
HAL Id: hal-01191575
https://hal.science/hal-01191575

Submitted on 2 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward an effort estimation model for software projects
integrating risk

Safae Laqrichi, Didier Gourc, François Marmier

To cite this version:
Safae Laqrichi, Didier Gourc, François Marmier. Toward an effort estimation model for software
projects integrating risk. 22nd International Conference on Production Research, 2013, Iguassu Falls,
Brazil. �hal-01191575�

https://hal.science/hal-01191575
https://hal.archives-ouvertes.fr

22nd International Conference on Production Research

TOWARD AN EFFORT ESTIMATION MODEL FOR SOFTWARE PROJECTS
INTEGRATING RISK

S. Laqrichi, D. Gourc, F. Marmier

Université de Toulouse, Mines Albi, Centre Génie Industriel
Route de Teillet, Campus Jarlard, 81013 Albi Cedex 09, France

Abstract
According to a study of The Standish Group International, 44% of software projects cost more and last longer
than expected. More accurate the effort estimation is; the better the enterprise gets organized and the more
the software project respects the commitments on budget, time and quality. Enhancing the accuracy of effort
estimation remains an ongoing challenge to software professionals. Several factors can influence the accuracy
of effort estimation, namely the immaterial aspect of information system projects, new technologies and the
lack of return on experience. However, the most important factor of cost and delay increase is software risks. A
software risk is an uncertain event with a negative consequence on the software project. In this article, we
propose a methodology to take into account risk exposure analysis in the effort estimation model. In the
literature, this issue is little addressed and few approaches are investigated. In this research work, we first
present an overview of these approaches and their limits. Then, we propose an effort estimation model that
improves the accuracy of estimation by integrating software risks. We finally apply this model to a case study
and compare its results to the results of a classic model.

Keywords:
Project effort estimation, Risk exposure, Information system project, Software Risk, Project database analysis.

1 INTRODUCTION
Effort estimation is an important activity in the bidding
process and throughout the entire software development
life cycle. Both project managers and client use effort
estimation to predict the effort, duration and cost required
to develop their software projects in order to establish
contracts. Various effort estimation methods may be used,
however they do not produce sufficiently accurate results,
hence, approximately 44% of software projects, according
to The Standish Group International, fail to meet the
commitments on quality, time and cost. Therefore, it is
important to identify and analyze factors underlying this
failure in order to improve the effort estimation accuracy. In
fact, several factors have been identified and addressed in
literature such as the choice of estimation technique, the
estimator’s experience, the precision of user’s
requirements details, the use of new technologies, etc.
However, a very crucial factor is not sufficiently addressed
which is software risks. Risks in software projects are
numerous and may have a deep negative impact on the
projects progress and so on the cost, quality and time.
According to Nguyen and al. software risk must be taken
into consideration in two main situations. First, during the
software development when faced with a risk situation, the
manager has to choose a strategy to treat the risk and to
keep project on budget and on time. Then, in the response
to a bidding, risks have to be correctly identified and
assessed and the strategies adequately chosen to obtain a
realistic software project effort and cost estimations [1].
For the first situation, various software risk management
approaches and tools have been proposed. They allow
project managers to manage risks throughout the
development software life cycle. These approaches
provide methodologies to identify potential software risks,
to measure their possible impacts on the project progress
and to choose the adequate risk treatment strategies.
However, for the second situation, taking into account
software risks in the effort estimation process is little
addressed. In fact, the uncertain and evolutionary nature of

software risks makes it difficult to take it into account in the
effort estimation process.
This study addresses this issue and proposes a process to
take into account software risks in effort estimation and an
approach to establish effort estimation model integrating
software risks.
The present paper is organized as follows: Section 2
presents literature review on effort estimation process,
software risk management approaches, and existing effort
estimation approaches taking into account software risks.
Section 3 presents the proposed process of effort
estimation taking into account risk, then, focuses on the
establishment process of the effort estimation model
integrating software risks. Section 4 presents a case study
of the proposed approach taking into account software
risks in effort estimation. The results of the case study
show that the proposed effort estimation model taking into
account software risks is more accurate than the traditional
effort estimation model. Section 5 draws some final
conclusions and prospects.
2 LITERATURE REVIEW
2.1 Estimation in software projects
Estimation in software project aims to predict the
development effort, cost and time of a software project.
The estimation process is based on the approach shown in
Figure 1. This process consists of three activities:
-The estimation or the measure of the functional size
-The determination of the development efforts
-The calculation of the duration, cost and resources
required at the global level or by sub-assemblies.
Functional size expresses the size of the software which is
derived from the quantification of functional requirements
specified by users [ISO/IEC14143]. Functional size can be
calculated by several methods and techniques of functional
measurement such as FPA (Function Point Analysis) and
COSMIC FP (COSMIC Function Point), thus it can be
expressed in different units such as function points (FP)
and source lines of code (SLOC).

LAQRICHI Safae

The development effort is a function of the functional size
[2], it is expressed in man-hours, man-days or man-
months. The development effort estimation makes it
possible to predict the number of man-months required to
perform the software development project. Several
estimation models can be used to estimate development
effort based on functional size and other project
parameters. Otherwise, the multiplication of functional size
with a productivity factor can be used to convert functional
size to development effort.
The development effort once estimated, enables to
determine the duration, staffing, and cost required for
software development because development effort is a
function of the duration and staffing. Therefore, duration
and staffing can be easily determined either by balancing
them, or using duration-staffing curves.
Various effort estimation methods and models that can be
used in the estimation process are presented above, they
can be classified as expert judgment, parametric models,
analogy methods, and machine learning methods.
Expert judgment is a widely used technique in various
fields, it is based on the expert intuition and experience
drawn from previous executed project. Thus, this technique
is subjective especially when performed by a single expert.
To mitigate this aspect of subjectivity, expert judgment
techniques performed by a group of experts such as
wideband Delphi and planning poker were developed.
Parametric and algorithmic models are mainly based on
equations expressing the effort as a function of
discriminant parameters influencing the effort called effort
drivers. Parametric models are established using historical
data from complete projects, based on this data, effort
drivers that influence strongly the effort are determined
then effort estimation equations are expressed.
In analogy methods, the effort required by a project (or a
task) is estimated using analogy with executed projects (or
tasks).
Machine learning methods such as case based raisonning
and neural network techniques have recently been used in
conjonction or as alternative to algorithmic models [3].
These methods are trained using historical data of
previous projects to produce accurate estimation by
automatically adjusting their parameter to better fit the new
project to estimate.
2.2 Software project risks
A software risk is an event that may or may not take place
and that results in negative consequences on a software
project [4][5]. It may affect all aspects of the software
project, namely the organization, the technology, the
personal, etc. [6].
Risk is defined as a measure of the probability and severity
of adverse effects [7]. The multifaceted aspect of software
risk makes it difficult to measure it.
Several risk identification methods have been proposed to
support project manager in risk management. Many
researchers proposed checklists that help project manager

in risk identification. Based on a survey of several
experienced project managers, Boehm developed a list of
ten most important risks in software project [8]. Other
methods classify risks into classes according to the project
element they affect, such as taxonomy-Based Risk
Identification. Taxonomy-Based Risk Identification is
established by the Software Engineering Institute (SEI), It
regroups risk events in three major classes: Product
engineering, development environment, and program
constraints. Other researchers classify risks into various
dimensions used the multifaceted aspect of software risk.
In that way, McFarlan identified three dimensions of
software risks that are project size, technology experience,
and project structure [9]. Barki and al., based on a data
base of 120 projects, classify risks into five dimensions:
technological newness, application size, expertise,
application complexity and organizational environment
[10]. Wallace and al. identify 27 software risks that they
classify into six dimensions [11].
After the identification of risk events, the risk assessment
process consists in the quantification of the importance of
these risk events. It measures and quantifies the degree of
importance and criticality of software risk. Various
techniques can be used for risk assessment. The majority
of methods use both risk impact on the project
performance and the probability of occurrence to express
the importance of software risk.
The most well-known software risk assessment methods
are Boehm’s method, SRE, SERIM and DoD. These
methods are detailed below.
The Boehm’s method focuses on the concept of risk
exposure to determine the perceived importance of the risk
event at the time of assessment. Risk exposure is defined
as the product of the loss probability and the loss
magnitude (i.e. impact) of each identified risk. In this
method, the loss probability and the loss magnitude is
assessed using numerical scale or based on categories
with associated numerical value for each category, such as
for loss probability: improbable (0.0-0.3), probable (0.4-
0.6), or frequent (0.7-1.0). Boehm’s method can be used in
all the phases of software development, but it doesn’t
handle generic risk implicitly [8].
The software Risk Evaluation (SRE) method uses the
same concept of the risk exposure. The probability of
occurrence is assessed based on a scale of one to three,
while the impact is determined on the basis of the risk
effects on the technical performance, cost, schedule and
support. SRE method was developed by SEI, therefore it
can be applied to any software project.
Karolak proposed Software Engineering Risk Management
(SERIM) method based upon Just-In-Time (JIT) strategy.
The JIT software aims to minimize risks and their
contingencies, and to manage the risks early in software
life cycle. The SERIM associates to each software risk a
specific metric and a question. These questions form a
checklist that enables the user to identify software risks.

Duration
Cost
Staffing
…

Specifications Estimate or
measure the

functional size
Effort Functional

size
Determine

development
effort

Calculate the
duration, cost,
staffing, etc.

Productivity
factor

Conversion
factor

Adjustment
factor

Figure 1: Generic software estimation process.

22nd International Conference on Production Research

The answers to the questions are then converted to
numerical values through metrics and used to calculate
risk factor values, using probability tree [12].
The Department of Defense and the Defense Acquisition
University (DAU), proposed the Risk management Guide
for the Department of Defense (DoD) to assist software
project managers in identification, assessment and
management of risks during the entire software life cycle.
In this method, probability is assessed using a scale of 5
levels, namely “remote”, ”Unlikely”, “Likely”, “Highly likely”
and “Near certainty”, whereas impact is identified in terms
of technical performance, schedule, cost and team [13].
2.3 Risk in effort estimation
According to a study of The Standish Group International,
44% of software projects cost more and last longer than
expected. This may be the result of inaccurate and
unrealistic effort estimation.
Since the risk is a major factor that prevents software
project from being on time and staying within budget, it is
important to take it into account during the estimation
process.
Several approaches were proposed to handle this issue
such as the simplistic approach, the Function Point
Analysis, COCOMO II, etc.
In many cases, project managers use the simplistic
approach that consists on applying a risks factor to the
estimated effort, duration, and cost in order to integrate risk
in estimation. The risks factor is independent of the used
estimation method; the project manager, based on his
experience, determines it. It ranges from 1 to x. That
means that if the factor is 1, no risk will occur, and when
the factor is x, all risks will occur. This approach is not
complicated to handle, but it doesn’t allow determining the
effect of a specific risk because the risks factor is affected
to all project risks without specifying individual risks and
assessing each one.
In Function Point Analysis (FPA), it was assumed that
project risks are reflected in the fourteen “General System
Characteristics (CSC)” and that the overall contingency is
expressed in the value adjustment factor. The contingency
is defined as the reserve that is set aside to manage and
handle the impact of risk events in order to protect projects
from producing undesirable results [4]. Like the previous
introduced approach, this one doesn’t makes it possible to
determine the effect of a specific risk due to the unknown
relationship between a specific project risk and the general
system characteristics.
COCOMO II remedies the underlined lakes of the two
previously presented approaches; it defines a risk factor
that, based on six types of risk, characterizes each module

to be developed [2]. Each risk should be allocated to one
risk type whereas a risk can be multidimensional so
allocated to different types, which would make it difficult to
adjust its treat.
Other approaches were developed to take into account
project risks in cost estimation such as contingency
estimation model proposed by Uzzafer. In this model, the
contingency is defined as the buffer between the expected
cost of the project and the expected cost due to the
maximum impacts of risk events. Therefore, the
contingency model provides estimates of man-months
reserves to abate the maximum impact of risk. This model
is generic and independent of the cost estimation and risk
assessment models, and take into account software risks,
but it does not provide a unique value of cost estimation
and does not take into account the updated software risks
predictions.
3 APPROACH
In this paper, an approach that integrates software risks in
effort estimation process is proposed. The objective of this
approach is to assist project manager and estimators in the
entire effort estimation process taking into account
software risks by providing a methodology and its
associated tools and supports.
The effort estimation process integrating risks, as shown in
the Figure 2, consists of four steps: the risk identification,
the risk analysis, the risk assessment, and effort
estimation. Some existing methods, tools and supports are
proposed for each step. Methods and tools that are bold in
the figure 2 are selected for this study. A focus is given to
the effort estimation step for which we propose a new effort
estimation model that integrates software risks.
3.1 Risk identification and analysis
In the stage of identification, it is important to identify as
much as possible software risks that may occur in the
software project. That will ensure realistic and accurate
software risk measurement. As mentioned in section 2.2,
there are several software risks identification methods. For
the present approach, the Wallace and al. software risk
structure is used (Table 1), because it is a rigorous
validated identification’s method that is grounded in the IS
literature and validated with practicing software project
managers. Besides, it provides an exhaustive risks’ list that
are classified in six dimensions. Furthermore, in this
classification scheme the categories or dimensions of risk
are as distinct as possible.
3.2 Risk assessment
Our approach aims through this step to assess the
software risks for the entire project and to determine the
project total risk exposure.

Figure 2: Process of effort estimation integrating risks and examples of support methods.

List of
Classified
risks

Project risk
exposure

Risks
identification

Risks
assessment

Estimation
Effort Project

specification
s

• Boehm’s
method

• SRE
• SERIM
• DoD
• …

• COCOMO II
• Contingency

estimation
model

• …

Process

Methods

Project
team

experienc

Project
team

experienc

Functional
size
Project
parameter
s

• Boehm’s
checklist

• Taxonomy
• McFarlan list
• Barki & al. list
• Wallace & al. list
• …

LAQRICHI Safae

For this purpose, the DoD risk assessment method is
selected based on the comparison of the various impacts
for the software assessment methods mentioned in section
2.2. The comparison made by Han and Huang shows that
compared to other methods, the DoD method contains
diverse types of impacts and describes clearly each
assessment criteria and each probability scale of
occurrence and impacts [15].

Table 1: Software risks list [11].

Risk dimension Software risk
User Users resist to change

Conflict between users
Users with negative attitudes toward the
project
Users not committed to the project
Lack of cooperation from users

Requirement Continually changing system
requirements
System requirements not adequately
identified
Unclear system requirements
Incorrect system requirements

Project
complexity

Project involved the use of new
technology
High level of technical complexity
Immature technology
Project involves use of technology that
has not been used in prior projects

Planning &
control

Lack of effective project management
methodology
Project progress not monitored closely
enough
Inadequate estimation of required
resources
Poor project planning
Project milestones not clearly defined
Inexperienced project manager
Ineffective communication

Team Inexperienced team members
Inadequately trained development team
members
Team members lack specialized skills
required by the project

Organizational
environment

Change in organizational management
during the project
Corporate politics with negative effect on
project
Unstable organizational environment
Organization undergoing restructuring
during the project

In this paper, the project total risk exposure is defined as
the average of dimensions risks exposure. For each
dimension in the Table 1, the manager calculates the risk
exposure for each software risk, and then calculates the
average of these risks exposure.
The risk exposure is computed by multiplying the
probability of occurrence with the composite impact.
The probability of occurrence is assessed based on the
manager’s and team experience and using the Table 2, it
can take a value from 1 to 5.
The composite impact of a software risk is the average of
the four components that are: impact on the technical
performance, impact on the cost, impact on the schedule
and impact on the team. These components are assessed
based on the managers and teams experience and using

the Table 2; a value from 1 to 5 is assigned to each
component depending on its level.
3.3 Effort estimation integrating risk
This paper proposes a framework, shown in Figure 3, for
establishing effort estimation models taking into account
project software risks and based on database of completed
projects. This framework consists of four stages. First, the
parameter selection stage aims to define the discriminant
effort drivers of the project development effort based on a
data set. These effort drivers will be used to build effort
estimation models. Next, in the data preparation stage,
completed projects database is prepared using effort
drivers outcomes from the parameter selection stage in
addition to assessed projects risks. Afterwards, the effort
estimation models integrating risks establishment can take
place. Several accuracy indicators are finally used to
validate the effort estimation model.
Parameter selection
In this stage, a projects database is explored to extract the
most discriminant effort drivers. Organization’s projects
database is built over years by projects teams in order to
capitalize the experience and information related to
completed projects. It contains information about complete
projects such as development effort, functional size, and
platform development. In order to establish an effort
estimation model taking into account software project risk,
project risk exposure is assessed and updated by project
managers through return of experience at the end of each
project.
To identify the most relevant effort drivers, the statistical
test of Pearson correlation and one-way ANOVA can be
used [16] , they enables to examine the significance
between the effort drivers and the development effort in
order to select the effort drivers with significant influence
on the development effort.
The Pearson’s correlation test is used for the effort drivers
with the ratio scale to investigate the correlation of two
datasets [17]. It provide a correlation coefficient ranging
from -1 to 1, it takes value 1 if the two datasets are
perfectly correlated, 0 if they are completely uncorrelated,
and -1 if they are perfectly anti-correlated.
One-Way Analysis of Variance (ANOVA) test allows
determining if one given effort driver has a significant effect
on the distribution of the development effort. It is used for
effort drivers with the nominal scale.
The relevance and the influence of project risk exposure
(PRE) on the effort are proved using Person correlation
test. The application of Pearson correlation test on the
project risk exposure of a sample of 164 projects provide a
correlation coefficient of 0.43, hence it shows that risk
exposure is considered as a relevant effort driver.
Data preparation
In this stage, the projects database is prepared in order to
establish effort estimation model. Datasets related to
irrelevant effort drivers are deleted. Projects with missing
values in effort driver fields are discarded from use in
estimation model establishment.
The development effort distribution is adjusted to be
normal by discarding atypical projects and projects with
asymmetric efforts.
The projects data should be divided into two segments,
one used to establish and train the effort estimation model
integrating risk and the other used to validate it. The k fold
cross-validation approach can be used for this purpose.

22nd International Conference on Production Research

Table 2: Risk assessment levels used in the DoD method [13].

Level Probability of
occurrence

Impact
Technical performance Cost Schedule Team

1 Not likely (~10) Minimal or no impact Minimal or
no impact

Minimal or no impact None

2 Unlikely (~30) Acceptable with some
reduction in margin

<5% Additional resources
required. Able to meet need
dates

Some impact

3 Likely (~50) Acceptable with
significant reduction in
margin

5-7% Minor slip in key milestone.
Not able to meet need dates

Moderate
impact

4 Highly likely (~70) Acceptable; no
remaining margin

7-10% Major slip in key milestone or
critical path impacted

Major impact

5 Near certainty (~90) Unacceptable >10% Cannot achieve key team or
major program milestone

Unacceptable

In this approach the data is divided into k equally or near
equally folds or segments. Subsequently k iterations of
training and validation are performed such as for each
iteration a different fold of the data is used for model
validation, while the remaining k-1 folds are used for model
training. The value of k is often set to three in literature[18].
Effort estimation model establishment
After preparing projects database that specifies for each
project the development effort and values of relevant effort
drivers and risk exposure, the effort estimation model can
be established using regression.
There are various types of regression that have been used
in effort estimation models, namely linear or multi linear
regression like the one used by kok and al. [19], non-linear
regression that was used by Boehm [20], and ordinal
regression that was used by sentas and al. [21].
Project database may contain quantitative effort drivers
with ratio scale and also qualitative effort drivers with
nominal scale. Thus, effort estimation model can’t be
directly derived from database by applying usual multi
linear regression (MLR) that is sensitive to the
categorization of variables. In order to address this issue,
different manner can be used such as the Analysis of
Covariance (ANCOVA) and the Ordinal Regression (OR).
ANCOVA is a regression model that contains quantitative
and qualitative variables that are called dummies.
Dummies are categorical variables that take the value of
either 0 or 1 indicating the absence or the presence of a
categorical effect on the outcome [22].
The Ordinal Regression is a generalization of the MLR
predicting cumulative probabilities for the ordered
categories of the dependent variable. It provides a
separate equation for each category and each equation
provides us with a predicted probability of being in the
corresponding category or any lower category [21].

Besides these traditional types of regression, the recent
machine learning approach can be used to establish a
learning based effort estimation model integrating risk.
Learning based models are capable of learning
Incrementally as new data are provided over time [23],
thus, they are automatically adjusted and adapted to the
new project to estimate. Well known ML approaches are
artificial neural networks (ANN), Support vector regression
(SVR), Regression Trees, and Multiple additive Regression
Tree (MART) etc.
Model validation
In order to compare performances and accuracies of
traditional effort estimation model not taking into account
risks and effort estimation model integrating risk, different
accuracy indicators can be used for this study such as the
Mean Magnitude of Relative Error (MMRE), the Pred(0.25)
and the coefficient of determination R2.
Both the Mean Magnitude of Relative Error (MMRE) and
the Pred(0.25) statistics were suggested by conte and al.
[24]. The MMRE is based on the calculation of the
Magnitude of Relative Error (MRE) that is a percentage of
the estimation error in comparison with the actual
development effort used by the executed project as shown
in Equation (1) where !! is the actual effort of the project j
and !! is the effort estimation of the project j [25].

MREj =!
!!−!!!
!!

 (1)

The MMRE is then the mean of the MREs of set of
software project [26].
Pred is a measure of the predictive ability of an effort
estimation model where Pred(0.25) compute the
percentage of projects whose MRE is less than or equal to
25% [26].

Effort
estimation
model

Datasets Effort
drivers

Projects
Data
base

Parameter
selection

Data
preparation

Estimation
Model

establishment

Estimation
Model

validation

Model & its
Accuracy
indicators
model

• Pearson
correlation
• One-way
ANOVA

• Data partition
used by the K fold
cross-validation
approach

• Multi linear
regression

• Ordinal
regression

• Non-linear
regression

• Machine

• MMRE
• PRED
• MdMRE
• R2

Process

Existing
methods

Figure 3: Generation process of effort estimation models.

LAQRICHI Safae

The coefficient of determination measures the correlation
between effort estimates and actual effort based on the
idea that bigger projects generate bigger estimates than
smaller projects. Albrecht [27] and others have used linear
regression to measure this correlation. The coefficient of
determination ranges from 0 for no correlation to 1 in the
case of the perfect correlation. For an effort estimation
model, the coefficient of determination is measured; the
higher it, the better the model [28].
4 CASE STUDY
The database used in this case study contains 234
projects with 55 data items for each project structured in
the same way as ISBSG (International Software
Benchmarking Standards Group) in addition to the project
risk exposure. The project risk exposure is assessed using
the method detailed above.
4.1 Parameter selection
Based on the analysis performed by Huang and al. on the
ISBSG repository containing 1238 projects, eight effort
drivers are considered in this study: Functional size (FS),
max team size (MTS), development type (DT),
development platform (DP), language type (LT), used
methodology (UM), methodology acquired (MA), and
application type (AT). FS, MTS, and PRE are quantitative
effort drivers, while DT, DP, LT, UM, MA, and AT are
qualitative effort drivers.
The Person correlation test and the one-way ANOVA
described in 3.3 are adopted to test the relevance of these
effort drivers based on the database of this study. As
shown in Table 3, in addition to PRE four of these effort
drivers display important influence that are: FS and MS
with ratio scale, and LT and MA with nominal scale. These
effort drivers are thus included in the effort estimation
model establishment in addition to PRE.

Table3: Results of Pearson correlation and one-way
ANOVA.

Correlation
Test Effort driver Correlation

Pearson FS 0.247
MTS 0.264
PRE 0.436

One Way
ANOVA

DT 0.002
DP 0.002
LT 0.03
MA 0.01
UM 0.006
AT 0.001

4.2 Data preparation
After discarding datasets related to irrelevant effort drivers
then projects with missing values and atypical projects with
outliers, the database is reduced to 168 projects.
The three fold cross-validation is used in this study, thus
the database is divided into three equally folds, two of
them are used to establish effort estimation model

integrating risk while the remaining fold is used to validate
the model.
4.3 Effort estimation model integrating risks

establishment
In this study, effort estimation model integrating risks is
derived from the two-thirds of the database. Effort is
expressed in terms of the four effort drivers in addition to
the project risk exposure using the multi linear regression.
In the same time, a traditional effort estimation model is
derived from the same database in order to compare
results and accuracies in the model validation step. This
model is expressed in terms of the four effort drivers using
multi linear regression.
4.4 Model validation
Afterwards the effort estimation model integrating risk
establishment based on the two-third of the database, the
remaining database is used for testing the model and
comparing it with the traditional effort estimation model.
Three accuracy indicators are used for this case study:
MMRE, Pred(0.25) and R2. Table 4 shows accuracy
indicators results in the two phases of training and test of
the two effort estimation models: traditional effort
estimation model (TEEM) and established effort estimation
model integrating risks. In comparison to the traditional
effort estimation, the established effort estimation model
integrating risks shows better accuracy indicators results
for this case study. Therefore, considering the project risks
exposure a relevant effort driver and integrating it in the
effort estimation model provide significant improvement
compared to traditional effort estimation model.
5 CONCLUSION
The more accurate effort estimation is, the better the
software project complies with the contractual
commitments in terms of budget and duration. Crucial
factor affecting effort estimation accuracy is software risks,
thus, it has to be taken into account in the effort estimation
process. This issue is not addressed enough in the
literature, that why the present paper handle it.
These research works provide project managers a process
to take into account software risks in effort estimation
activity. Also, it provides them tools and methods that can
be used in each process step.
The process of integrating software risks in effort
estimation activity starts by the anticipation and
identification of software risks that may occur during the
software development, their assessment, then the
determination of global project risk exposure. This project
risk exposure is considered a relevant effort driver as its
influence on the development effort is proved using
Pearson correlation test.
Once the project risk exposure is determined, development
effort can be estimated using an effort estimation model
integrating risks, which is established, based on historical
data from previous project. In addition to project risk
exposure, important effort drivers are determined, and then
the effort estimation model integrating risk is derived from
the database.

Table 4: Accuracy comparison of the effort estimation models.

Model MMRE Pred(0.25) R2

Training Test Training Test Training Test
TEEM 0.53 0.55 0.34 0.33 0.215 0.23
EEMR 0.38 0.35 0.57 0.46 0.322 0.28

22nd International Conference on Production Research

The effort estimation model integrating risks, once
determined, can be used for new software projects to
estimate. However, several model parameters may change
over time due to many factors such as the team
experience evolution, the team adaptation to technologies,
etc. Thus, effort estimation model integrating risks have to
be regenerated when the project managers observe that
their current model becomes less accurate and the
database gets sufficiently bigger.
For the same purpose of improving effort accuracy, future
research work can focus on establishing a machine
learning based effort estimation model integrating risks.
The advantage is that the learning based model is
automatically adjusted over time.
 During the development software life cycle, effort
estimation is refined as requirement becomes more
detailed and more accurate. The evolutionary and temporal
nature of risks has to be taken into account as well.
Future research studies can focus on the need of
continuous software risk assessment and the importance
of taking into account the temporal aspect of software risks
to refine and update effort estimation through the project.
6 ACKNOWLEDGMENT
The research studies presented in this paper are
conducted under the project entitled ProjEstimate and
financed by the French Governmental Funding (FUI).
7 REFERENCES
[1] T.-H. Nguyen, F. Marmier, D. Gourc, 2013, A
decision-making tool to maximize chances of meeting
project commitments , International Journal of Production
Economics, 142, 214‑224.
[2] S. L. Pfleeger, F. Wu, R. Lewis, 2005, Software
Cost Estimation And Sizing Methods: Issues And
Guidelines. Rand Corporation.
[3] A. B. Nassif, D. Ho, L. F. Capretz, 2013, Towards
an early software estimation using log-linear regression
and a multilayer perceptron model », Journal of Systems
and Software, 86, 144‑160.
[4] M. Uzzafer, 2013, A contingency estimation
model for software projects , International Journal of
Project Management.
[5] S.-J. Huang, W.-M. Han, 2008, Exploring the
relationship between software project duration and risk
exposure: A cluster analysis », Information & Management,
45, 175‑182.
[6] K. Jantzen, S. S. Gmbh, G. Adens, R. Armstrong,
T. Limited, 2006, Estimating the effects of project risks in
software development projects.
[7] W. W. Lowrance, 1981, Of Acceptable Risk:
Science and the Determination of Safety. William
Kaufmann.
[8] B. W. Boehm, 1991, Software risk management:
principles and practices , IEEE Software, 8, 32 ‑41.
[9] F. W. McFarlan, 1981, Portfolio approach to
information systems , Harvard Business Review, 59,
142‑150.
[10] H. Barki, S. Rivard, J. Talbot, 1993, Toward an
assessment of software development risk , J. Manage. Inf.
Syst., 10, 203–225.
[11] L. Wallace, M. Keil, A. Rai, 2004, How Software

Project Risk Affects Project Performance: An Investigation
of the Dimensions of Risk and an Exploratory Model* ,
Decision Sciences, 35, 289–321.

[12] S. Islam, 2009, Software development risk
management model: a goal driven approach , in
Proceedings of the doctoral symposium for ESEC/FSE on
Doctoral symposium, New York, USA, 5–8.
[13] U. S. Government, 2011, Risk Management
Guide for Dod Acquisition. General Books.

[14] B. Boehm, 2000, Software Cost Estimation with
Cocomo II , Prentice-Hall, New Jersey.
 [15] W.-M. Han, S.-J. Huang, 2007, An empirical
analysis of risk components and performance on software
projects , Journal of Systems and Software,80, 42‑50.
 [16] S.-J. Huang, N.-H. Chiu, Y.-J. Liu, 2008, A
comparative evaluation on the accuracies of software effort
estimates from clustered data, Information and Software
Technology, 50, 879‑888.
 [17] A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R.
Lotufo, A. Mendeleck, 2007, Pearson’s Correlation
Coefficient for Discarding Redundant Information in Real
Time Autonomous Navigation System, IEEE International
Conference on Control Applications, 426 ‑431.
[18] P. Refaeilzadeh, L. Tang, H. Liu, 2009, Cross-
Validation , Encyclopedia of Database Systems, L. Liu, T.
Özsu, Éd. Springer US, 532‑538.
[19] P. a. M. Kok, D. B. A. Kitchenham, D. J.
Kirawkowski, 1990, The MERMAID Approach to software
cost estimation, ESPRIT ’90, Springer Netherlands,
296‑314.
[20] B. W. Boehm, 1981, Software engineering
economics. Upper Saddle River: Prentice Hall.
 [21] P. Sentas, L. Angelis, I. Stamelos, G. Bleris,
2005, Software productivity and effort prediction with
ordinal regression , Information and Software Technology,
47, 17‑29.
[22] S. Garavaglia, A. Sharma, A smart guide to
dummy variables: four applications and a macro.
[23] A. Lee, C. H. Cheng, J. Balakrishnan,
1998, Software development cost estimation: Integrating
neural network with cluster analysis, Information &
Management, 34, 1‑9.
[24] S. D. Conte, 1986, Software Engineering Metrics
and Models. Benjamin-Cummings Pub Co.
[25] C. F. Kemerer, 1993, Reliability of function points
measurement: a field experiment, Commun. ACM, 36, 85–
97.
[26] T. . Moores, 2001, Developing a software size
model for rule-based systems: a case study, Expert
Systems with Applications, 21, 229‑237.
[27] A. Albrecht, 1979, Measuring Application
Development Productivity, Proc. of IBM Application
Development Symp., 83‑92.
[28] C. F. Kemerer, 1987, An empirical validation of
software cost estimation models, Communications of the
ACM, 30, 416–429.

LAQRICHI Safae

