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Abstract. Optimal sampling in spatial random fields is a complex problem, which mobilizes several
research fields in spatial statistics and artificial intelligence. We consider the case where observations
are discrete-valued and modelled by a Markov Random Field. Then we encode the sampling problem
into the Markov Decision Process (MDP) framework. After exploring existing heuristic solutions as well
as classical algorithms from the field of Reinforcement Learning (RL), we design an original algorithm,
LSDP (Least Square Dynamic Programming), which uses simulated trajectories to solve approximately
any finite-horizon MDP problem. Based on an empirical study of the behaviour of these different ap-
proaches on binary models, we derive the following conclusions: i) a naive heuristic, consisting in sam-
pling sites where marginals are the most uncertain, is already an efficient sampling approach. ii) LSDP
outperforms all the classical RL approaches we have tested. iii) LSDP outperforms the heuristic in cases
when reconstruction errors have a high cost, or sampling actions are constrained. In addition, LSDP
readily handles action costs in the optimisation problem, as well as cases when some sites of the MRF
can not be observed.

Keywords. Heuristic and optimal sampling design, Dynamic programming, Markov Decision Process

1 INTRODUCTION

Optimal sampling in spatial random fields is a complex problem, which mobilizes several research fields
in spatial statistics [2, 8] and artificial intelligence [6, 5, 11]. An active stream of research about optimal
spatial sampling is dedicated to the study of the case of real-valued observations (e.g. temperature
or pollution monitoring). Models and efficient algorithms have been proposed, mainly based on the
geostatistical framework of Gaussian random fields and kriging. Much less attention has been paid to
the case of discrete-valued observations. However, this problem is ubiquitous in many studies about
biological systems. Discrete-valued observations can be species abundance classes, disease severity
classes, presence/absence values...

Solving optimal sampling problems in discrete-valued random fields is a difficult question admit-
ting no universally accepted solution, so far. One should look for approximate solution algorithms with



2 Sampling Design in MRF

reasonable/moderate complexity and with satisfying approximation quality. We propose, similarly to
[5, 11, 12], to define the optimal sampling problem within the framework of Markov random fields
(MRF, [4]), classically used in image analysis. We consider the case of adaptive sampling, where the
set of sampled sites is chosen sequentially and observations from previous sampling steps are taken into
account to select the next sites to explore [16]. Simple heuristics have been proposed [16, 2, 12] to design
adaptive sampling strategies. However, it is difficult to evaluate their quality since there is no efficient
exact method to compare to. In this paper, we design a new reinforcement-learning (RL, [15]) algorithm
which improves classical heuristic and RL approaches, thus providing a reference algorithm. The al-
gorithm, named LSDP (Least Square Dynamic Programing) uses an encoding of the optimal adaptive
sampling problem as a finite-horizon Markov Decision Process (MDP, [13]) with factored state space.

The MRF formalization of the optimal adaptive spatial sampling problem is introduced in Section 2,
together with a computational complexity study. We show how to model it as a finite-horizon factored
MDP in Section 3 and we discuss classical RL solutions in Section 4. Then, we describe the LSDP
algorithm in Section 5. We present an empirical comparison between heuristic approaches, classical
RL algorithms and LSDP in Section 6. Some methodological and applied perspectives of this work are
discussed in Section 7.

2 OPTIMAL ADAPTIVE SAMPLING IN MARKOV RANDOM
FIELDS

Problem statement

Let X = (X1, . . . , Xn) be a vector of discrete random variables taking values in Ωn = {1, . . . ,K}n.
V = {1, . . . , n} is the set of indices of the vector X and an element i ∈ V will be called a site. The
distribution P of X is that of a Markov Random Field (MRF) with associated graph G = (V,E) where
E ⊆ V 2 is a set of undirected edges. x = (x1, . . . , xn) is a realization of X and we adopt the following
notation: xB = {xi}i∈B , ∀B ⊆ V . Then we can write P(X = x) ∝

∏
c∈C Ψc(xc), where C is the set of

cliques of V and the Ψc, c ∈ C are strictly positive potential functions [4].
In order to reconstruct the vectorX on a specified subsetR ⊆ V of sites of interest, we can acquire a

limited number of observations on a subset O ⊆ V of observable sites. We will assume that R ∪O = V
and intersection between O and R can be non-empty. The sampling problem is to select a set of sites
A ⊆ O, named a sample, where X will be observed. When sample A is chosen, a sample output xA
results, from which the MRF distribution P is updated. Our objective is, intuitively, to choose A so that
the updated distribution P(·|xA) becomes as informative as possible (in expectation over all possible
sample outputs).
In the following we describe the different elements allowing to formally define the sampling optimisation
problem.

Reconstruction. When a sample output xA is available, the Maximum Posterior Marginals (MPM) cri-
terion, classically used in image analysis, is used to derive an estimator x∗R of the hidden map xR:

x∗R =

{
x∗i | i ∈ R, x∗i = argmax

xi∈Ω
P(xi | xA)

}
.

Adaptive sampling policy. In adaptive sampling, the sample A is chosen sequentially. The sampling
plan is divided into H steps. Ah ⊆ O is the sample explored at step h ∈ {1, . . . ,H} and xAh is
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the sample output at step h. The samples size is fixed (|Ah| = L) and ∆L is the set of all poli-
cies satisfying |Ah| = L,∀h. The choice of sample Ah depends on the previous samples and out-
puts. An adaptive sampling policy δ = (δ1, . . . , δH) is then defined by an initial sample A1 and func-
tions δh specifying the sample chosen at step h ≥ 2, depending on the results of the previous steps:
δh((A1, xA1), . . . , (Ah−1, xAh−1)) = Ah.

A history is a trajectory (A1, xA1), . . . , (AH , xAH ) followed when applying policy δ. The set of
all histories which can be followed by policy δ is τδ. We will assume throughout the paper that obser-
vations are reliable. As a consequence, we will only consider policies visiting each site at most once
(Ah ∩ Ah′ = ∅,∀h 6= h′). Furthermore, since our definition of the quality of a policy is based on the
MPM criterion, it does not depend on the order in which observations are received. Therefore, the rele-
vant information in a history can be summarized by the pair (A, xA), where A = ∪hAh.

Sample cost. The modeling of a sampling cost function is an issue as it stands. Here we illustrate this
notion with the simplest definition, where sample costs are additive.
For a given history

(
(A1, xA1) . . . , (AH , xAH )

)
, the total cost is

H∑
h=1

c(Ah) = c
(
∪hAh

)
,with c(Ah) =

∑
i∈Ah

ci, ci ∈ R+.

Quality of a sampling policy. The quality of a policy δ is measured as the expected quality of the estima-
tor x∗R that can be obtained from δ. In practice, we first define the quality of a history ((Ah, xAh))h=1..H

as a function of (A, xA), where A = ∪hAh:

U
(
A, xA

)
=
∑
i∈R

[
max
xi∈Ω

{
P(xi | xA)

}]
− c(A). (1)

The quality of a sampling policy δ is then defined as an expectation over all possible histories:

V (δ) =
∑

((Ah,xAh ))h∈τδ

P
(
xA
)
U
(
A, xA

)
.

Optimal adaptive sampling in MRF (OASMRF). Finally the problem of optimal adaptive sampling
amounts to finding the policy of highest quality :

δ∗ = argmax
δ∈∆L

V (δ). (2)

Computational complexity of optimal adaptive sampling in MRF

In this section we study the computational complexity of the OASMRF problem. More precisely, we
will study the following, generalised OASMRF problem ( GOASMRF), expressed in a decision form:
Does there exist δ of depth at most N , such that:∑

((Ah,xAh ))h=1..H∈τδ

P
(
xA
)
U
(
A, xA

)
≥ G ?

Where G > 0 is a fixed threshold, and U
(
A, xA

)
=
∑

i∈R fi
(
x∗i ,P(x∗i | xA)

)
− c(A), where the

functions fi are non-decreasing functions in their second argument and x∗i = arg maxxi P(xi | xA).
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Proposition 1.
The GOASMRF problem is Pspace-complete.

Proof. There is not much difficulty in proving that GOASMRF belongs to Pspace. The difficult part
is to establish the Pspace-hardness of the GOASMRF problem. To prove this, we reduce the State
Disambiguation (SD) problem, which is known to be Pspace-hard [1] to it. A detailed proof is given in
the Appendix.

The consequence of Proposition 1 is that exact optimization of the sampling policy is intractable.
In the next section we present a (factored) Markov Decision Process (MDP) model of the OASMRF
problem1. It will allow us to solve OASMRF problems approximately by applying simulation-based
Reinforcement Learning (RL) algorithms [15].

3 Finite horizon MDP modelling of the OASMRF problem

A finite-horizon Markov Decision Process model is a 5-tuple 〈S,D, T, p, r〉, where S is a finite set of
system states, D is a finite set of available decisions, T = {1, . . . ,H} is a finite set of decision steps,
termed horizon. p is a set of transition functions pt, t ∈ T , where pt(st+1|st, dt) indicates the probability
that state st+1 ∈ S results when the system is in state st ∈ S and decision dt ∈ D is implemented at
time t ∈ T . A terminal state sH+1 ∈ S results when the last action is applied, at decision step H . r
is a set of reward functions: rt(st, dt) ∈ R is obtained when the system is in state st at time t and dt is
applied. A terminal reward rH+1(sH+1) is obtained when state sH+1 is reached at time H + 1.

A decision policy (or policy, for short) π = {π1, . . . , πH} is a set of decision functions πt : S → D.
Once a decision policy is fixed, the MDP dynamics becomes that of a finite Markov chain over S, with
transition probability pt(st+1|st, πt(st)). The value function V π : S × T → R of a policy π is defined
as the expectation of the sum of future rewards, obtained from the current state and time step when
following the Markov chain defined by π:

V π(s, t) = Eπ

[
H+1∑
t′=t

rt
′ | s

]
,∀(s, t) ∈ S × T.

Solving an MDP amounts to finding an optimal policy π∗ which value is maximal for all states and
decision steps: V π∗(s, t) ≥ V π(s, t), ∀π, s, t. We now show how to model the OASMRF problem in the
MDP framework.

State space. state st, t = 1, . . . ,H + 1 summarizes current information about variables indexed in O:

st =

(
t−1⋃
h=1

Ah,
t−1⋃
h=1

xAh

)
,∀t = 2, . . . ,H + 1 and s1 = (∅, ∅).

The total number of possible states of the system is exponential in the OASMRF representation size.

Action space. An admissible decision dt is a sample At such that |At| = L and such that At ∩ At′ =
∅,∀t′ < t.

1Which can be easily extended to GOASMRF.
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Horizon. Decision steps in the MDP correspond to decision steps in the OASMRF problem. Thus,
T = {1, . . . ,H}.

Transition functions. If st = (A, xA) and dt = At the transition function of the MDP can be derived
straightforwardly from the original MRF distribution P:

pt
(
st+1 | st, dt

)
= P

(
xAt | xA

)
, ∀t ∈ T.

Reward functions. ∀t = 1, . . . ,H , rewards represent sampling costs:

rt(st, dt) = rt(dt) = −c(At),∀t ∈ T, st, dt.

After decision dH has been applied at decision step H , and state sH+1 = (A, xA) has been reached, the
final reward rH+1(sH+1) is obtained, which is defined as the quality of the MPM reconstruction:

rH+1(sH+1) =
∑
i∈R

[
max
xi∈Ω

{
P(xi | xA)

}]
.

The optimal policy for the above-defined MDP is a set of functions associating samples to unions of
past samples outputs. It thus has the same structure as an OASMRF sampling policy. Furthermore, we
can establish the following proposition:

Proposition 2.
An optimal policy for the MDP model of an OASMRF problem provides an optimal policy for the initial
OASMRF problem (2).

Proof. (Sketched). The proof follows three steps and uses the fact that the quality of a policy does not
depend on the order in which observations are obtained:

(i) We define a function φ, transforming any MDP policy π into a valid OASMRF policy δ = φ(π),
which defines actions independently of the order in which past observations were received, and
show that V (φ(π)) = V π((∅, ∅), 1).

(ii) We establish that, for any partial history (past observations), the value of an optimal OASMRF
policy starting from these observations does not depend on the order in which they were received.
As a consequence, we can limit the search for optimal policies of the OASMRF problem to policies
prescribing actions which do not depend on the order of observations.

(iii) We show that any such OASMRF policy δ can be transformed into an MDP policy, through a
transformation µ, and that V (δ) = V µ(δ)((∅, ∅), 1).

As a result of these three steps, if π∗ is an optimal policy for the MDP encoding of the OASMRF problem,
then φ(π∗) is optimal for the OASMRF problem.

In the following we will use the same notation δ to represent both OASMRF and MDP policies.

@ COMPSTAT 2012
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4 CANDIDATE APPROACHES FOR SOLVING OASMRF

Exact dynamic programming

The backwards induction algorithm [13] can be applied to compute the optimal policy of any finite-
horizon MDP. It consists in solving iteratively the following equations: ∀t = H, . . . , 1 and ∀s, d ∈
S ×Dt,

V ∗(s,H + 1) = rH+1(s),

Q∗(s, d, t) = rt(s, d) +
∑
s′

pt(s′|s, d)V ∗(s′, t+1), (3)

δ∗,t(s) = δ∗(s, t) = arg max
d
Q∗(s, d, t),

V ∗(s, t) = max
d
Q∗(s, d, t).

However, since the OASMRF problem is Pspace-complete, exact dynamic programming is inapplica-
ble to large problems. Therefore, we have to look for sub-optimal policies. To do this, we can explore
two families of approaches used for solving OASMRF: heuristic approaches and simulation-based ap-
proaches.

Heuristic approaches

Heuristic approaches are methods for sample selection which provide an arbitrary sample in short time.
These methods either solve a simpler optimization problem, or provide simple arbitrary policies. Several
heuristics have been proposed, either in Statistics or in AI, that can be applied to solve the OASMRF
problem. In spatial sampling of natural resources, random and regular sampling are classic ones [2].
Another classical method to sample 0/1 variables is Adaptive Cluster Sampling (ACS, [16]). Recently,
[12] proposed a heuristic (BP-max heuristic) which consists in sampling locations where the marginal
probabilities are less informative, in order to solve (2). It has been shown to outperform random, regular
and ACS heuristics. In [6], the authors proposed to optimize a mutual information (MI) criterion to
design sampling strategies in Gaussian Processes.

Simulation based approaches: Reinforcement learning

The main idea of Reinforcement Learning approaches (RL, [15]) is to use repeated simulated experiences
(st, dt, rt, st+1), instead of dynamic programming, in order to estimate Q∗ or a parametrized approxi-
mation Q̃ of Q∗ [15]2. They can either estimate Q∗ directly (i.e. Q-learning approach), or interleave
estimation steps of a current policy δ (TD(λ) can be used) with improvement steps, in a general policy
iteration scheme [15].

In most cases where simulation is used to solve large, factored MDP such as in the OASMRF prob-
lem, functions Qδ are too expensive to store in tabular form. In this case, a parametric approximation of
the Q-function is built as : Q̃(s, d, t) = w>φ(s, d, t), where w ∈ Rb is a vector of parameters values and
φ : (St, Dt, t)→ Rb is a mapping from state-decision pairs to real-valued b-dimensional vectors, called
features. Simulations are used to compute values w of parameters that give a good approximation of Q∗.
Note that, in general, no guarantee is given on the approximation quality. Algorithms for computing w
for a specific features choice are, for example, LSPI [7], Fitted Q-iteration ([3],[9]), etc.

2For simplicity notation Q̃ is used instead of Q̃∗

COMPSTAT 2012 Proceedings
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5 LEAST-SQUARES DYNAMIC PROGRAMMING (LSDP)

Approximate dynamic programming

The main idea of the algorithm we propose is to combine a parametrized representation of theQ-function
with dynamic programming (DP) iterations and simulation in order to approximate Q∗. Namely, we
consider an approximation Q̃ of Q∗ as a linear combination of n arbitrary features [15]:

Q̃(s, d, t) =
∑
i=1..n

wtiφi(s, d, t), ∀s, d,∀t ∈ T and

Q̃(s,H + 1) = rH+1(sH+1), ∀s.

The weights wti are computed recursively for t = H to 1, in such a way that equations (3) are
approximately satisfied:∑

i=1..n

wtiφi(s, d, t) ≈ rt(s, d) +
∑
s′

pt(s′|s, d)Ṽ (s′, t+ 1)

where Ṽ (s, t) = max
d

∑
i=1..n

wtiφi(s, d, t). (4)

Equations (4) form a set of |S| × |D| linear equations for each time step t ∈ T , with variables wti , i =
1..n. These systems are clearly over-constrained (|S| × |D| � n), therefore we look for least-squares
solutions, instead of exact ones. The dynamic programming part of the approach comes from the fact
that the systems are solved separately for t = H to 2, each solution vector wt+1 being plugged into the
system obtained at time t.

LSDP Algorithm

Systems (4) are too large to build when S is factored, not to mention solving. Therefore, we suggest
to consider only a subset of equations, corresponding to a subset of samples (called batch [14]) B =
{(s, d, t)} ⊆ S × D × T . We propose to build B from a finite set of simulated trajectories (length
H + 1) starting in s1, obtained by simulating successive transitions. Decisions are chosen randomly,
either maximizing Q̃w (with probability 1− ε) or uniformly (with probability ε) at each time step. Note
that ε is the only parameter to tune in LSDP.

We use these batches to define the Least-Squares Dynamic Programming (LSDP) algorithm, a variant
of the policy iteration algorithm [13]. LSDP iterates updates of the current weights values w from a cur-
rent simulation batch, applying approximate dynamic programming and accepting the updated weights
values only if the value of the corresponding policy (estimated by simulation) improves the previous one.
If the value is not improved, another batch B′ is randomly built and used. A maximum number of batches
to simulate is fixed, and when reached, the current policy is returned.

Of course, one can note that for a given set of weights values, different batches may be obtained
by simulation, leading to different updated weights values and thus to different updated policies. Fur-
thermore, there is no guarantee that the updated policy improves the current policy in state s1. This is
why the value of the updated policy has to be estimated (by simulation) and compared to the value of
the previous policy, before being accepted if it actually improves. This conditional acceptation allows to
guarantee that the successive policies returned by the algorithm are of increasing value3.

3More rigorously since simulation is used to estimate policy values, these estimations may well be incorrect but lead to,
hopefully small, decrease in policy value.

@ COMPSTAT 2012



8 Sampling Design in MRF

Application to the OASMRF problem

In order to apply the LSDP algorithm to the OASMRF problem, we take into account the problem
structure (i) to define features φi and (ii) to propose an adapted batch construction method.

The BP-max heuristic (see [12] and section 4) can be mimicked by a linear combination of the
following features, with all weights equal to 1: ∀i ∈ {1, . . . , n},

φi(s, d) =
(
1− 1{i=d}) max

xi∈Ω
P̃
(
xi | xA

)
+ 1{i=d}, where

P̃(xi | xA) = PBP (xi) +
∑
j∈A

[
PBP (xi | xj)− PBP (xi)

]
.

A ⊆ O is the set of indices of previously observed variables, and PBP (xi|xj) are approximations of the
marginal computed by the Belief Propagation (BP) algorithm [10]. Starting the LSDP algorithm with
weights all equal to 1, iterated updates will allow to improve the value of the BP-max heuristic.

Since computing final reward rH+1 is too time consuming using BP algorithm, we use distribution
P̃ instead, which provides good empirical results. For the 10 × 10 grid experiment presented in Section
(6), we observed an acceleration of around 1 minute per iteration of LSDP with H = 40.

The second point is the construction of the batch of simulations. Simulating trajectories in the
OASMRF problem is complex since, for each transition, one has to simulate observations xA from
the MRF distribution P. This requires to apply the Gibbs Sampling algorithm, which is rather costly4,
thus severely limiting the size and number of batches that can be constructed. However, larger batches
can be constructed if we divide the construction into two phases. First, we simulate, off-line, a batch of
hidden maps, {x1, . . . xp}, which will be used for all iterations of the LSDP algorithm. The construction
of this batch is done using Gibbs Sampling, and induces a single overhead cost for the whole algorithm.
Then, trajectories are easy to simulate: (i) a hidden map is selected, (ii) decisions are chosen randomly
(ε-greedily with respect to the current policy) and (iii) successor states follow immediately by reading
the value of the variables corresponding to the current observation. This second phase of trajectories
simulation is fast. Furthermore, simulated trajectories do not have to be stored (only the batch of maps
does), thus saving much memory space.

6 EXPERIMENTAL EVALUATION

We present simulated problems to illustrate the gain of using LSDP instead of classical heuristics or
RL-based solution algorithms. We compared LSDP to the random heuristic, the BP-max policy, TD(λ)
with tabular representation of the Q-function and LSPI. We also compared LSDP to a greedy algorithm
based on the Mutual Information (MI) criterion [6].

The OASMRF problem considered is the following. The graph G is a regular grid and R = O = V .
One variable is observed at each decision step (L = 1) and sampling costs are null. We considered the
following Potts model distribution: ∀ x ∈ {1, 2}n

Pβ
(
x
)
∝ exp

(
1

2

∑
(i,j)∈E

1{xi=xj}

)
.

4× 4 grid. This small problem was used in the experiments since we were able to compute the
corresponding optimal policy, using the backward induction algorithm and the exact value of any policy.

4Around 1.3 seconds for each transition, for n = 100.

COMPSTAT 2012 Proceedings
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TD(λ) was run with λ = 0.1, using an ε-greedy method for action choice (ε = 0.1). The LSDP and
LSPI algorithms were run with ε = 0.9. For all RL algorithms we used the same batch size. The TD(λ)
algorithm was run using 675000 simulated state-action trajectories. We ran LSDP and LSPI with a batch
of 100 maps and 6750 iterations. For LSDP the value of the policy obtained at the last iteration of the
algorithm was returned, while for LSPI the value of the best policy among all iterations was returned,
since the latter algorithm oscillates.

The first conclusion is that the absolute difference between the values of all policies is small: an
absolute increase of the percentages of 2.2 at most. We also compared the policies in terms of normalised
gain compared to the random one δR (Figure 1): the score of a given policy δ is defined as score1(δ) =
V (δ)−V (δR)
V (δ∗)−V (δR) .

Figure 1. OASMRF problem with 16 variables: score1 of LSPD and classical RL-based and heuristic
policies.

Among RL algorithms, TD(λ) is the best and LSDP gives very similar results. In comparaison, LSPI
shows a poor behaviour, always returning dominated policies. Surprisingly the relative value of the MI
policy decreases with the number of observed variables, while the opposite behavior is observed for the
BP-max heuristic. The poor performance of the BP-max heuristic with small sample size is explained
by the fact that with few observed sites, all sites have similar marginal probabilities, leading to a purely
random choice of samples.

10× 10 grid. For this problem size, only LSDP, LSPI, BP-max and random policy can be computed.
For LSDP and LSPI we used a batch size of 1000 maps and 1000 iterations. The value of a policy was
estimated by Monte Carlo approximation. We modified score1 into score2(δ) = V (δ)−V (δR)

|V (δBP−max)−V (δR)| :
since the value of an optimal policy cannot be computed, δBP−max serves as a reference. Results are
displayed on Figure 2.

Figure 2. OASMRF problem with 100 variables: score2 of LSDP and LSPI policies.

We observed again the poor performance of the LSPI algorithm (even dominated by the random

@ COMPSTAT 2012



10 Sampling Design in MRF

policies, for H = 10 to 20). On the contrary, LSDP performs quite better than the BP-max heuristic for
small sample sizes. LSDP also performs better than LSPI, in terms of computation time: for H = 40, an
iteration takes about 7 seconds for LSDP, 77 seconds for LSPI.

Constrained moves problem. We also compared LSDP, BP-max and random policies on a more
realistic sampling problem, involving constrained moves on the grid for observing sites. After having
observed a site, the agent can only move to distance-2 sites for the following observation.

Figure 3. Constrained moves problem with 100 variables: score2 of LSDP policy.

We again observed that the absolute difference between all policies remained small (for H = 10, the
value of the LSDP policy is 61.7 while the value of the BP-max policy is 59.4). LSPI showed the same
poor behaviour than in the previous experiment. As we expected, the gain provided by LSDP in terms of
relative improvement of the random policy (H ≤ 20, see Figure 3) is significant when the sample size is
small (Figure 3).

7 CONCLUSION

Comparison of the LSDP algorithm with heuristic algorithms and classical RL algorithms enables us to
draw the following conclusions. First, in small problems where the optimal policy can be computed, we
notice that the performance of a purely random strategy is quite close to that of the optimal one. This
seems to also hold for larger problems, where the estimated value of the random policy remains close
to that of the LSDP policy. However, in real-life applications of sampling for mapping, small errors
in the reconstruction of maps can lead to significant increases in management costs (think of imperfect
mapping and eradication of invasive species, leading to future outbreaks).

Second, for large problems, TD(λ) or exact mutual information are too computationally intensive
to apply, and the adaptation of the LSPI approach does not perform well. On the contrary, both BP-
max heuristic and the LSDP algorithm provide good results. BP-max is less costly to apply than LSDP.
However, it is an ad-hoc method and its performance depends on which form of sampling costs are
considered. We can also predict poor performances when the set of observable variables differs from the
set of variables of interest in the reconstruction. This limits the applicability of BP-max. In contrast,
LSDP can handle different cost functions. It can also easily be adapted to other definitions of policy
value, provided that they can be estimated efficiently from a batch of trajectories. Furthermore, the
LSDP algorithm can be applied to general factored finite-horizon MDP, and not only to spatial sampling
problems.

LSDP is currently being validated on a real problem of sampling in crop fields for weeds mapping.
We also plan to use it to design policies for controlling spatio-temporal systems (eg weeds control) and
not only for building maps.
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Appendix

We establish that the GOASMRF problem is Pspace-complete. Let us define the state-disambiguation
(SD) problem. We have:
- A set Θ = {θ1, . . . , θl} of possible states of the world and a probability distribution p over Θ.
- A utility function u : Θ→ [0; +∞[: u(θi) is the utility of discovering that the state of the world is θi.
- A set Q = {Q1, . . . , Qr} of queries. Qj = {qj1, . . . , qjmj} is a set of subsets of Θ, such that⋃

1≤k≤mj qjk = Θ. If the true state of the world is θi and Qj is asked, an answer is chosen (uni-
formly) randomly among the answers qjk containing θi.
- A maximum number N of queries that can be asked and a target real value G > 0.

The SD problem consists in deciding whether there exists an adaptive policy, asking at most N
queries, that gives expected utility at least G. If pδ(θi) denotes the probability of identifying θi by using
policy δ, the SD problem amounts to deciding whether there exists δ such that

∑
1≤i≤l p(θi)pδ(θi)u(θi) ≥

G. It has been shown that SD is Pspace-hard, even when N ≤ l [1].
In order to prove that the GOASMRF problem is Pspace-complete, we propose a reduction from

a SD problem to a GOASMRF problem as follows. Let SD = (Θ, u,Q, N,G) be given. We build a
GOASMRF over variables X = (θ, q1, . . . , qr). Variables in the GOASMRF problem correspond to the
sets in the SD problem: θ takes values in Θ and qj in Qj . The considered graphical model is a simple
MRF with distribution:

P(X) = P(θ)
r∏
j=1

P(qj |θ),

where P(θ = θi) = p(θi),∀i = 1..n and the conditional probabilities are P(qj = qjk|θ = θi) =
1

|{qjk′∈Qj ,θi∈qjk′}|
if θi ∈ qjk and P(qj = qjk|θ = θi) = 0 else. Then, we set R = {θ} and O =

{q1, . . . , qr}: we want to restore the value of variable θ, but can only sample variables qj . Only one site
(variable) can be sampled at each of N time steps, and H = N . The cost function c is set uniformly null
(c(A) = 0, ∀A ⊆ O). And function fθ is defined as: fθ(θi, 1) = p(θi)u(θi) and
fθ(θi, ν) = 0,∀θi ∈ θ, 0 ≤ ν < 1. We get a reward only when the value of θ is known with certainty.

In order to prove that solving the GOASMRF problem we have just defined also solves the SD
problem, it is enough to prove that: (i) any policy δSD in the SD problem has an equivalent policy
δGOASMRF in the GOASMRF problem, and vice-versa, (ii) any two corresponding policies δSD and
δOASMRF have identical values in their respective problems.

Point (i) is easy to prove, since available actions in both frameworks correspond to the same qj’s
(queries in the SD case and variables allowed for sampling in the GOASMRF case). Then, since possible
observations are the same in both cases and since the depth of both query trees are equal (to N ), the set
of policies are the same, and these are in direct correspondence in both problems.

For point (ii) note that the two values of a policy δ are defined by:

vGOASMRF (δ) =
∑

(A,xA)∈τδ

P(xA)U(A, xA), and vSD(δ) =
∑

1≤i≤l
p(θi)pδ(θi)u(θi).
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12 Sampling Design in MRF

For any strategy δ, let τ θiδ denote the set of branches which, in the SD case, allow to disambiguate set Θ
in θi. Then it is easy to see that vSD(δ) = vGOASMRF (δ) =

∑
1≤i≤l

∑
(A,xA)∈τθiδ

p(θi)P(xA)u(θi).
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