manage the risks early in software 
life cycle. The SERIM associates to each software risk a 
specific metric and a question. These questions form a 
checklist that enables the user to identify software risks.  
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Figure 1: Generic software estimation process. 
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The answers to the questions are then converted to 
numerical values through metrics and used to calculate 
risk factor values, using probability tree [12]. 
The Department of Defense and the Defense Acquisition 
University (DAU), proposed the Risk management Guide 
for the Department of Defense (DoD) to assist software 
project managers in identification, assessment and 
management of risks during the entire software life cycle. 
In this method, probability is assessed using a scale of 5 
levels, namely “remote”, ”Unlikely”, “Likely”, “Highly likely” 
and “Near certainty”, whereas impact is identified in terms 
of technical performance, schedule, cost and team [13]. 
2.3 Risk in effort estimation 
According to a study of The Standish Group International, 
44% of software projects cost more and last longer than 
expected. This may be the result of inaccurate and 
unrealistic effort estimation. 
Since the risk is a major factor that prevents software 
project from being on time and staying within budget, it is 
important to take it into account during the estimation 
process.  
Several approaches were proposed to handle this issue 
such as the simplistic approach, the Function Point 
Analysis, COCOMO II, etc. 
In many cases, project managers use the simplistic 
approach that consists on applying a risks factor to the 
estimated effort, duration, and cost in order to integrate risk 
in estimation. The risks factor is independent of the used 
estimation method; the project manager, based on his 
experience, determines it. It ranges from 1 to x. That 
means that if the factor is 1, no risk will occur, and when 
the factor is x, all risks will occur. This approach is not 
complicated to handle, but it doesn’t allow determining the 
effect of a specific risk because the risks factor is affected 
to all project risks without specifying individual risks and 
assessing each one.  
In Function Point Analysis (FPA), it was assumed that 
project risks are reflected in the fourteen “General System 
Characteristics (CSC)” and that the overall contingency is 
expressed in the value adjustment factor. The contingency 
is defined as the reserve that is set aside to manage and 
handle the impact of risk events in order to protect projects 
from producing undesirable results [4]. Like the previous 
introduced approach, this one doesn’t makes it possible to 
determine the effect of a specific risk due to the unknown 
relationship between a specific project risk and the general 
system characteristics. 
COCOMO II remedies the underlined lakes of the two 
previously presented approaches; it defines a risk factor 
that, based on six types of risk, characterizes each module 

to be developed [2]. Each risk should be allocated to one 
risk type whereas a risk can be multidimensional so 
allocated to different types, which would make it difficult to 
adjust its treat. 
Other approaches were developed to take into account 
project risks in cost estimation such as contingency 
estimation model proposed by Uzzafer. In this model, the 
contingency is defined as the buffer between the expected 
cost of the project and the expected cost due to the 
maximum impacts of risk events. Therefore, the 
contingency model provides estimates of man-months 
reserves to abate the maximum impact of risk. This model 
is generic and independent of the cost estimation and risk 
assessment models, and take into account software risks, 
but it does not provide a unique value of cost estimation 
and does not take into account the updated software risks 
predictions.  
3 APPROACH  
In this paper, an approach that integrates software risks in 
effort estimation process is proposed. The objective of this 
approach is to assist project manager and estimators in the 
entire effort estimation process taking into account 
software risks by providing a methodology and its 
associated tools and supports. 
The effort estimation process integrating risks, as shown in 
the Figure 2, consists of four steps: the risk identification, 
the risk analysis, the risk assessment, and effort 
estimation. Some existing methods, tools and supports are 
proposed for each step. Methods and tools that are bold in 
the figure 2 are selected for this study. A focus is given to 
the effort estimation step for which we propose a new effort 
estimation model that integrates software risks. 
3.1 Risk identification and analysis 
In the stage of identification, it is important to identify as 
much as possible software risks that may occur in the 
software project. That will ensure realistic and accurate 
software risk measurement. As mentioned in section 2.2, 
there are several software risks identification methods. For 
the present approach, the Wallace and al. software risk 
structure is used (Table 1), because it is a rigorous 
validated identification’s method that is grounded in the IS 
literature and validated with practicing software project 
managers. Besides, it provides an exhaustive risks’ list that 
are classified in six dimensions. Furthermore, in this 
classification scheme the categories or dimensions of risk 
are as distinct as possible.  
3.2 Risk assessment  
Our approach aims through this step to assess the 
software risks for the entire project and to determine the 
project total risk exposure. 

Figure 2: Process of effort estimation integrating risks and examples of support methods. 
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For this purpose, the DoD risk assessment method is 
selected based on the comparison of the various impacts 
for the software assessment methods mentioned in section 
2.2. The comparison made by Han and Huang shows that 
compared to other methods, the DoD method contains 
diverse types of impacts and describes clearly each 
assessment criteria and each probability scale of 
occurrence and impacts [15]. 

Table 1: Software risks list [11]. 

Risk dimension Software risk 
User Users resist to change 

Conflict between users 
Users with negative attitudes toward the 
project 
Users not committed to the project 
Lack of cooperation from users 

Requirement Continually changing system 
requirements 
System requirements not adequately 
identified 
Unclear system requirements 
Incorrect system requirements 

Project 
complexity 

Project involved the use of new 
technology 
High level of technical complexity 
Immature technology 
Project involves use of technology that 
has not been used in prior projects 

Planning & 
control 

Lack of effective project management 
methodology 
Project progress not monitored closely 
enough 
Inadequate estimation of required 
resources 
Poor project planning 
Project milestones not clearly defined 
Inexperienced project manager 
Ineffective communication 

Team Inexperienced team members 
Inadequately trained development team 
members 
Team members lack specialized skills 
required by the project 

Organizational 
environment 

Change in organizational management 
during the project 
Corporate politics with negative effect on 
project  
Unstable organizational environment 
Organization undergoing restructuring 
during the project 

 
In this paper, the project total risk exposure is defined as 
the average of dimensions risks exposure. For each 
dimension in the Table 1, the manager calculates the risk 
exposure for each software risk, and then calculates the 
average of these risks exposure. 
The risk exposure is computed by multiplying the 
probability of occurrence with the composite impact. 
The probability of occurrence is assessed based on the 
manager’s and team experience and using the Table 2, it 
can take a value from 1 to 5. 
The composite impact of a software risk is the average of 
the four components that are: impact on the technical 
performance, impact on the cost, impact on the schedule 
and impact on the team. These components are assessed 
based on the managers and teams experience and using 

the Table 2; a value from 1 to 5 is assigned to each 
component depending on its level. 
3.3 Effort estimation integrating risk 
This paper proposes a framework, shown in Figure 3, for 
establishing effort estimation models taking into account 
project software risks and based on database of completed 
projects. This framework consists of four stages. First, the 
parameter selection stage aims to define the discriminant 
effort drivers of the project development effort based on a 
data set. These effort drivers will be used to build effort 
estimation models. Next, in the data preparation stage, 
completed projects database is prepared using effort 
drivers outcomes from the parameter selection stage in 
addition to assessed projects risks. Afterwards, the effort 
estimation models integrating risks establishment can take 
place. Several accuracy indicators are finally used to 
validate the effort estimation model. 
Parameter selection 
In this stage, a projects database is explored to extract the 
most discriminant effort drivers. Organization’s projects 
database is built over years by projects teams in order to 
capitalize the experience and information related to 
completed projects. It contains information about complete 
projects such as development effort, functional size, and 
platform development. In order to establish an effort 
estimation model taking into account software project risk, 
project risk exposure is assessed and updated by project 
managers through return of experience at the end of each 
project. 
To identify the most relevant effort drivers, the statistical 
test of Pearson correlation and one-way ANOVA can be 
used [16] , they enables to examine the significance 
between the effort drivers and the development effort in 
order to select the effort drivers with significant influence 
on the development effort.  
The Pearson’s correlation test is used for the effort drivers 
with the ratio scale to investigate the correlation of two 
datasets [17]. It provide a correlation coefficient ranging 
from -1 to 1, it takes value 1 if the two datasets are 
perfectly correlated, 0 if they are completely uncorrelated, 
and -1 if they are perfectly anti-correlated. 
One-Way Analysis of Variance (ANOVA) test allows 
determining if one given effort driver has a significant effect 
on the distribution of the development effort. It is used for 
effort drivers with the nominal scale. 
The relevance and the influence of project risk exposure 
(PRE) on the effort are proved using Person correlation 
test.  The application of Pearson correlation test on the 
project risk exposure of a sample of 164 projects provide a 
correlation coefficient of 0.43, hence it shows that risk 
exposure is considered as a relevant effort driver. 
Data preparation 
In this stage, the projects database is prepared in order to 
establish effort estimation model. Datasets related to 
irrelevant effort drivers are deleted. Projects with missing 
values in effort driver fields are discarded from use in 
estimation model establishment. 
The development effort distribution is adjusted to be 
normal by discarding atypical projects and projects with 
asymmetric efforts.  
The projects data should be divided into two segments, 
one used to establish and train the effort estimation model 
integrating risk and the other used to validate it. The k fold 
cross-validation approach can be used for this purpose. 
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Table 2: Risk assessment levels used in the DoD method [13]. 

Level Probability of 
occurrence  

Impact    
Technical performance  Cost Schedule Team 

1 Not likely (~10) Minimal or no impact  Minimal or 
no impact 

Minimal or no impact None 

2 Unlikely (~30) Acceptable with some 
reduction in margin  

<5% Additional resources 
required. Able to meet need 
dates  

Some impact 

3 Likely (~50) Acceptable with 
significant reduction in 
margin  

5-7% Minor slip in key milestone. 
Not able to meet need dates 

Moderate 
impact 

4 Highly likely (~70) Acceptable; no 
remaining margin 

7-10% Major slip in key milestone or 
critical path impacted 

Major impact 

5 Near certainty (~90) Unacceptable >10% Cannot achieve key team or 
major program milestone 

Unacceptable 

 
In this approach the data is divided into k equally or near 
equally folds or segments. Subsequently k iterations of 
training and validation are performed such as for each 
iteration a different fold of the data is used for model 
validation, while the remaining k-1 folds are used for model 
training. The value of k is often set to three in literature[18]. 
Effort estimation model establishment  
After preparing projects database that specifies for each 
project the development effort and values of relevant effort 
drivers and risk exposure, the effort estimation model can 
be established using regression. 
There are various types of regression that have been used 
in effort estimation models, namely linear or multi linear 
regression like the one used by kok and al. [19], non-linear 
regression that was used by Boehm [20], and ordinal 
regression that was used by sentas and al. [21]. 
Project database may contain quantitative effort drivers 
with ratio scale and also qualitative effort drivers with 
nominal scale. Thus, effort estimation model can’t be 
directly derived from database by applying usual multi 
linear regression (MLR) that is sensitive to the 
categorization of variables. In order to address this issue, 
different manner can be used such as the Analysis of 
Covariance (ANCOVA) and the Ordinal Regression (OR). 
ANCOVA is a regression model that contains quantitative 
and qualitative variables that are called dummies. 
Dummies are categorical variables that take the value of 
either 0 or 1 indicating the absence or the presence of a 
categorical effect on the outcome [22].  
The Ordinal Regression is a generalization of the MLR 
predicting cumulative probabilities for the ordered 
categories of the dependent variable. It provides a 
separate equation for each category and each equation 
provides us with a predicted probability of being in the 
corresponding category or any lower category [21]. 

Besides these traditional types of regression, the recent 
machine learning approach can be used to establish a 
learning based effort estimation model integrating risk. 
Learning based models are capable of learning 
Incrementally as new data are provided over time [23], 
thus, they are automatically adjusted and adapted to the 
new project to estimate. Well known ML approaches are 
artificial neural networks (ANN), Support vector regression 
(SVR), Regression Trees, and Multiple additive Regression 
Tree (MART) etc. 
Model validation 
In order to compare performances and accuracies of 
traditional effort estimation model not taking into account 
risks and effort estimation model integrating risk, different 
accuracy indicators can be used for this study such as the 
Mean Magnitude of Relative Error (MMRE), the Pred(0.25) 
and the coefficient of determination R2. 
Both the Mean Magnitude of Relative Error (MMRE) and 
the Pred(0.25) statistics were suggested by conte and al. 
[24]. The MMRE is based on the calculation of the 
Magnitude of Relative Error (MRE) that is a percentage of 
the estimation error in comparison with the actual 
development effort used by the executed project as shown 
in Equation (1) where !! is the actual effort of the project j 
and !! is the effort estimation of the project j [25]. 

MREj =!
!!−!!!
!!

        (1) 

The MMRE is then the mean of the MREs of set of 
software project [26]. 
Pred is a measure of the predictive ability of an effort 
estimation model where Pred(0.25) compute the 
percentage of projects whose MRE is less than or equal to 
25% [26]. 
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The coefficient of determination measures the correlation 
between effort estimates and actual effort based on the 
idea that bigger projects generate bigger estimates than 
smaller projects. Albrecht [27] and others have used linear 
regression to measure this correlation. The coefficient of 
determination ranges from 0 for no correlation to 1 in the 
case of the perfect correlation. For an effort estimation 
model, the coefficient of determination is measured; the 
higher it, the better the model [28].  
4 CASE STUDY 
The database used in this case study contains 234 
projects with 55 data items for each project structured in 
the same way as ISBSG (International Software 
Benchmarking Standards Group) in addition to the project 
risk exposure. The project risk exposure is assessed using 
the method detailed above.  
4.1 Parameter selection 
Based on the analysis performed by Huang and al. on the 
ISBSG repository containing 1238 projects, eight effort 
drivers are considered in this study: Functional size (FS), 
max team size (MTS), development type (DT), 
development platform (DP), language type (LT), used 
methodology (UM), methodology acquired (MA), and 
application type (AT). FS, MTS, and PRE are quantitative 
effort drivers, while DT, DP, LT, UM, MA, and AT are 
qualitative effort drivers.  
The Person correlation test and the one-way ANOVA 
described in 3.3 are adopted to test the relevance of these 
effort drivers based on the database of this study. As 
shown in Table 3, in addition to PRE four of these effort 
drivers display important influence that are: FS and MS 
with ratio scale, and LT and MA with nominal scale. These 
effort drivers are thus included in the effort estimation 
model establishment in addition to PRE. 

Table3: Results of Pearson correlation and one-way 
ANOVA. 

Correlation 
Test Effort driver Correlation 

Pearson  FS 0.247 
MTS 0.264 
PRE 0.436 

One Way 
ANOVA 
  

DT 0.002 
DP 0.002 
LT 0.03 
MA 0.01 
UM 0.006 
AT 0.001 

4.2 Data preparation 
After discarding datasets related to irrelevant effort drivers 
then projects with missing values and atypical projects with 
outliers, the database is reduced to 168 projects. 
The three fold cross-validation is used in this study, thus 
the database is divided into three equally folds, two of 
them are used to establish effort estimation model 

integrating risk while the remaining fold is used to validate 
the model. 
4.3 Effort estimation model integrating risks 

establishment 
In this study, effort estimation model integrating risks is 
derived from the two-thirds of the database. Effort is 
expressed in terms of the four effort drivers in addition to 
the project risk exposure using the multi linear regression.  
In the same time, a traditional effort estimation model is 
derived from the same database in order to compare 
results and accuracies in the model validation step. This 
model is expressed in terms of the four effort drivers using 
multi linear regression. 
4.4 Model validation 
Afterwards the effort estimation model integrating risk 
establishment based on the two-third of the database, the 
remaining database is used for testing the model and 
comparing it with the traditional effort estimation model. 
Three accuracy indicators are used for this case study: 
MMRE, Pred(0.25) and R2. Table 4 shows accuracy 
indicators results in the two phases of training and test of 
the two effort estimation models: traditional effort 
estimation model (TEEM) and established effort estimation 
model integrating risks. In comparison to the traditional 
effort estimation, the established effort estimation model 
integrating risks shows better accuracy indicators results 
for this case study. Therefore, considering the project risks 
exposure a relevant effort driver and integrating it in the 
effort estimation model provide significant improvement 
compared to traditional effort estimation model. 
5 CONCLUSION 
The more accurate effort estimation is, the better the 
software project complies with the contractual 
commitments in terms of budget and duration. Crucial 
factor affecting effort estimation accuracy is software risks, 
thus, it has to be taken into account in the effort estimation 
process. This issue is not addressed enough in the 
literature, that why the present paper handle it. 
These research works provide project managers a process 
to take into account software risks in effort estimation 
activity. Also, it provides them tools and methods that can 
be used in each process step. 
The process of integrating software risks in effort 
estimation activity starts by the anticipation and 
identification of software risks that may occur during the 
software development, their assessment, then the 
determination of global project risk exposure. This project 
risk exposure is considered a relevant effort driver as its 
influence on the development effort is proved using 
Pearson correlation test. 
Once the project risk exposure is determined, development 
effort can be estimated using an effort estimation model 
integrating risks, which is established, based on historical 
data from previous project. In addition to project risk 
exposure, important effort drivers are determined, and then 
the effort estimation model integrating risk is derived from 
the database.  
 

Table 4: Accuracy comparison of the effort estimation models. 

Model MMRE Pred(0.25) R2 

Training Test Training Test Training Test 
TEEM 0.53 0.55 0.34 0.33 0.215 0.23 
EEMR 0.38 0.35 0.57 0.46 0.322 0.28 
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The effort estimation model integrating risks, once 
determined, can be used for new software projects to 
estimate. However, several model parameters may change 
over time due to many factors such as the team 
experience evolution, the team adaptation to technologies, 
etc. Thus, effort estimation model integrating risks have to 
be regenerated when the project managers observe that 
their current model becomes less accurate and the 
database gets sufficiently bigger. 
For the same purpose of improving effort accuracy, future 
research work can focus on establishing a machine 
learning based effort estimation model integrating risks. 
The advantage is that the learning based model is 
automatically adjusted over time. 
 During the development software life cycle, effort 
estimation is refined as requirement becomes more 
detailed and more accurate. The evolutionary and temporal 
nature of risks has to be taken into account as well. 
Future research studies can focus on the need of 
continuous software risk assessment and the importance 
of taking into account the temporal aspect of software risks 
to refine and update effort estimation through the project. 
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