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A better understanding of the effective mechanical behavior of polycrystalline

materials requires an accurate knowledge of the behavior at a scale smaller than

the grain size. The X-ray Laue microdiffraction technique available at beamline

BM32 at the European Synchrotron Radiation Facility is ideally suited for

probing elastic strains (and associated stresses) in deformed polycrystalline

materials with a spatial resolution smaller than a micrometer. However, the

standard technique used to evaluate local stresses from the distortion of Laue

patterns lacks accuracy for many micromechanical applications, mostly due to

(i) the fitting of Laue spots by analytical functions, and (ii) the necessary

comparison of the measured pattern with the theoretical one from an unstrained

reference specimen. In the present paper, a new method for the analysis of Laue

images is presented. A Digital Image Correlation (DIC) technique, which is

essentially insensitive to the shape of Laue spots, is applied to measure the

relative distortion of Laue patterns acquired at two different positions on the

specimen. The new method is tested on an in situ deformed Si single-crystal, for

which the prescribed stress distribution has been calculated by finite-element

analysis. It is shown that the new Laue-DIC method allows determination of

local stresses with a strain resolution of the order of 10�5.

1. Introduction

With the increasing need from industry to develop materials of

high mechanical performance, a good understanding of the

material properties at the microscale (0.1–10 mm) has become

critical since many of these properties are responsible for the

macroscopic (i.e. millimeter) mechanical behaviour. Many

research efforts during the last decade have been focused on

the characterization and understanding of the stress and total

strain fields heterogeneities in deformed polycrystals at a fine

scale. Elastic strain fields (and associated stress fields) with a

submicrometer spatial resolution can be investigated, in

principle, by the analysis of Kikuchi (Maurice et al., 2011;

Wilkinson et al., 2006a,b) or Kossel (Morawiec et al., 2008)

diffraction patterns when acquired and analyzed with a suffi-

ciently high resolution in a scanning electron microscope.

Besides, third-generation synchrotron radiation facilities such

as the ESRF in Grenoble (France) are able to produce very

intense X-ray beams with submicrometer cross section. First

attempts to use such a highly focused X-ray beam to investi-

gate the stress field heterogeneity in deformed polycrystals, at
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an intragranular scale, used monochromatic beams; in that

case, one needs to rotate the whole specimen about the grain

to be measured, but, due to the sphere of confusion of gonio-

meters, which is rarely better than 20 mm, a micrometer spatial

resolution could not be achieved (Castelnau et al., 2001; Ungár

et al., 2007a). Nevertheless, one solution that has been

proposed to account for the circle of confusion rotation

problem using monochromatic beams employs high-resolution

imaging of the diffracted beam (e.g. Hassani et al., 2007).

Alternatively, this resolution issue can be solved by using a

broadband polychromatic (or white) X-ray beam since, in that

case, the specimen no longer needs to be rotated but just

scanned (translated) in front of the beam. When the grain size

is larger than the beam cross section and the X-ray penetra-

tion depth, a Laue pattern coming from a single (sub)grain can

be acquired at each specimen position, making it possible to

distinguish diffraction patterns related to different grains (or

subgrains) with a typical probe volume of the order of few

mm3. Consequently, heterogeneities of elastic strain (and

associated stress) at the micrometer scale can be, in principle,

characterized. Important applications using this technique to

identify phase and strain with submicrometer spatial resolu-

tion can be found in the literatue (Chung & Ice, 1999; Bara-

bash et al., 2001; Tamura et al., 2002a; Mughrabi & Ungár,

2006; Levine et al., 2006; Hofmann et al., 2013).

Laue diffraction patterns are typically recorded on a two-

dimensional detector; local lattice orientation and local elastic

lattice strain can then be deduced from the position of at least

four Laue spots on the detector. Specific software such as

XMAS (XMAS, 2003; Tamura et al., 2002b), LaueGo

(LaueGo, 2010) and LaueTools (Lauetools, 2010), mostly

based on the calculations presented by Chung & Ice (1999),

have been developed for that purpose, and have been made

available to the community. They allow a rapid indexing of

Laue spots and the calculation of the orientation and devia-

toric strain tensors. In spite of the quality of these analysis

routines, some uncertainties may be introduced in the esti-

mation of local strain, since (i) the determination of the Laue

spots position relies on their fit by Gaussian- or Pearson-type

functions, that are sometimes not appropriate, and (ii) the

evaluation of the absolute spot position strongly depends on

geometrical features of the experimental setup which must be

known to a high accuracy. Consequently, uncertainties on the

orientation-strain matrix are often too large to allow their use

for micromechanical studies (Hofmann et al., 2011). For

example, reaching a 10 MPa uncertainty on stress measure-

ment for steel (equivalent to a 5 � 10�5 uncertainty on strain)

typically requires determining the diffracted beams’ direction

with an angular accuracy of 0.1 mrad which corresponds to an

accuracy of �0.1 pixel on spot position with the setup

configuration routinely used at beamline BM32. Such a reso-

lution cannot be reached if the spot shape deviates from

Gaussian- or Pearson-type.

The aim of this paper is to present a new method (called

Laue-DIC) in which Laue spots do not need to be fitted with

an analytical function. Uncertainties due to geometry errors

are minimized, and it becomes possible to determine strains

with much improved accuracy. The displacement of each Laue

spot is investigated without the requirement to determine its

position with high accuracy; this is realised by applying the

Digital Image Correlation (DIC) technique (Sutton et al.,

2009; Bornert et al., 2012) to Laue patterns recorded at

different positions of the probe volume. Thanks to the high

accuracy of DIC that can be of the order of a few hundredths

of a pixel (Bornert et al., 2009), we show that local strain can

be measured with a resolution as good as 10�5.

The paper is structured as follows. We provide a short

overview of the microdiffraction beamline BM32 at the ESRF

in x2. The problem formulation is presented in x3. In x4 we

provide an estimate of the accuracy of DIC applied to Laue

images. Finally, in x5, to illustrate the potentiality of the

method, we consider the case of a Si single-crystal deformed

under four-point bending. Elastic strain profiles across the

specimen are obtained at a given loading step by performing

a line-scan across the sample surface with the white micro-

beam, with micrometer spatial resolution, recording a Laue

pattern at each beam position. The deviatoric stress tensor is

calculated using the anisotropic elastic constants, and experi-

mental results are compared with finite-element (FE) calcu-

lations of the deformed crystal. Results are presented in terms

of stress, firstly to compare the resolution obtained by Laue-

DIC with the applied stress and material properties, like yield

stress; and, secondly, the stress analysis allows the surface free

stress condition and the bending moment value to be verified.

2. Microdiffraction setup at BM32

The usual way of performing X-ray diffraction on single

crystals is to set the photon energy (inversely proportional to

the wavelength �) and map the Bragg reflection peaks by

rotating the sample while detecting the diffracted X-rays with

a detector. The Bragg law,

� ¼ 2dhkl sin �; ð1Þ

with � the scattering angle, allows an estimation of the mean

lattice spacing dhkl of the diffracting planes with Miller indices

ðhklÞ. This technique becomes inappropriate for very small

beam and high spatial resolution as fine as a micrometer, since

current high-quality diffractometers exhibit a sphere of

confusion (i.e. the distance between all needed rotation axes)

of a few tens of micrometers at best, and thus any sample

rotation would move the point of interest in the sample out of

the microbeam (Castelnau et al., 2001; Ungár et al., 2007b).

With the microdiffraction setup available at beamline BM32

at the ESRF, the sample does not need to be rotated thanks to

the use of a white X-ray beam, and thus the spatial resolution

is only limited by the beam size and the penetration depth. A

detailed description of the experimental setup can be found by

Ulrich et al. (2011). Briefly, the white beam generated by the

bending magnet, with a relatively flat spectrum ranging

between 5 and 22 keV, is focused down to a submicrometric

cross section, around 1 mm � 1 mm for the experiment

presented hereafter, by a pair of Kirkpatrick–Baez mirrors.

The beam position being constant and very stable, diffraction



Laue patterns are obtained by simple translation motions of

the sample in front of the beam. For each sample position, the

diffracted X-rays are recorded on a two-dimensional detector.

Here, we are considering experiments performed with a

MAR165 CCD detector; it is made up of a scintillator linked

to a CCD sensor by a single fiber-optic taper and the

demagnification ratio is 2.7:1. The CCD is a 4096� 4096 pixels

binned 2 � 2 sensor with a pixel size of 80.6 mm and a

saturation level of 360000 electrons for 12 keV photons.

Typical exposure time was 0.5 s and images are digitized with a

16-bit A/D converter with a readout time of about 5 s.

A typical Laue image obtained from a Si single-crystal is

shown in Fig. 1. It consists of over 100 Laue spots with an

elongated shape due to the penetration of X-rays into the

thick Si crystal. We observe that the higher the spot intensity,

the more closely the top of the spot approaches a Gaussian

shape, but none of them can be really fitted by a Gaussian with

high accuracy. The rest of the image is formed by background

noise, mostly due to diffuse scattering and fluorescence. The

background is very slightly domed from the center of the

image to the detector periphery.

3. Problem formulation

In this section we describe how the elastic strain, and its

accuracy, can be obtained from Laue images. We recall that

in white-beam Laue microdiffraction, only angles between

diffraction vectors are measured and not the lattice spacings,

dhkl, because of the impossible acccess to the hydrostatic part

of the deformation tensor by this technique. Nevertheless,

lattice orientation, angles between the lattice vectors and

length ratio between these vectors can be determined.

Let us consider two configurations (or deformation/orien-

tation states) for the specimen, a reference configuration and

a deformed configuration. These two configurations can, for

example, correspond to two Laue measurements at the same

spatial position on the specimen but for two different loading

states, when the specimen is deformed in situ. Hereafter, the

two configurations will correspond to two different positions

of the X-ray beam on the deformed specimen (single-crystal),

at a given loading state; since the specimen is deformed

heterogeneously (by bending, see x5), the two positions

correspond indeed to two different elastic strains.

We consider matrices whose columns are the components of

the three lattice vectors a, b, c of the crystal, expressed in an

orthonormal reference frame. We denote in the following M0

the matrix corresponding to the reference configuration, and

M that for the deformed configuration. The mechanical

transformation gradient F, between the reference and

deformed configurations, relates matrices M0 and M in the

following way,

M ¼ F :M0; ð2Þ

where the dot ‘.’ expresses the scalar product, i.e. the above

equation reads Mij = FikM0kj in which summation over the

repeated index k is implicit (Einstein convention), or,

equivalently, Mij =
P

k FikM0kj. In the general case, F has nine

independent components, but, since lattice dilation can only

be measured using a monochromatic beam (see, for example,

Robach et al., 2013), only eight components of F can be

evaluated with white-beam Laue microdiffraction; the trace of

F remains undetermined and only the deviatoric strain tensor

can be obtained. Within the general finite transformation

framework, F can be uniquely decomposed into the product of

an (orthogonal) rotation tensor, R, and a (symmetrical right

Cauchy–Green) strain tensor, U, from which the Green–

Lagrange strain tensor, E, can be extracted,

F ¼ R :U; E ¼
1

2
FT :F� I
� �

; ð3Þ

with I the (second-order) identity tensor and TT the transpose

of T.

We also define a geometrical function f that relates the

position X of a given Laue spot on the detector (i.e. the spot

coordinates in a two-dimensional reference frame attached to

the detector screen) to the Miller indices ðhklÞ of the corre-

sponding diffracting plane. Denoting Xhkl
0 the Laue spot

coordinates for the reference configuration and Xhkl those for

the deformed configuration, we have

Xhkl
0 ¼ f M0; ðh; k; lÞ

� �
; ð4aÞ

Xhkl
¼ f

�
M; ðh; k; lÞ

�
: ð4bÞ

Here, function f accounts for the complete geometrical

arrangement of the setup (sample-to-detector distance,

detector orientation, etc.). Setup parameters are defined in

Appendix A and the expression for function f is detailed in

Appendix B .

3.1. Standard procedure for Laue microdiffraction

The standard procedure classically used for the estimation

of elastic strain from Laue patterns (as in XMAS and Laue-

Tools software) runs as follows. First, all geometrical para-

meters (detector position and beam orientation) entering in

function f are evaluated with a well known and strain-free

Figure 1
Typical Laue pattern obtained on a Si single-crystal. The light gray
squares represent the zone of interest (ZOI) around Laue spots (zoom)
used for DIC.



specimen, such as a Ge single-crystal. Next, the Laue pattern

of the specimen of interest is measured using the same

geometrical setup. Positions Xhkl of Laue spots on the two-

dimensional detector are estimated with a fitting of the

measured spots by standard analytical functions such as

Gaussian- or Pearson-type. Knowing the Miller indices for all

available spots, the set of available relations, equation (4b)

(one per spot), is then inverted to find M. Finally, the trans-

formation gradient F is evaluated with relation (2) in which

the undeformed lattice parameters entering in M0 are usually

taken from the literature. Four main sources of uncertainties

thus arise:

(i) The function f is obtained from the reference Ge crystal

by minimizing an error function (in a least-square minimiza-

tion sense) associated with the distance between the measured

positions XGe(hkl) of Laue spots on the detector with the 206

computed ones f [MGe, (h, k, l)], for all (hkl) reflections. Some

inaccuracies arise here since the measured positions are

sensitive to distortions of the detector grid. Furthermore, spot

positions are obtained by a Gaussian- or Pearson-type fitting.

Typically, theoretical Ge spot positions match on average the

measured positions with an accuracy of about two tenths of a

pixel.

(ii) Since the penetration depth of the measured sample is

generally different from that of the Ge calibration crystal, the

mean scattering volume lies at a different position along the

beam direction, compared with Ge. In particular for Si, overall

attenuation (for all photon energies in the range 5–22 keV) is

lower than for Ge. Thus, the calibration of the geometry

determined from Ge will never be quite right, unless the

investigated sample is also Ge. The uncertainty due to this

effect is amplified when the detector is close to the sample. We

also note that each spot has its own probing depth. To cancel

out this effect and obtain better accuracy on differential strain

inside a two-dimensional map, experimental geometry is

sometimes calibrated using a Laue pattern from the real

sample (e.g. at the center of the map).

(iii) Positions Xhkl for the specimen of interest are deter-

mined by fitting the Laue spots with Gaussian- or Pearson-

type functions. As illustrated in Fig. 1, such functions are not

appropriate in many cases for reaching the required subpixel

resolution.

(iv) M0 and M are determined independently. Strain-free

lattice parameters entering in M0 are usually taken from

textbooks and may thus deviate from those of the actual

specimen. Matrices M and M0 fully integrate the errors

defined above on f and on Laue spot positions Xhkl and Xhkl
0 ,

respectively. So, when multiplying the deformed state M by

the reference one M�1
0 to find F according to (2), errors on the

geometrical calibration of the setup (that are included in the

definition of f) and on spot positions are fully passed to the

uncertainties on the tranformation gradient F.

For example, Magid et al. (2009) found stress fluctuations of

the order of a GPa in a single-crystal of pure Cu, a result which

might not be physically relevant. Error sources described

above can be evaluated quantitatively as follows. Inverting

equation (2),

F ¼ M :M�1
0 ; ð5Þ

the uncertainty on F, denoted �F, reads

�F ¼ �M :M�1
0 þM :�ðM�1

0 Þ: ð6Þ

Expressing M and M0 in nanometers so that their components

are of the order of 1, �F is of the same order of magnitude as

�M and �ðM�1
0 Þ. The uncertainty �M on M can hardly be

better than a few 10�4 times the lattice spacing for the reasons

explained above. Uncertainties on M0 are generally of the

same order for standard alloys as stress-free lattice parameters

are difficult to be defined precisely. Hence, important uncer-

tainties can arise in the determination of the deviatoric strain.

3.2. New Laue-DIC method for strain increments

With the new approach proposed in this paper, we are

characterizing the spot displacement Xhkl � Xhkl
0 instead of the

absolute positions Xhkl
0 and Xhkl of the Laue spots. An accurate

determination of Xhkl �Xhkl
0 can be obtained by using the DIC

technique between selected areas of two Laue patterns

corresponding to each configuration; hence the Laue-DIC

method.

Denoting �M = M � M0, and restricting this error analysis

(for sake of simplicity, in this specific section) to cases in which

the two configurations are distinct by only small (elastic)

strains and small lattice rotations (i.e. small displacements of

Laue spots on the detector), Xhkl � Xhkl
0 can be expressed with

good accuracy by the first-order expansion of function f,

Xhkl
� Xhkl

0 ¼ f M; ðh; k; lÞ½ � � f M0; ðh; k; lÞ
� �

¼ f M0 þ �M; ðh; k; lÞ
� �

� f M0; ðh; k; lÞ
� �

’
@f

@Mij

M0; ðh; k; lÞ
� �

�Mij; ð7Þ

with implicit summation over indices i and j. To determine the

eight independent components of �M, at least four indepen-

dent couples Xhkl � Xhkl
0 are needed. The inversion of equa-

tion (7) is possible since the inverse of matrix @f=@M can be

computed analytically. In this study, �M is then obtained by

least-square minimization from the displacement of about 50

spots. The transformation gradient between the reference and

deformed configurations is given by

F ¼ Iþ �M :M�1
0 : ð8Þ

In doing so, uncertainties can be significantly reduced

compared with the standard procedure, since one does not

need to know very precisely the absolute spot positions Xhkl
0 ,

subjected, for example, to errors due to grid distortion of the

detector, but only the relative motion of spots. More precisely,

the uncertainty on F now reads

�F ¼ �ð�MÞ :M�1
0 þ �M :�ðM�1

0 Þ : ð9Þ

Compared with equation (6), the above estimation of �F is

several orders of magnitude smaller. As will be shown below,

DIC allows estimating Xhkl � Xhkl
0 with an accuracy of a few

hundredths of a pixel, and independently of the shape of Laue

spots, leading to uncertainties on �M of the order of 10�5 times



the lattice spacing. This feature originates from the fact that

the gradient of f, @f=@M, is much less sensitive to the precise

value of M0 than the function f itself in equation (4). The last

term on the right-hand side in equation (9) multiplies the

increment of lattice parameter (generally �10�4) with the

uncertainties on M�1
0 (say � 10�3). Consequently, highly

accurate evaluations of local strain can be expected with the

new Laue-DIC method.

4. Applying DIC to Laue patterns: procedure and
performances

4.1. DIC procedure

DIC is a full-field measurement technique developed at the

beginning of the 1980s (Sutton et al., 1983, 1986; Bornert et al.,

2012). The method consists of matching a speckled pattern in

similar images taken in the initial and deformed configura-

tions, and provides a measurement of the displacement field of

the pattern in the camera reference frame. In the experimental

mechanics community, DIC is often used to measure the

physical displacement field at the surface of the specimen

itself. In that case, an artificial texture with a random pattern is

deposited on the specimen surface (such as paint droplets)

which is directly imaged with the camera sensor; the pattern

generally has to be adapted to the investigated material and

required spatial resolution. In our case, DIC allows measuring

the displacement of the Laue spots on the detector screen. The

speckled pattern is then directly provided by Laue spots, i.e.

the image quality is essentially fixed.

The CCD camera pixel number, the dynamic range of the

sensor and the signal-to-noise ratio influence the amount and

the quality of information. Displacement resolution is often

improved when there is a high dynamic range in the picture.

Various error regimes have been identified (Doumalin, 2000;

Bornert et al., 2009), for which the dependence of the DIC

accuracy and uncertainties on the speckle pattern and the

parameters of the algorithms, such as sub-image size, gray-

level interpolation method or shape functions (e.g. simple

translation, translation + rotation with or without deforma-

tion), are discussed. For the present application, an obvious

advantage of DIC is that it does not require any fitting of Laue

spots by an analytical function; basically, DIC works for any

spot shape, as long as there is still some similarity between

spots before and after loading. Generally in polycrystals, this is

true in elasticity, but Laue spots features can change a lot

when plastic deformation appears (Castelnau et al., 2001;

Barabash et al., 2002). In this study, we used the DIC software

CorrelManuV developed at laboratories LMS-X (Palaiseau,

France) and Navier (Marne-la-Vallée, France) (Bornert et al.,

2010).

To determine a displacement field Xhkl �Xhkl
0 in an image of

the deformed configuration with respect to a reference image,

one considers a set of sub-images that will be referred to as the

‘zone of interest’ (ZOI). Each ZOI has a rectangular shape

and is centered on one Laue spot. The ZOI size has been

adapted to the spot dimensions: the ZOI was taken sufficiently

large to encompass a whole Laue spot, but not too large to not

encompass too much of the background signal. Here, we

defined it as the smallest rectangle containing all pixels around

the Laue peak having an intensity larger than a given

threshold (see Fig. 1) fixed for all spots. The threshold is set

only slightly larger than background noise, leading to an

average signal to background-noise ratio per ZOI larger

than 50.

The aim of DIC is to locate the same ZOI in two images

captured at different positions x on the specimen, corre-

sponding to two different local stress levels/orientations. The

displacement of the center of a given ZOI between the two

images is the displacement Xhkl � Xhkl
0 . A correlation coeffi-

cient, compatible with a possible variation of brightness and

contrast of gray level between both images, is used to measure

the similarity between the sub-images. It is defined as

C ¼

Z
D

HðuÞ � cG �0ðuÞ
� �

� b
� �2

du; ð10Þ

where b can be adjusted for compensating a possible offset of

the brightness, and c for canceling effects due to the scale

variations of intensity (i.e. exposure time) between both

images. The functions HðuÞ and GðuÞ provide the intensity at

an image point with coordinates u for the initial and deformed

configurations, respectively. Finally, �0 is the so-called ‘shape

function’; it describes the distortion of the ZOI in the

deformed configuration compared with the reference image.

The shape function can include complex and inhomogeneous

image distortions. For this very first application of Laue-DIC,

we are dealing with data for which Laue spots are moving on

the detector area, due to the heterogeneity of elastic strain,

but their shape can be considered constant (see below).

Therefore, we consider the most simple shape function, i.e.

simple displacements of spots with no rotation nor shape

change (i.e. a rigid-body translation), leaving only two degrees

of freedom (displacement along x and y on the detector) for

�0. The optimization (or minimization) of the correlation

coefficient C with respect to b, c and the parameters of �0

provides the best fit between both ZOIs, and the desired

displacement is obtained. The interpolation of gray levels in

the reference sub-image enables a subpixel accuracy for the

displacement to be reached. In the following, bilinear, bicubic

and biquintic interpolations have been tested.

4.2. Estimation of image noise

The accuracy of elastic strain measurements can be affected

by many features, as introduced above. In addition to uncer-

tainties associated with possible errors and fluctuations of the

geometrical calibration of the experimental setup (Hofmann

et al., 2011; Poshadel et al., 2012), the image noise has to be

considered. Here, the signal-to-noise ratio of typical Laue

patterns for a Si single-crystal has been analyzed. We have

considered a large number of Laue patterns measured in a row

under exactly the same conditions, i.e. without changing the

beam, specimen or detector position. For each pixel of the set

of images, the average intensity and the standard deviation of



the gray level have been extracted. Results are plotted in

Fig. 2. The standard deviation of intensity, which is repre-

sentative for the image noise, is found to be proportional to

the square-root of the average gray level. The proportionality

coefficient can be predicted as follows, assuming that photon

noise is the sole contributor. The gray level I measured on an

image pixel is proportional to the number N of photons

received by the 2� 2 binned pixels (configuration used in this

experiment), I = kN. The coefficient k is the product of three

terms,

k ¼ Qe � �; ð11Þ

the quantum efficiency Qe, the electron/absorbed photon

conversion rate � (gain), and the gray-level/electron conver-

sion rate �. The standard deviation of the intensity thus reads

�I = k�N with �N the standard deviation of the photons

number, which is �N =
ffiffiffiffi
N
p

due to the Poisson distribution of

N. Since
ffiffiffiffi
N
p

=
ffiffiffiffiffiffiffi
I=k
p

, one thus obtains

�I ¼
ffiffiffi
k
p ffiffi

I
p

: ð12Þ

For the used MarCCD detector, according to the manu-

facturer, Qe = 0.8, � = 6 electrons per X-ray photon and � =

0.11 gray level per electron, for a photon energy of 12 keV.

Consequently, one obtains a proportionality coefficient
ffiffiffi
k
p
’

0.73 which well matches the data of Fig. 2. From this analysis, it

can also be concluded that photon noise largely dominates

over other noise sources (dark noise, readout noise, etc).

4.3. Accuracy for subpixel displacements of Laue spots

Before going to the application, it is important to estimate

the accuracy and the resolution that DIC can achieve when the

speckle pattern is the intensity distribution of a Laue spot. For

this, successive Laue patterns were acquired on a Ge single-

crystal that was translated in a direction (almost) parallel to

the X-ray incident beam, i.e. (almost) parallel to the detector

surface, as illustrated in Fig. 3. The distance covered by the Ge

crystal (80.6 mm) matches the size of one pixel of the detector

screen, and 100 Laue patterns were recorded at regular

intervals during the Ge displacement. One might thus expect

that these patterns are solely shifted from each other by an

amount equal to the specimen translation. Looking at the

difference between the spot displacements measured by DIC

and that prescribed to the specimen provides an estimation of

the DIC accuracy.

Two types of error can be derived from this analysis (Fig. 4).

The so-called ‘systematic error’ is the difference, expressed

hereafter in pixel units, between the average displacement of

all Laue spots of a given image and the prescribed sample

displacement. It provides a measure of the overall displace-

ment error resulting from the DIC technique. The so-called

‘random error’ is the standard deviation of the displacements

measured for all Laue spots of a given image. Indeed, DIC

does not guarantee that all spots are translated by the same

amount; the random error provides an estimation of the

displacement fluctuation. Results shown in Fig. 4 have been

obtained using a biquintic gray-level interpolation on 85 spots

and an intensity threshold of 75 to define the ZOI (for

comparison, the maximum intensity of Laue spot is generally

larger than 2000). Bilinear and bicubic interpolations provide

Figure 3
A Ge single-crystal is displaced along the incident X-ray beam for
evaluating DIC accuracy for subpixel Laue spots displacements.

Figure 4
Systematic and random errors resulting from the DIC over 85 spots,
obtained by subpixel translation of the specimen in a direction parallel to
the detector surface. Both specimen positions and errors are expressed in
pixel units.

Figure 2
Correlation between the standard deviation of gray level (or intensity)
and the average gray level, evaluated for a set of Si Laue patterns
acquired under exactly the same conditions. Each point corresponds to a
different pixel of the image. Theoretical noise = 0.73 � (average gray
level)1/2.



very similar results. The systematic error often follows an S-

shape curve (Bornert et al., 2009), with here maximum values

of �0.03 pixel and an average (of the absolute value) of

0.018 pixel. Best accuracy is obtained for image shifts of 0, 0.5

and 1 pixel. The random error is slightly larger; the maximum

error is 0.07 pixel and its average is 0.054 pixel. Consequently,

DIC allows the shift of individual Laue peaks to be estimated

with an accuracy better than 0.1 pixel. This is enough to reach

a stress resolution of the order of 1 MPa for a deformed silicon

specimen, as illustrated below.

For comparison, the same data were processed with the

standard method in which each peak was fitted by a Gaussian

2D function (Fig. 4). Spot displacement was then evaluated by

comparison with the spot position obtained by Gaussian fitting

of the initial image. Although the fitting was very good for this

undeformed Ge single-crystal, both systematic and random

errors are about twice as large as for Laue-DIC.

5. Application: strain and stress distribution in a bent
Si crystal

5.1. In situ mechanical test: setup

Four-point bending tests were carried out on a Si single-

crystal bar of length 10 mm (Fig. 5). The width of the bar

(along direction xech) was 1.820 mm with a greatest deviation

of �1 mm over the 10 mm length. The thickness of the bar

(zech direction) varied linearly from 0.671 mm at one end to

0.683 mm at the other (Hofmann et al., 2011). The crystal was

oriented so that direction ½101� was approximately aligned

with the sample xech axis, ½121� with yech and ½111� with zech.

Flatness of all faces was better than 1 mm and the surfaces

were polished to a mirror finish with negligible roughness.

Loading was applied according to the schematic diagram in

Fig. 5. The distance between loading pins A and D was 8 mm,

and the distance between B and C was 3 mm. The sample was

approximately tilted by 40	 with respect to the incident X-ray

beam. Laue patterns were recorded along a line parallel to the

xech direction and centered between pins B and C (corre-

sponding to zech = yech = 0 mm).

At the beginning and at the end of each loading step and

Laue measurements, calibration patterns were collected on a

Ge single-crystal positioned next to the scanned line. Ge Laue

spots are very small and sharp, and therefore these patterns

allow the accurate determination of all geometrical para-

meters of the experimental setup such as the detector-to-

sample distance, the detector orientation, etc. (Appendix A).

The four-point bending configuration is suitable for the

study of the tensile and compressive material response. In the

central area of the sample (between pins B and C), pure

bending is expected. Kinematics and elasticity theory tell us

that strain varies linearly along the transverse xech direction

if the aspect ratio of the specimen is large enough (beam

theory). As shown below, slight deviations from linearity will

be observed in the present case. The sample was loaded

incrementally; here, we report results obtained for three load

levels, 0 N, 25 N and 50N.

5.2. Displacement of Laue spots from DIC

The deviatoric elastic strain tensor was evaluated from all

the indexed Laue spots with maximum pixel intensity larger

than 100 (gray level). Indexing was performed using the

LaueTools software (Lauetools, 2010). DIC was performed

between the Laue pattern measured at a given position xech

and the reference pattern measured at the position xech =

0.91 mm corresponding to the neutral axis of the Si beam. The

motion of Laue spots between these two images (or config-

urations) provides the elastic strain and orientation distribu-

tion along the specimen width. As an illustration, Fig. 6(a)

shows the spot displacement field on the detector area

obtained by DIC for the 50 N load level. A collaborative

movement of Laue spots towards negative Ycam is observed.

Displacement Xhkl � Xhkl
0 of Laue spots can also be calcu-

lated for any transformation gradient using equations (2) and

(21). The effect of each individual component of F on the

distortion of the Laue pattern has been investigated in detail

by Petit et al. (2012). For the considered bending experiment,

as deviatoric strains and rotations are both of the order of 10�4

(see hereafter), the transformation gradient F can be very well

approximated within the simpler framework of small strain

and small rotation, i.e.

R ¼ Iþ x; U ¼ Iþ """; E ¼ """; ð13Þ

with x and """ the infinitesimal rotation and strain tensors,

respectively. Consequently, at first order,

F ¼ Iþ """þ x ¼

1þ "xx "xy � !z "xz þ !y

"xy þ !z 1þ "yy "yz � !x

"xz � !y "yz þ !x 1þ "zz

2
4

3
5: ð14Þ

Figure 5
Schematic sample arrangement for in situ four-point bending measure-
ments. The Si sample is scanned along direction xech, and at each position
a Laue pattern is recorded on the CCD detector. A Ge single-crystal is
used to calibrate the experimental geometry. The index ‘cam’ stands for
the detector frame and the index ‘ech’ for the sample frame. Axis yech lies
along the specimen length (longitudinal direction), xech along the
specimen width (transverse direction), which is also the loading direction,
and zech along the bending axis (normal direction).



With this approximation, Xhkl � Xhkl
0 can be approximated as

in equation (7). Fig. 6(c) shows the calculated displacement of

spots assuming that the investigated volume element has been

subjected to an uniaxial tension of 167 MPa along direction

yech (corresponding to the �yy stress on an external fiber in our

Si specimen at 50 N), as expected for pure bending with an

undeformed neutral axis. It can be remarked that the shape

of the experimental displacement field is very close to the

theoretical one. However, some slight differences can be

noticed. The origin of the remaining differences is not fully

elucidated:

(i) Small shear stresses could arise because the bending

direction is not aligned with the crystal symmetry axes, and the

crystal is elastically anisotropic.

(ii) Slight imperfections of the bending test are also

possible, e.g. small torsional loading and/or bending in a

second direction could superimpose to the main loading

direction, due to slight imperfection of the bending device

and/or the sample mounting.

Small contributions of other strain components may

therefore come into play in the experimental pattern.

5.3. Strain and stress profiles along the specimen width:
main components

As illustrated above, the actual transformation gradient F

was adjusted for a closer match to experimental observations.

The identification procedure used here consists of finding the

eight independent components of the deviatoric part of F that

best transforms M0 into M = F :M0 according to (8). The cost

function is directly related to the spot displacements. The

general expression to minimize reads

P
hkl k f ½F :M0; ðh; k; lÞ� � Xhklk

2; ð15Þ

with Xhkl = Xhkl
0 + �Xhkl

DIC and �Xhkl
DIC the displacement obtained

by DIC. This minimization is performed using the Levenberg–

Marquardt algorithm, considering all indexed spots with

sufficient intensity. An excellent agreement is now obtained

between the theoretical displacement field (Fig. 6b) and the

one measured by DIC (Fig. 6a).

Repeating this procedure for each xech, the distribution of

deviatoric elastic strain can be plotted with a micrometric

spatial resolution for the line scan along xech with a 20 mm step.

Results are shown in Fig. 7(c). It can be observed that profiles

of "d
yy for an overall compression force on the bending setup of

25 N and 50 N are very close to linear, as expected from the

asymptotic beam theory for four-point bending tests. The

deviation of data from this linear trend is very small. Slightly

larger data spread is observed for the 0 N profile; this point is

discussed later.

For comparison, we report in Fig. 7(a) results obtained with

the standard Laue method described in x3.1 for which the

absolute Laue spots positions are determined by fitting, and

compared with a calculated pattern of a known reference

(Hofmann et al., 2011; Hofmann, 2011). This was done with the

XMAS software (Tamura et al., 2002c). The overall trend is

still linear as expected, but data uncertainty is clearly larger

Figure 6
Laue spots displacement field between an end fiber at xech = 1.82 mm and
the neutral fiber xech = 0.91 mm of the four-point bent Si crystal, at a
loading of 50 N. (a) Experimental data analyzed by digital image
correlation. (b) Theoretical field calculated after having estimated the
corresponding transformation gradient F. (c) Calculated field assuming
uniaxial tensile stress. The scale of arrows has been enlarged by a factor of
75. The circle represents the active detector edge. Here, the detector axis
Xcam lies (approximately) parallel to the specimen loading direction, and
Ycam is (approximately) parallel to the incident X-ray beam. Both Xcam

and Ycam are given in pixel units. Low-intensity spots have been filtered
out. Note that more spots appear in (c) than in (a) and (b) since
theoretical patterns include all spots in the energy range 5–22 keV
whereas low-intensity high-index spots have been filtered out from
experimental data.



than in Fig. 7(c) with the proposed Laue-DIC method. There

are two main differences between the two methods. First, the

standard method relies on a fitting of Laue spots by an

analytical function; this introduces some errors in the peak

position. Second, as seen above, the standard method

measures M and not �M, and M is highly sensitive to uncer-

tainties on the geometry parameters. This method also

requires knowing the stress-free parameters M0 with high

accuracy. Fig. 7(b) shows the "d
yy profiles obtained by mini-

mizing equation (15) on the spot displacement field �Xhkl
fit =

Xhkl � Xhkl
0 , with Xhkl and Xhkl

0 measured by Gaussian fitting of

spot shape using the XMAS software (procedure denoted

hereafter ‘relative method’). Whatever the uncertainty on M0,

the comparison of Figs. 7(c) and 7(b) illustrates the gain

brought by DIC in terms of accuracy on spot displacements,

and consequently on strain components.

In order to evaluate in a more quantitative way the errors

associated with these procedures, a theoretical solution for the

deformation of the specimen is required. When using the

Laue-DIC method, the accuracy on the measured stress

profiles starts to be sufficient to detect minor deviations with

respect to the beam asymptotic theory. Such deviations are

expected since the width and thickness of the sample are not

negligible with respect to its length, and the crystal is elasti-

cally anisotropic. Fig. 8 shows the difference (black circles)

between the �d
yy stress profile measured at 50 N and the linear

�d
yy profile predicted by the beam asymptotic theory.

This deviation can be reproduced by a FE calculation that

takes into account both the actual geometry and crystal

orientation, and includes elastic anisotropy. The simulation

was performed with the commercial code ANSYS. We used

the anisotropic elastic constants for Si single-crystal (C11 =

166.0 GPa, C12 = 64.0 GPa and C44 = 79.6 GPa using Voigt

notation), and actual specimen and deformation rig geome-

tries. As for the boundary conditions, nodal forces were

applied on each of the four lines representing the loading pins,

and one node of the structure was blocked in all directions to

avoid rigid-body translations. Fig. 9 shows the distribution of

�d
yy obtained with the FE model for a loading of 50 N.

In the case of a Si crystal, owing to the cubic symmetry of

the crystal lattice, the components of the deviatoric stress

tensor can be computed from the experimental deviatoric

elastic strain, as explained in the supporting information.

Experimental profiles of �d
yy along axis xech obtained by the

Figure 8
Evolution of �d

yy along xech in which the linear trend of data, as observed
in Fig. 10, has been substracted to highlight the slight nonlinearity.
Experimental data are compared with FE results. Case 50 N.

Figure 7
Profile of deviatoric elastic strain "d

yy in the in situ bent Si crystal, along
direction xech, for three load levels: 0 N, 25 N, 50 N. (a) Absolute
evaluation with the standard method described in x3.1. (b) Relative
evaluation with the standard method. (c) Relative evaluation with the
new Laue-DIC method. Comparison with the asymptotic beam theory
donated by ‘th’.



new Laue-DIC method for the three loadings are plotted in

Fig. 10. Corresponding data obtained by the FE model are also

plotted. An excellent match between the experimental and

numerical profiles is found. The general trend of those profiles

is linear; however, a more careful look indicates a slightly non-

linear evolution of �d
yy with xech. This feature becomes more

clear after having subtracted the linear part of the �d
yy evolu-

tion from the experimental data and the FE simulation, as

shown in Fig. 8 for the 50 N case. Again, very good agreement

between experimental data and numerical results is obtained.

We also verified that the fluctuations observed around the FE

stress profile do not come from the coupling between normal

and shear strain components. Indeed, this coupling is very

weak: small coupling elastic constants (only C14, C24, C56 are

non zero and less than 13.6 GPa) and small shear strain values.

However, this latter could have more influence in terms of

noise, in other orientations, because of larger uncertainties on

shear strain (Poshadel et al., 2012; Hofmann et al., 2013).

A quantitative analysis of the accuracy of Laue-DIC results

was performed by calculating the standard deviations of the

discrepancy between experimental strain and stress profiles

and results from the FE model; results are collected in Table 1.

In addition, from the experimental deviatoric stress profile �d
yy,

it is also possible to estimate the overall load applied to the

specimen for the bending test, assuming that �d
xx = �d

zz = 0 MPa

along the xech axis at yech = 0 mm. Values of 24.3 N and 51.6 N

were obtained (Table 1), i.e. a difference of only 2.8% and

3.2% with respect to the nominal loads (25 N and 50 N). This

is consistent with the expected accuracy on the experimental

value of the applied force, given the accuracy of the force

sensor. Slightly worse results (Table 1) are obtained for 0 N

than for 25 N and 50 N. A possible explanation could be that

tiny specimen motions occur during the Laue scan at 0 N due

to the difficulty in holding the small specimen under stress-

free conditions.

The following conclusions can be thus drawn from the

analysis of Table 1:

(i) Laue-DIC provides the best match to the FE reference

solution, with a standard deviation two to four time smaller

than the standard data treatment method (detailed in x3.1).

(ii) The main source of error of the standard method is the

fitting of the Laue spot by an analytical function. Indeed, using

the relative method as for Fig. 7(b) [column denoted (b) in

Table 1] only slightly improves on the standard deviation as

compared with the standard method. Comparison of the

residues of the two relative evaluation methods confirms the

fitting perfomance gained with DIC.

(iii) For the specimen investigated in this study, Laue spot

shape does not deviate much from Gaussian (pixdev =

0.77 pixels while 0.2–0.3 pixels is obtained in the case of Ge),

and even in this case Laue-DIC provides superior results. One

can thus anticipate much greater improvements when the

Laue spot shape is more complex, e.g. for specimens subjected

to plastic deformation. DIC is also able to handle the change

of shape of a spot between the two Laue patterns. Specific

‘connected’ shape functions will need to be built to take

advantage of the usual similarity of shape of neighboring spots

when spot shape is dominated by orientation gradients.

Future plans include checking the validity of these conclu-

sions on other samples.

5.4. Minor components of the stress tensor: Laue-DIC case
at 50 N

Both methods provide all the components of the deviatoric

stress tensor (either absolute or relative). Here, only the

Figure 9
Distribution of �d

yy in the Si single-crystal deformed under four-point
bending, obtained by FE modeling at 50 N. The anisotropic elastic
constants of Si crystal and the actual crystal orientation have been used.

Figure 10
Longitudinal component �d

yy of the deviatoric stress obtained by Laue-
DIC along the specimen thickness for the loadings 0 N, 25 N and 50 N.
Corresponding values obtained by the FE model are also indicated.

Table 1
Standard deviations (SD) on experimental strain and stress evolutions
with respect to the FE results, for loadings of 0 N, 25 N and 50 N, obtained
for different treatment methods of Laue images: (a) standard � absolute,
(b) standard � relative, (c) Laue-DIC. The computed applied load that
can be estimated from the measured profile of deviatoric stress is also
indicated. Units are mm m�1, MPa and N. The second part of the table
gives the residue of equation (15), and pixdev, both in pixel units (pixdev
is the average deviation between the measured Laue spot positions and
the theoretical ones).

(a) (b) (c) (c)
Experimental
load SD("d

yy) SD("d
yy) SD("d

yy) SD(�d
yy)

Computed
load

0 N 50.4 44.9 27.5 3.65 –
25 N 41.0 35.9 10.2 1.51 24.3
50 N 41.9 34.8 9.6 1.38 51.6

pixdev 0.77 0.77 – –
Residue – 0.22 0.05 0.05



(more accurate) Laue-DIC analysis is shown. Evolution with

xech of the axial components "d
xx and "d

zz of the deviatoric strain

and �d
xx and �d

zz of the deviatoric stress are plotted in Fig. 11.

The "d
xx strain profile is not exactly linear, it is softly curved as

predicted by the FE model. However, experimental curvature

changes faster near the sample edges. In the same way, except

edge effects, for "d
zz, both experimental and numerical curves

are almost linear and agree very well. The plots of the stress

components are linear in the central part, i.e. next to the

specimen neutral fiber, and deviate from linear at the edges

near xech = 0 mm and xech = 1.8 mm. However, in contrast to

the �d
yy component, the FE calculation (solid line in Fig. 11) is

unable to reproduce the experimental deviations. It can be

checked that these effects are not compatible with free surface

boundary conditions, which remains an issue of the present

work. Such an effect is not fully understood at present and

several possible reasons will be investigated in the future: (i)

the test was not exactly a pure bending (e.g. due to some

inaccuracy of the loading device); (ii) the anisotropy of the

elastic properties together with the misalignment of the

bending axis with the principal directions of the elastic prop-

erties generates a complex pattern of sample deformation; (iii)

the sample surface was not really planar due to manufacturing

and polishing, leading to artificial distortion of Laue patterns;

(iv) an orientation error of the Si crystal or of the X-ray beam;

(v) the free surface boundary conditions do not apply to Laue

data due to the penetration of the X-ray beam; however,

regarding this last hypothesis, FE stress profiles in depth along

the X-ray beam were investigated and were found very similar

to the FE stress profiles at the surface.

Similarly, shear strain "d
xy, "d

xz, "d
yz and shear stress compo-

nents �d
xy, �

d
xz, �d

yz are plotted in Fig. 12. By comparison with

the FE shear strain results, only for the "d
yz is the general

tendency retrieved. For all shear components, large edge

effects exist at the two ends. Shear stress components also

become abnormally large at some xech positions, which

disagrees with the FE calculation that predicts �0 MPa for all

three (lines in Fig. 12b). Indeed, a pure bending test does not

predict any shear stress and the free surface condition also

imposes shear stresses with normal zech equal to 0 MPa. As for

the normal components, this issue remains unexplained, and

the possible reasons detailed just above could apply similarly

here and need to be checked. However, it can be noted that

mean values of the shear stress components along the xech

direction ( ���d
xy = �6.38 MPa, ���d

xz = 2.27 MPa, ���d
yz = �0.37 MPa)

are rather close to those obtained by FE analysis. We have

checked that the issues shown in Figs. 11 and 12 do not result

from the Laue-DIC method; very similar features are also

Figure 11
(a) Profile of the deviatoric strain components "d

xx and "d
zz and (b) profile

of the deviatoric stress components �d
xx and �d

zz, obtained by the Laue-
DIC method on a Si single-crystal during bending at 50 N. In (b), the line
referring to as ‘FE’ is the finite-element results for �d

xx and �d
zz.

Figure 12
(a) Profile of the shear strain components "d

xy, "
d
xz and "d

yz and (b) profile of
the shear stress components �d

xy, �
d
xz and �d

yz obtained by the Laue-DIC
method for the Si single-crystal. Case 50 N.



observed when applying the standard Laue method detailed

in x3.1. In spite of the deviations at the edges, a significant

portion of the stress profile between xech = 0.8 mm and xech =

1.3 mm shows almost vanishing values for all components.

Very similar features are observed when applying the standard

method, except that the curves are more noisy. Furthermore,

uncertainties on the ‘xz’ and ‘yz’ components, containing the

out-of-plane direction zech, are systematically slightly larger

than other components, as already seen and discussed by

Poshadel et al. (2012), because of the limited reciprocal space

coverage provided by the detector in our setup configuration.

5.5. Sensitivity to DIC parameters, and possible
improvements

Although we have shown above the superior results

provided by the proposed Laue-DIC method and the excellent

accuracy obtained for "d
yy, further improvements are still

possible, as explained now. Finding the image transformation

that provides the best correlation between the initial and

deformed images can be largely influenced by the input

parameters of the DIC algorithm.

We have thus investigated the sensitivity of DIC accuracy

with respect to the size of the ZOI and the degree of the

polynomial function used for the subpixel gray-level inter-

polation of the deformed image. Results are reported in

Table 2. Globally, DIC accuracy decreases when increasing the

ZOI size, and slightly better results are obtained when using

interpolation functions of higher order. The effect of these two

parameters is, however, relatively small; excellent results are

already obtained with the fastest algorithm, i.e. 10� 10 ZOI

and bilinear interpolation. This corresponds to a ZOI size

slightly smaller than the size of the largest spot; for example,

the size of the square ZOI around the largest Laue spot in

Fig. 1 is 20� 20 pixels.

We have also tested an additional method in which the size

and shape of the ZOI, considered rectangular, is fitted to the

size of each individual spot, so that the ZOI contains the entire

spot but as few background pixels as possible that do not

contain any physical information on the diffraction process. It

can be observed that such an optimized ZOI provides better

results when bilinear and biquintic interpolations are used.

The goal of the DIC procedure is to find the image trans-

formation �0 that one has to apply to the initial image to

match as closely as possible the deformed image. In this work,

the simplest image transformation was used, consisting of a

sole translation. But more complex image transformation can

be applied, such as translation and rotation or any higher-

order transformation representing for example the spreading

of a Laue spot with increasing strain. Such a more complex

image transformation gave no improvement here, but could

help in future work when dealing, for example, with plastic

strain.

The number of spots taken into account when minimizing

equation (15) significantly influences the determination of the

transformation gradient F. To investigate this effect, we have

computed the stress standard deviation using from 34 to 75

spots. Spots were sorted by decreasing intensity, so that

increasing the number of spots added only lower intensity

spots. Results are reported in Table 3. It can be observed that

increasing the number of spots leads to a smaller standard

deviation, i.e. better results. In other words, although DIC

applied to spots with low intensity often leads to a relatively

large correlation coefficient (10), using such spots in the

minimization procedure improves on the determination of the

stress state.

Finally, it is worth recalling that uncertainties on displace-

ment measured by DIC decrease when increasing the mean

gray-level contrast in the ZOI (see, for example, Roux & Hild,

2006). Hence, for a given shape function �0, the higher the

average gray-level gradient in the ZOI, the better the corre-

lation coefficient C. This coefficient C indicates the degree of

resemblance between a spot of the reference image and a spot

in the deformed configuration. It is thus of interest to inves-

tigate the sensitivity of C with respect to the spot intensity. We

have used for that a specimen of uranium oxide (UO2),

comprising a very large number of spots. DIC was performed

between two almost identical Laue patterns successively

acquired under the same conditions at the same position on

the specimen (and thus differing only from the image noise),

and the average gray-level gradient in the ZOI of each spot of

the reference image has been computed by a finite differences

method (the average gray-level gradient increases with the

spot intensity). Results are shown in Fig. 13. It is found that

a small correlation coefficient is obtained systematically for

spots with large gray-level gradients (i.e. the intense spots).

Spots exhibiting a small gradient (i.e. smaller intensity)

generally give rise to larger correlation coefficient, i.e. a less

accurate measurement of displacement by DIC. Thus, a future

possible improvement of the Laue-DIC procedure could be to

favor intense spots in the minimization of equation (15), e.g.

by allocating them a larger weight than low-intensity spots.

Table 2
Stress standard deviation SD(�d

yy) obtained for various degrees of the
gray-level interpolation function and sizes of the ZOI (expressed in
pixels). Column ‘Opt.’ reports results for a rectangular ZOI whose size is
optimized to match the spot spread.

10 � 10 20 � 20 30 � 30 40 � 40 50 � 50 Opt.

Bilinear 1.43 1.65 1.49 1.46 1.55 1.38
Bicubic 12.69 13.19 13.66 14.41 17.21 14.61
Spline bicubic 12.77 13.26 13.84 14.12 17.37 14.79
Biquintic 1.31 1.31 1.35 1.38 2.50 1.30

Table 3
Effect of the number of spots taken for minimizing (15) on the stress
standard deviation SD(�d

yy). Results obtained for a ZOI size adapted to
match the Laue spot size, and for different gray-level interpolation
functions.

34 43 66 71 75

Bilinear 1.75 1.63 1.40 1.43 1.38
Bicubic 18.36 15.73 16.02 14.71 14.61
Spline bicubic 18.26 15.70 16.16 14.89 14.79
Biquintic 1.58 1.51 1.40 1.36 1.30



6. Conclusion

In this work, we have proposed a new Laue-DIC method

based on the coupling between white-beam Laue micro-

diffraction and DIC techniques. The method is suitable for

determining the Laue spot displacement field between two

different deformation/orientation states and for deducing the

associated increment of local strain and hence stress, with

micrometer spatial resolution. The procedure can be decom-

posed into four steps:

(i) First, a Laue pattern is indexed from the known crystal

structure, for example using the LaueTools software. The

crystal orientation in the initial configuration can be esti-

mated.

(ii) Next, DIC technique is used to determine the spot

motion field on the detector between the initial and the

deformed configurations.

(iii) Finally, a cost function minimization method is used to

evaluate the mechanical transformation between the two

configurations.

(iv) When possible (see the supporting information), the

deviatoric stress can be computed from the measured devia-

toric elastic strain. Indeed, as shown in this note, the local

constitutive relation r = C : """ can be transformed into rd =

C : """d only when one deals with material exhibiting local

isotropic elasticity C or for crystals with a cubic crystal lattice.

In all other cases, one cannot evaluate the stress tensor (or its

deviatoric part) if only the deviatoric elastic strain is known.

An important part of this paper was dedicated to the

evaluation of the accuracy of the Laue-DIC procedure. A

specimen exhibiting a simple and known microstructure (Si

single-crystal) was deformed in situ in a controlled way, so that

the measured strain distribution in the specimen could be

compared with the reference distribution computed by FE.

This approach allowed us to conclude that local normal stress

along the specimen length direction under pure bending is

estimated with high accuracy: the standard deviation of the

error on �d
yy, compared with a FE model, is found to be

�1 MPa in the considered Si single-crystal deformed under

four-point bending. Larger differences have, however, been

obtained on other components of the deviatoric stress tensor,

even though a comparable accuracy with �d
yy is reached far

from the edges. These differences are not believed to be due to

the Laue-DIC method itself but rather to experimental diffi-

culties as explained above. Newer data are now needed to

investigate this feature in more detail.

Thanks to the sub-micrometer size of the X-ray beam, stress

field heterogeneities can be detected with a micrometric

resolution. The method can thus be applied for measuring the

stress field in deformed polycrystals with a spatial resolution

smaller than the grain size. We have also provided a few

possible directions for further improvement of the new Laue-

DIC method, e.g. by weighting Laue spots according to their

intensity gradient during the identification step.

APPENDIX A
Geometrical setup

The reference frame, RcamðO; xcam; ycam; zcamÞ used in this work

is attached to the detector, as the detector remains fixed

during the experiment (Fig. 14). The origin O of this reference

frame is taken at an edge of the detector surface, and vector

zcam is perpendicular to the detector screen, pointing from the

sample to the detector. At BM32, the incident X-ray beam

(unit vector ui) lies almost parallel to the detector surface, and

therefore we take ycam close to ui. Two small angles � and � are

needed to express ui in the detector frame,

ui ¼ cos � sin � xcam þ cos� cos � ycam � sin � zcam: ð16Þ

The position of the diffracting volume (point I in Fig. 14) is

given by its three coordinates (xcen; ycen; zcen =�D), where xcen

and ycen are usually expressed in pixel units and zcen = �D in

Figure 14
Scheme of the setup: orientation and position of the X-ray incoming
beam ui in the detector and camera reference frames, definition of the five
geometrical calibration parameters. Point P is the normal projection on
the detector screen of the impact point I of X-rays on the specimen
surface.

Figure 13
Correlation coefficient C versus the average gradient of the gray level in
the ZOI of each spot. Specimen of UO2.



millimeters. We are therefore left with five calibration para-

meters (�, �, xcen, ycen and D). Note that this geometrical

description of the setup is only approximative, since the real

diffracting volume has an extended shape along the incident

beam direction (due to absorption effects), the length of which

may vary from spot to spot as the penetration of the beam

depends on the X-ray energy (which differs from spot to spot).

Any spot position on the detector screen is expressed by xcam

and ycam in (decimal) pixel units, in the range [0, 2047] (the

third coordinate of any point lying on the detector surface is 0

in the detector frame). Note also that a sample frame Rech =

ðxech; yech; zechÞ is defined on Fig. 5(a), as the detector frame

translated by �D along zcam and rotated by 40	 around xcam.

APPENDIX B
Calibration function

We provide in this Appendix details about function f

appearing in equation (4), that provides the two coordinates of

the Laue spot on the detector screen for a given strained

orientation matrix M and a diffracting plane with Miller

indices ðh; k; lÞ. The function f depends on all five calibration

parameters defined in Appendix A, namely xcen, ycen, D, � and

�. Note that ycen may potentially vary with hkl, i.e. from spot

to spot, and from one sample point to another (in case, for

example, of imperfect sample alignement, sample roughness,

inhomogeneous crystal quality, inhomogeneous sample

absorption), and between the sample of interest and the Ge

reference sample. For convenience, the detector frame defined

in Appendix A will be chosen as the reference frame.

First, let a
, b
 and c
 denote the three reciprocal lattice

vectors

a
 ¼
b� c

V
; b
 ¼

c� a

V
; c
 ¼

a� b

V
ð17Þ

with V the volume of the crystal lattice given by the absolute

value of the determinant of M, and � the cross product. The

unit vector qhkl normal to the ðh; k; lÞ diffracting plane (i.e. a

vector parallel to the diffraction vector) reads

qhkl ¼
ha
 þ kb
 þ lc


kha
 þ kb
 þ lc
k
ð18Þ

and the corresponding unit vector uf parallel to the diffracted

beam is given by

uf ¼ 2ð�qhkl:uiÞqhkl þ ui ð19Þ

with ui the unit vector parallel to the incoming beam.

Denoting S the impact point of the diffracted beam on the

detector surface (i.e. S provides the Laue spot position), vector

IS is given by

IS ¼
D

uf :zcam

					
					uf : ð20Þ

Function f expresses the xcam and ycam coordinates of point S

in the detector reference frame,

f ½M; ðh; k; lÞ� ¼
xcen þ ISxcam

ycen þ ISycam


 �
cam

; ð21Þ

with ISxcam
and ISycam

the first two coordinates of vector IS in

the same frame.
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