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Abstract. We develop a generic framework to build large deformations
from a combination of base modules. These modules constitute a dy-
namical dictionary to describe transformations. The method, built on a
coherent sub-Riemannian framework, defines a metric on modular de-
formations and characterises optimal deformations as geodesics for this
metric. We will present a generic way to build local affine transformations
as deformation modules, and display examples.

1 Introduction

A central aspect of Computational Anatomy is the comparison of different
shapes, which are encoded as meshes or images. A common approach is the
study of deformations matching one shape onto another, so that the differences
between the two shapes are encoded by the deformation parameters [9, 11, 17]. In
order to study differences between subjects on a particular structure, it should be
useful to constrain locally the deformation, to favour realistic anatomic deforma-
tions, or to introduce some anatomical priors. For instance, for cortical surfaces
with different sulci topography, one can prefer to favour lateral displacement over
the creation of new sulci. Large deformations are commonly obtained through
the integration of a vector field [4, 10, 13, 18] and a natural route is to intro-
duce the constraints in the vector fields instead of the final diffeomorphism [19].
The vector field could be restricted, via a finite dimensional control variable, to
a state dependent finite dimensional subspace generated by a finite basis and
conceptualized in structures called hereafter deformation modules. Deformation
modules should create interpretable deformations, and several modules should
be allowed to combine to form more complex compound deformation modules
in the spirit of Grenander’s Pattern Theory [7].

Preliminary instantiations of the concept of deformation modules can be
found in several early works. In the poly-affine framework [3, 14, 20], deforma-
tions are created by the integration of a poly-affine stationary vector field. This
vector field is a sum of few local affine transformations, which are then easily
interpretable and share some features of deformation modules even if regions of
each affine component are not updated during the deformation. In the LDDMM
framework, a Riemannian structure is defined on the group of diffeomorphisms



and optimal matchings are geodesics for this metric [2, 10]. Several discretization
schemes based on landmarks induce examples of finite dimensional state depen-
dent representations of the velocity fields updated along the deformation and
could be rephrased inside our definition of deformation modules. Note that the
discretization scheme are thought of as approximations of the unconstrained non-
parametrized infinite dimensional case. In a recently developed sparse-LDDMM
framework [6, 12, 15], the vector field is constrained to be a sum of a fixed num-
ber of local translations, carried by control points, with a more clearer focus on
finite-dimensionality and local interpretability. Extension to locally more com-
plex transformation are considered in [8, 16].

However, a consistent and general mathematical framework able to handle
a large body of modular based large deformations is still missing in computa-
tional anatomy. A useful theory should not only provide a clear definition of
deformation modules, but also explains how a hierarchy of deformation modules
can be induced from basic one and how a Riemannian (or sub-Riemannian) set-
ting can be defined underlying the computation of optimal large deformations
and organizing the action of the different modules in the deformation process.
This paper is a first attempt in that direction and presents a mathematical and
computational sub-Riemannian framework to build large deformations from well
defined deformation modules.

We will present several instances of deformation modules generating multi-
scale and locally affine vector fields as simple illustrative examples. We will show
trajectories that can be built from the combination of such modules, and how
the component of a particular module can be recovered and followed through
the integration.

2 Definition of a deformation module

Intuitively, a deformation module creates a vector field parametrized in low di-
mension, describing a distinctive aspect of a larger deformation pattern. This
notion should embrace at least the notion a sum of local translations, scal-
ings or other local affine transformations as simple examples. In the following,
C1

0 (Rd) will be the set on C1 continuous mapping v vanishing at infinity equipped
with the usual supremum norm on v and its first derivative, and Diff1

0(Rd) the
open subset of Id+C1

0 (Rd) of C1 diffeomorphisms. We recall that for any curve
v ∈ L1 .

= L1([0, 1], C1
0 (Rd)) there exists a unique curve t 7→ φvt ∈ Diff1

0(Rd)
solution of the flow equation φ̇vt = vt ◦ φvt , with φv0 = id.

Let O be a finite dimensional manifold and (φ, o) 7→ φ.o a C1 action of
Diff1

0(Rd) on O in the sense that (φ, o) 7→ φ.o is continuous and there exists a
continuous mapping ξ : O × C1

0 (Rd) → TO called the infinitesimal action, so
that v 7→ ξo(v)

.
= ξ(o, v) is linear continous, o 7→ ξo is locally Lipschitz and for

any v ∈ L1, the curve t 7→ ot
.
= φvt .o0 is absolutly continuous (a.c.) and satisfies

ȯt = ξot(vt) for almost every t ∈ [0, 1].

Remark 1. In fact O is a shape space as defined by S. Arguillère in [2].



Definition 1 (Deformation module). We say that M = (O,H, V, ζ, ξ, c) is a
deformation module with geometrical descriptors in O, controls in H, infinitesi-
mal action ξ, field generator ζ and cost c if H is a finite dimensional Euclidean

space, V is an Hilbert space with V
C0

↪→ C1
0 (Rd), ζ : O × H → O × V is a con-

tinuous mapping such that h 7→ ζo(h) is linear where ζ(o, v) = (o, ζo(v)), o 7→ ζo
is locally Lipschitz and c : O × H → R+ is a continuous mapping such that
h 7→ co(h)

.
= c(o, h) is a positive quadratic form on H and there exists C > 0

such that for each o, h:
|ζo(h)|2V ≤ Cco(h) . (1)

Let us explain how a deformation modules induces large deformations.

Definition 2 (Finite energy controled paths on O). Let a, b ∈ O. We denote
Ωa,b the set of mesurable curves t 7→ (ot, ht) ∈ O ×H where ot is a.c., starting
from a and ending at b, such that ȯt = ξot(vt) for vt

.
= ζot(ht) and E(o, h)

.
=∫ 1

0
cot(ht)dt <∞ where E(o, h) is called the energy of (o, h).

Thanks to (1) and the smoothness condition for deformation modules one
get the following construction of flows :

Proposition 1 (Flows generated by a deformation module). Let (o, h) ∈ Ωa,b
and v = ζo(h). Then

∫ 1

0
|vt|2V dt ≤ C

∫ 1

0
cot(ht)dt <∞ so that v ∈ L2([0, 1], V ) ⊂

L1 and ot = φvt .o0. Moreover,
∫ 1

0
|ht|2Hdt ≤ (supt ‖c−1ot ‖)

∫ 1

0
cot(ht)dt < ∞ (with

‖c−1o ‖
.
= sup|h|H=1 co(h)−1) so that h ∈ L2([0, 1], H).

A more geometrical point of view on deformation modules would be to iden-
tify ζ (resp. ξ) as a continuous morphisms between the two vector bundles
O × H and O × V (resp. O × V → TO) and c as a metric on O × H. Now,
ρ
.
= ξ ◦ ζ : O × H → TO and c induce a sub-Riemannian structure on O

(as defined in [1]). Moreover, indexed by the choice of a ∈ O, we can induce
a sub-Riemannian structure on Diff1

0(Rd) by considering ρa : Diff1
0(Rd) ×H →

TDiff1
0(Rd) = C1

0 (Rd) such that ρaφ(h)
.
= ζφ.a(h) and the metric on Diff1

0(Rd)×H
given by caφ(h)

.
= cφ.a(h).

During the trajectory, the geometrical descriptor ot creates the vector field
ζo(h) which acts back on ot through the infinitesimal action ξ. Then, as explained
in figure 1, ξ can be seen as a feedback action, allowing geometrical descriptors
to evolve with the vector field.

2.1 First example : sum of local translations

This first example explains how the construction of [6] can be seen as a de-
formation module. Let σ ∈ R+, and D ∈ N, we want to build a module M
that would generate a sum of D local translations acting at scale σ. We set
O = (Rd)D (families of D points), H = (Rd)D (families of D vectors) and
V = Vσ the scalar Gaussian RKHS of scale σ. For o = (zi) ∈ O, we define
ζo : h = (αi) ∈ H 7→

∑D
i=1Kσ(zi, ·)αi, ξo : v ∈ V 7→ (v(zi))i (application of the

vector field at each point) and co : h = (αi) ∈ H 7→ |
∑
iKσ(zi, ·)αi|2Vσ .



Fig. 1. Schematic view of a deformation module.

Fig. 2. Schematic view of a
combination of deformation
modules.

Fig. 3. Local scaling. Left : Geometri-
cal descriptor o (in blue) and intermedi-
ate tools (in black and red). Right: Plot
of the resulting vector field in green.

Fig. 4. Local rotation. Left : Geometri-
cal descriptor o (in blue) and intermedi-
ate tools (in black and red). Right: Plot
of the resulting vector field in green.

2.2 Second example : constrained local affine transformations

We present here a generic way to build a particular kind of local affine trans-
formation as a deformation module. Let us first start by an illustrative example
of a local scaling in dimension 2 parametrized by a scale σ, a center o and a
scaling ratio h. From σ and o, we build 3 points zj and 3 unit vectors dj as
described in Figure 3. We can then define the vector field generated by the geo-
metrical descriptor o and the control h by ζo(h)

.
=

∑3
j=1Kσ(zj(o, σ), ·)dj(o, σ)h.

We emphasize here that points zj and vectors dj are intermediate tools used to
build the vector field but that the latter is only parametrized by σ, o and h.
We can then define the module M by the following spaces :V = Vσ, O = Rd,
H = R and applications, for o ∈ O: ζo, ξo : v ∈ C1

0 (Rd) 7→ 1
3

∑3
j=1 v(zj(o, σ))

and co : h ∈ H 7→ |ζo(h)|2Vσ =
∑
j,j′ Kσ(zj , zj′)d

T
j dj′h

2.
If we change the rule to build vectors dj , we can build a local rotation, see
Figure 4. More generally, we can set any kind of rules to build points zj and
unit vectors dj from a geometrical descriptor o to create another type of local
transformation. We have here defined a generic way to build a module that gen-
erates a vector field based on user’s assumptions. It is the way to incorporate
anatomical prior in the deformation.



2.3 Third example : unconstrained local affine transformations

Some more complex local affine transformations can be needed. Any local affine
deformation in dimension d can be approximated by a sum of d+1 local transla-
tions carried by points close to each other with respect to the scale. In this spirit
we can build another type of module, defining local affine transformations in P
different areas of size defined by the same scale σ, by summing D .

= P × (d+ 1)
local translations, whose centres would be assembled in groups of d + 1 points.
We can build a module corresponding to the sum of D local translations, as in
section 2.1. This example differs from [6] as we suppose that (d + 1) centres of
translations are pooled together. This construction allows to build modules that
generate a vector field which is locally an affine transformation, without prior
constraints. This module class differs from the poly-affine framework in that the
neighbourhood which is affected by the local module is transported by the global
transformation (via ξ).

3 Combination of modules

We want to define the combination of L modules so that it remains a module
in the sense of Definition 1. Modules are defined by spaces Ol, H l, V l, and
applications ζl, ξl and cl for each l = 1 · · ·L. We can define π : w = (w1, ..., wL) ∈
W

.
=

∏
l V

l 7→
∑
i wi ∈ C1

0 (Rd). One can show that V .
= π(W ) is a Hilbert space

and is continuously embedded in C1
0 (Rd), with for v ∈ V , |v|2V = inf{

∑
i |vi|2V i |

π((vi)i) = v}. We are then able to define the compound module M by spaces :
O

.
=

∏
lO

l, H .
=

∏
lH

l, V = Im(π) and applications, for o = (ol)l ∈ O: ζo : h =
(hl) ∈ H 7→ π((ζlol(h

l))l) =
∑
l ζ
l
ol(h

l) ∈ V , ξo : v ∈ C1
0 (Rd) 7→ (ξl(ol, v))l ∈ ToO

and co : h = (hl) ∈ H 7→
∑
l c
l
ol(h

l). Then for any h = (hl) ∈ H we have

|ζo(h)|2V ≤
L∑
l=1

|ζlol(h
l)|Vl ≤

L∑
l=1

Clc
l
ol(h

l) ≤ (max
l∈L

Cl)co(h) .

All necessary hypotheses to build a module are satisfied. A schematic view of this
combination can be seen on figure 2. Note that even if the cost of the elementary
module for each l is given by clol(h

l) = |ζlol(h
l)|2V l , as in our following examples,

the cost of the compound module is then co(h) =
∑
l |ζlol(h

l)|2V l 6= |ζ(h)|2V so
that that generically (when π is not one to one) C > 1 and c is not the pull-back
metric on O × H of the metric on O × V . In alternative extensions of sparse-
LDDMM to locally more complex transformation ([8],[16]) the norm of V has
been a natural choice for the cost. Then the cost depends on the built vector
field but not on the way it is built, unlike in our construction. Here minimizing
the cost corresponds to selecting one way of building the vector field, and then
choosing a particular cost enables to favour certain decomposition over others.

3.1 An example of combination: sum of multi-scale translations

Let us build a module M which would be a sum of local translations, acting at
different scales σl. For each σl can be built a module of type defined in 2.1, let



Dl ∈ N be the number of local translations acting at this scale. The multi-scale
module is then the combination of these modules. In particular the cost is, for
o = (zlj) and h = (αlj), co(h) =

∑
l

∑
j Kσl(z

l
j , z

l
j′)α

lT
j α

l
j′ . It is clear here that it

is not derived from the norm of the vector field ζo(h) =
∑N
l=1

∑Dl
j=1Kσl(z

l
j , ·)αlj

in V , which is here the RKHS of kernel
∑
lKσl , as in [12] but from the way it

is built as sum of elements of V lol = ζlol(H
l).

4 Shooting

Let us consider a generic deformation module M and fix two values a, b ∈ O.
For each trajectory (o, h) ∈ Ωa,b (see Def. 2) we get a flow φv with v = ζo(h)

and
∫ 1

0
|vt|V dt ≤ CE(o, h) <∞ (see Prop. 1).

We assume that for a distance dO compatible with the topology on O, there
exists γ > 0 and K ⊂ Rd such that dO(φ.a, φ′.a) ≤ γ‖φ− φ′‖∞,K where ‖ ‖∞,K
is the uniform C1 norm onK. Note that this property is verified in our examples.

Theorem 1. If Ωa,b is not empty, then E reaches its minimum on Ωa,b.

Proof. (Sketch) One consider a minimizing sequence (on, hn) ∈ Ωa,b and the
associated flows φvn for vn

.
= ζon(hn). Since

∫ 1

0
|vnt |2V ≤ CE(on, hn) we can

assume (up to the extraction of a subsequence) that vn weakly converges to v∞
so that t 7→ φv

n

t converges uniformly for the ‖ ‖∞,K norm and on converges
uniformly to o∞. Thus there exists a compact K ′ ⊂ O such that o∞ and the on

stay in K ′. Now, we have that
∫ 1

0
|hnt |2Hdt ≤ supK′ ‖c−1o ‖E(on, hn) so that (up

to the the extraction of a subsequence) we can assume that hn weakly converges
to h∞. Hence, for any w ∈ L2([0, 1], V ) we have |

∫ 1

0
〈v∞t − ζo∞t (h∞t ), wt〉V dt| ≤

lim|
∫ 1

0
〈(ζo∞t − ζont )(hnt ), wt〉V dt| ≤ lim(

∫ 1

0
|wt|2V dt

∫ 1

0
‖ζo∞t − ζont ‖

2|hnt |2Hdt)1/2 =
0. Since w is arbitrary, v∞ = ζo∞t (h∞t ) and ȯ∞t = ξot(vt) so that (o∞, h∞) ∈ Ωa,b.
Now,

∫ 1

0
co∞t (h∞t )dt ≤ lim(

∫ 1

0
co∞t (hnt )dt

∫ 1

0
co∞t (h∞t )dt)1/2 where we have used

that co(h) can be written as 〈Coh, h〉H where o 7→ Co is continous and that hn is
weakly converging in L2([0, 1], H). Since |

∫
co∞t (hnt )−cont (hnt )dt| ≤ (supt ‖Co∞t −

Cont ‖)
∫ 1

0
|hnt |Hdt→ 0 we get

∫ 1

0
co∞t (h∞t )dt ≤ lim

∫ 1

0
cont (hnt )dt.

A trajectory of Ωa,b minimizing E can be obtained from the Hamiltonian
and optimal control point of view [2] that we briefly describe below. Let us
define the dual variable η ∈ (ToO)∗ and introduce the Hamiltonian H(η, o, h) =
〈η, ξ ◦ ζ(o, h))〉 − 1

2co(h). It can be shown that trajectories of Ωa,b minimizing
E can be separated in two categories : normal and abnormal geodesics, we will
concentrate on normal geodesics as justified at the end of this section. Normal
geodesics are such that there exists a trajectory (o, η) in T ∗O such that (in a
local chart) 

ȯ = ξ(o, ζo(h))
η̇ = −∂H∂o (η, o, h)
h = A(o)η

(2)



Fig. 5. Initial positions for modules : in red rotations,
in green translation and in cyan scaling. In blue is
the initial shape, in black the shape at t = 1. Left:
parametrization of the vector field : initial geometrical
descriptors (in black) and momenta. Right: Initial ge-
ometrical descriptors, controls and intermediate tools.

Fig. 6. In blue the initial
shape, in cyan are interme-
diate tools useful to build
the vector field at t = 0,
in black is the transported
shape while following the
largest scaling.

where A(o) is a matrix depending on o. The whole geodesic trajectory is then
parametrized by initial values of (o, η) (of dimension twice the dimension of o).
We have obtained a geodesic shooting from an element (a, η0), with η0 ∈ (TaO)∗,
to a geodesic path (o, h) and then to a trajectory φv with v = ζo(h).

Remark 2. In practice we do not minimize E with fixed a end-point but mini-
mize J(ot=0, h) = E(o, h)+g(ot=1) (with o such that ȯ = ξo(ζo(h))). Trajectories
minimizing J are normal geodesics following equations 2 (see [2]).

5 Examples

5.1 Shooting with constrained types of local affine transformations

We present here an example of geodesic trajectory created by the combination
of different modules (in dimension 2): one translation (scale 100), two rotations
(scales 20 and 60), two scaling (scales 50 and 20). Initial values of the geometrical
descriptor (5 points : dimension 10) and the momentum (same dimension as o)
define the total trajectory: it is parametrized in dimension 20. These parameters
are displayed in Figure 5 as well as initial controls (lengths of directions dj for
scaling and rotation), intermediate tools (zj , dj) and the transported shape. We
can follow the action of a particular module Ml by fixing the trajectory of its
controls hl, and integrating the new trajectory (ṽ, õl) such that: õl(t = 0) =
ol(t = 0) and for each t : ṽ(t) = ζlõl(t)(h(t)), ˙̃ol(t) = ξlõl(t)(ṽ(t)).

5.2 Matching with unconstrained local affine transformations

We present here the matching from a shape f0 to another f1, using a compound
module of unconstrained local affine transformations. We set σ1 = 60, σ2 = 20,



Fig. 7. Matching from f0 (blue) to f1 (red), with parameters per scale (σ1 : black, σ2

:green, σ3 : magenta). Left: initialization geometrical descriptors. Middle: Optimized
initial geometrical descriptors and controls. Right : Match at t = 1 (black).

σ3 = 8 three scales and P1 = 1, P2 = 9, P3 = 20 the number of groups of local
translations at each scale. We define O, H, V , ζ, ξ and c as in section 3.1. To each
(a, η) ∈ TO∗, can be associated a geodesic trajectory of controls ha,η and then a
diffeomorphism φa,η as defined in 4. The matching problem corresponds then to
finding values of a and η minimizing E(a, η, f0, f1) = ca(ha,η0 ) +λD(φa,η1 · f0, f1)
whereD is the varifold distance [5]. Our first implementation is adapted from the
software Deformetrica where we introduce constraints to remain control points
pooled during optimization. An example of result is shown on Figure 7.

6 Conclusion

We constructed a mathematical framework for generic deformation modules,
which is stable under combination. Large deformations can be built then by in-
tegrating vector fields generated by these modules. By defining a cost on module
we allow optimal deformations to come from geodesic paths in a sub-Riemannian
manifold. We presented several examples of modules and geodesics. The con-
struction allows an easy interpretation of the computed deformation and the
incorporation of anatomical prior, so that this work may have important appli-
cations for the analysis of biological shapes.
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