N

N

Reinforcement-learning for sampling design in Markov
random fields
Mathieu Bonneau, Nathalie Dubois Peyrard, Régis Sabbadin

» To cite this version:

Mathieu Bonneau, Nathalie Dubois Peyrard, Régis Sabbadin. Reinforcement-learning for sampling
design in Markov random fields. International Conference on Computational Statistics, Aug 2012,
Limassol, Cyprus. pp.12. hal-01191361

HAL Id: hal-01191361
https://hal.science/hal-01191361

Submitted on 1 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01191361
https://hal.archives-ouvertes.fr

Reinforcement-learning for sampling
design in Markov random fields

Mathieu Bonneau, INRA - Biometry and Artificial Intelligence Unit, mbonneau@toulouse.inra. fr
Nathalie Peyrard, INRA - Biometry and Artificial Intelligence Unit, peyrard@toulouse.inra.fr
Régis Sabbadin, INRA - Biometry and Artificial Intelligence Unit, sabbadin@toulouse.inra.fr

Abstract. Optimal sampling in spatial random fields is a complex problem, which mobilizes several
research fields in spatial statistics and artificial intelligence. We consider the case where observations
are discrete-valued and modelled by a Markov Random Field. Then we encode the sampling problem
into the Markov Decision Process (MDP) framework. After exploring existing heuristic solutions as well
as classical algorithms from the field of Reinforcement Learning (RL), we design an original algorithm,
LSDP (Least Square Dynamic Programming), which uses simulated trajectories to solve approximately
any finite-horizon MDP problem. Based on an empirical study of the behaviour of these different ap-
proaches on binary models, we derive the following conclusions: i) a naive heuristic, consisting in sam-
pling sites where marginals are the most uncertain, is already an efficient sampling approach. ii) LSDP
outperforms all the classical RL approaches we have tested. iii) LSDP outperforms the heuristic in cases
when reconstruction errors have a high cost, or sampling actions are constrained. In addition, LSDP
readily handles action costs in the optimisation problem, as well as cases when some sites of the MRF
can not be observed.

Keywords. Heuristic and optimal sampling design, Dynamic programming, Markov Decision Process

1 INTRODUCTION

Optimal sampling in spatial random fields is a complex problem, which mobilizes several research fields
in spatial statistics [2, 8] and artificial intelligence [6, 5, 11]. An active stream of research about optimal
spatial sampling is dedicated to the study of the case of real-valued observations (e.g. temperature
or pollution monitoring). Models and efficient algorithms have been proposed, mainly based on the
geostatistical framework of Gaussian random fields and kriging. Much less attention has been paid to
the case of discrete-valued observations. However, this problem is ubiquitous in many studies about
biological systems. Discrete-valued observations can be species abundance classes, disease severity
classes, presence/absence values...

Solving optimal sampling problems in discrete-valued random fields is a difficult question admit-
ting no universally accepted solution, so far. One should look for approximate solution algorithms with

2 Sampling Design in MRF

reasonable/moderate complexity and with satisfying approximation quality. We propose, similarly to
[5, 11, 12], to define the optimal sampling problem within the framework of Markov random fields
(MRE, [4]), classically used in image analysis. We consider the case of adaptive sampling, where the
set of sampled sites is chosen sequentially and observations from previous sampling steps are taken into
account to select the next sites to explore [16]. Simple heuristics have been proposed [16, 2, 12] to design
adaptive sampling strategies. However, it is difficult to evaluate their quality since there is no efficient
exact method to compare to. In this paper, we design a new reinforcement-learning (RL, [15]) algorithm
which improves classical heuristic and RL approaches, thus providing a reference algorithm. The al-
gorithm, named LSDP (Least Square Dynamic Programing) uses an encoding of the optimal adaptive
sampling problem as a finite-horizon Markov Decision Process (MDP, [13]) with factored state space.

The MRF formalization of the optimal adaptive spatial sampling problem is introduced in Section 2,
together with a computational complexity study. We show how to model it as a finite-horizon factored
MDP in Section 3 and we discuss classical RL solutions in Section 4. Then, we describe the LSDP
algorithm in Section 5. We present an empirical comparison between heuristic approaches, classical
RL algorithms and LSDP in Section 6. Some methodological and applied perspectives of this work are
discussed in Section 7.

2 OPTIMAL ADAPTIVE SAMPLING IN MARKOV RANDOM
FIELDS

Problem statement

Let X = (X1,...,X,) be a vector of discrete random variables taking values in Q" = {1,... K}".
V = {1,...,n} is the set of indices of the vector X and an element i € V will be called a site. The
distribution P of X is that of a Markov Random Field (MRF) with associated graph G = (V, E') where
E C V2 is a set of undirected edges. x = (1, ..., x,) is a realization of X and we adopt the following
notation: xp = {z;}iep, VB C V. Then we can write P(X = z) o< [[¢ Ve(xc), where C is the set of
cliques of V and the W, ¢ € C are strictly positive potential functions [4].

In order to reconstruct the vector X on a specified subset R C V of sites of interest, we can acquire a
limited number of observations on a subset O C V of observable sites. We will assume that RUO =V
and intersection between O and R can be non-empty. The sampling problem is to select a set of sites
A C O, named a sample, where X will be observed. When sample A is chosen, a sample output x 4
results, from which the MRF distribution [P is updated. Our objective is, intuitively, to choose A so that
the updated distribution P(-|x 4) becomes as informative as possible (in expectation over all possible
sample outputs).

In the following we describe the different elements allowing to formally define the sampling optimisation
problem.

Reconstruction. When a sample output = 4 is available, the Maximum Posterior Marginals (MPM) cri-
terion, classically used in image analysis, is used to derive an estimator x7, of the hidden map z g:

x}}:{xf | i€R, xf:argmaé]l”(x”mf\)}.

;€

Adaptive sampling policy. In adaptive sampling, the sample A is chosen sequentially. The sampling
plan is divided into H steps. A" C O is the sample explored at step h € {1,..., H} and z 4 is

COMPSTAT 2012 Proceedings

Mathieu Bonneau, Nathalie Peyrard and Régis Sabbadin 3

the sample output at step k. The samples size is fixed (|A"| = L) and Ay is the set of all poli-
cies satisfying |A"| = L,Vh. The choice of sample A" depends on the previous samples and out-
puts. An adaptive sampling policy § = (§',...,5%) is then defined by an initial sample A" and func-
tions 0" specifying the sample chosen at step » > 2, depending on the results of the previous steps:
5h((A1,;L'A1), e (Ahil,l'Ah—l)> = Ah.

A history is a trajectory (A', 2 41),..., (A", 2 4u) followed when applying policy §. The set of
all histories which can be followed by policy ¢ is 75. We will assume throughout the paper that obser-
vations are reliable. As a consequence, we will only consider policies visiting each site at most once
(Ah 0 AY = 0,Vh # h'). Furthermore, since our definition of the quality of a policy is based on the
MPM criterion, it does not depend on the order in which observations are received. Therefore, the rele-
vant information in a history can be summarized by the pair (A4, x 1), where A = U, A".

Sample cost. The modeling of a sampling cost function is an issue as it stands. Here we illustrate this
notion with the simplest definition, where sample costs are additive.
For a given history ((A',z41) ..., (A 2 u)), the total cost is

H
Zc(Ah) =c (UhAh> ,with ¢(A") = Z ci, ¢; € RT.

h=1 1€EAp

Quality of a sampling policy. The quality of a policy ¢ is measured as the expected quality of the estima-
tor 7, that can be obtained from . In practice, we first define the quality of a history ((Ap, x4,))n=1.H
as a function of (A, x4), where A = Up Ap:

U(A,z4) = z}; [max {p(g;i | xA)}] — (A). 1)

T, €9
The quality of a sampling policy ¢ is then defined as an expectation over all possible histories:
V@)= Y. Plza)U(Aza).
((An,wa,,))nETs

Optimal adaptive sampling in MRF (OASMREF). Finally the problem of optimal adaptive sampling
amounts to finding the policy of highest quality :

0 = argmax V(9). ()

Computational complexity of optimal adaptive sampling in MRF

In this section we study the computational complexity of the OASMRF problem. More precisely, we
will study the following, generalised OASMRF problem (GOASMREF), expressed in a decision form:
Does there exist 0 of depth at most N, such that:

> P(za)U(A,z4) > G ?

(Anszap,)h=1..HETS

Where G > 0 is a fixed threshold, and U (A,z4) = Y .cp fi(2z},P(z} | za)) — c(A), where the
functions f; are non-decreasing functions in their second argument and =} = arg max,, P(z; | z4).

@ COMPSTAT 2012

4 Sampling Design in MRF

Proposition 1.
The GOASMRF problem is Pspace-complete.

Proof. There is not much difficulty in proving that GOASMRF belongs to Pspace. The difficult part
is to establish the Pspace-hardness of the GOASMRF problem. To prove this, we reduce the State
Disambiguation (SD) problem, which is known to be Pspace-hard [1] to it. A detailed proof is given in
the Appendix. 0

The consequence of Proposition 1 is that exact optimization of the sampling policy is intractable.
In the next section we present a (factored) Markov Decision Process (MDP) model of the OASMRF
problem'. It will allow us to solve OASMRF problems approximately by applying simulation-based
Reinforcement Learning (RL) algorithms [15].

3 Finite horizon MDP modelling of the OASMREF problem

A finite-horizon Markov Decision Process model is a 5-tuple (S, D, T, p,), where S is a finite set of
system states, D is a finite set of available decisions, T = {1,..., H} is a finite set of decision steps,
termed horizon. p is a set of transition functions p*,t € T, where p(s'*1|st, d*) indicates the probability
that state s‘*! € S results when the system is in state s' € S and decision d' € D is implemented at
time ¢t € T. A terminal state s+ € S results when the last action is applied, at decision step H.
is a set of reward functions: r'(s!,d') € R is obtained when the system is in state s at time ¢ and d" is
applied. A terminal reward r+1(sH+1) is obtained when state s/ is reached at time H + 1.

A decision policy (or policy, for short) m = {m!, ... 7} is a set of decision functions 7' : S — D.
Once a decision policy is fixed, the MDP dynamics becomes that of a finite Markov chain over .S, with
transition probability p’(s'*1|s’, 7f(s)). The value function V™ : S x T — R of a policy 7 is defined
as the expectation of the sum of future rewards, obtained from the current state and time step when
following the Markov chain defined by 7:

H+1

Zrt/ \ s] (s, t) e S xT.

t'=t

V(s,t) = E,

Solving an MDP amounts to finding an optimal policy m* which value is maximal for all states and
decision steps: V™ (s,t) > V™ (s,t),Vr, s,t. We now show how to model the OASMRF problem in the
MDP framework.

State space. state s’,¢ = 1,..., H 4+ 1 summarizes current information about variables indexed in O:
t—1 t—1
st = (U Ah U xAh> NVt=2,...,H +1and s' = (0,0).
h=1 h=1

The total number of possible states of the system is exponential in the OASMREF representation size.

Action space. An admissible decision d’ is a sample A? such that |A*| = L and such that A* 0 A¥ =
0, vt < t.

"Which can be easily extended to GOASMRF.

COMPSTAT 2012 Proceedings

Mathieu Bonneau, Nathalie Peyrard and Régis Sabbadin 5

Horizon. Decision steps in the MDP correspond to decision steps in the OASMRF problem. Thus,
T={1,...,H}.

Transition functions. If s* = (4,24) and d® = A! the transition function of the MDP can be derived
straightforwardly from the original MRF distribution PP

pt(s’prl | st,dt) = P($At \ xA),Vt eT.
Reward functions. V¢ = 1, ..., H, rewards represent sampling costs:
ri(st d) = ri(d") = —c(AY),Vt € T, s, d".

After decision d’ has been applied at decision step H, and state s'/+1 = (A, x 1) has been reached, the
final reward "1 (s17+1) is obtained, which is defined as the quality of the MPM reconstruction:

pHAL(GHAL) z,:% {max {P(x" | :UA)}]'

z; €Q

The optimal policy for the above-defined MDP is a set of functions associating samples to unions of
past samples outputs. It thus has the same structure as an OASMRF sampling policy. Furthermore, we
can establish the following proposition:

Proposition 2.
An optimal policy for the MDP model of an OASMRF problem provides an optimal policy for the initial
OASMRF problem (2).

Proof. (Sketched). The proof follows three steps and uses the fact that the quality of a policy does not
depend on the order in which observations are obtained:

(i) We define a function ¢, transforming any MDP policy 7 into a valid OASMREF policy 6 = ¢(7),
which defines actions independently of the order in which past observations were received, and
show that V' (¢(7)) = V™((0,0), 1).

(i) We establish that, for any partial history (past observations), the value of an optimal OASMRF
policy starting from these observations does not depend on the order in which they were received.
As a consequence, we can limit the search for optimal policies of the OASMREF problem to policies

prescribing actions which do not depend on the order of observations.

(iii)) We show that any such OASMREF policy § can be transformed into an MDP policy, through a
transformation 1, and that V (8) = V#©)((p, 0),1).

As aresult of these three steps, if 7* is an optimal policy for the MDP encoding of the OASMREF problem,
then ¢(7*) is optimal for the OASMRF problem. O

In the following we will use the same notation § to represent both OASMRF and MDP policies.

@ COMPSTAT 2012

6 Sampling Design in MRF

4 CANDIDATE APPROACHES FOR SOLVING OASMRF

Exact dynamic programming

The backwards induction algorithm [13] can be applied to compute the optimal policy of any finite-
horizon MDP. It consists in solving iteratively the following equations: V¢ = H,...,1 and Vs,d €
S x Dt,

Vs, H+1) = H“()
Q*(s,d,t) = ri(s,d) —i—Zp (s's, d)V*(s', t+1), 3)

5 Hs) = 4" (s,t)zargmgLXQ (s.d,t),
V¥(s,t) = mgx@*(s,d,t).

However, since the OASMRF problem is Pspace-complete, exact dynamic programming is inapplica-
ble to large problems. Therefore, we have to look for sub-optimal policies. To do this, we can explore
two families of approaches used for solving OASMREF: heuristic approaches and simulation-based ap-
proaches.

Heuristic approaches

Heuristic approaches are methods for sample selection which provide an arbitrary sample in short time.
These methods either solve a simpler optimization problem, or provide simple arbitrary policies. Several
heuristics have been proposed, either in Statistics or in Al, that can be applied to solve the OASMRF
problem. In spatial sampling of natural resources, random and regular sampling are classic ones [2].
Another classical method to sample 0/1 variables is Adaptive Cluster Sampling (ACS, [16]). Recently,
[12] proposed a heuristic (BP-max heuristic) which consists in sampling locations where the marginal
probabilities are less informative, in order to solve (2). It has been shown to outperform random, regular
and ACS heuristics. In [6], the authors proposed to optimize a mutual information (MI) criterion to
design sampling strategies in Gaussian Processes.

Simulation based approaches: Reinforcement learning

The main idea of Reinforcement Learning approaches (RL, [15]) is to use repeated simulated experiences
(st,dt, ri, s*1), instead of dynamic programming, in order to estimate Q* or a parametrized approxi-
mation @) of Q* [15]%. They can either estimate Q* directly (i.e. Q-learning approach), or interleave
estimation steps of a current policy 6 (7"D(\) can be used) with improvement steps, in a general policy
iteration scheme [15].

In most cases where simulation is used to solve large, factored MDP such as in the OASMREF prob-
lem, functions Q° are too expensive to store in tabular form. In this case, a parametric approximation of
the Q-function is built as : Q(s,d,t) = w' ¢(s,d, t), where w € RP is a vector of parameters values and
¢ : (St, D!, t) — R? is a mapping from state-decision pairs to real-valued b-dimensional vectors, called
features. Simulations are used to compute values w of parameters that give a good approximation of Q*.
Note that, in general, no guarantee is given on the approximation quality. Algorithms for computing w
for a specific features choice are, for example, LSPI [7], Fitted Q-iteration ([3],[9]), etc.

“For simplicity notation @ is used instead of @*

COMPSTAT 2012 Proceedings

Mathieu Bonneau, Nathalie Peyrard and Régis Sabbadin 7

S LEAST-SQUARES DYNAMIC PROGRAMMING (LSDP)

Approximate dynamic programming

The main idea of the algorithm we propose is to combine a parametrized representation of the ()-function
with dynamic programming (DP) iterations and simulation in order to approximate Q*. Namely, we
consider an approximation () of Q* as a linear combination of n arbitrary features [15]:

@(s,d,t) = Z wipi(s,d,t),Vs,d, vVt € T and
i=1..n

Q(s,H+1) = A+ (AT v,

The weights w! are computed recursively for ¢ = H to 1, in such a way that equations (3) are

approximately satisfied:

Z wipi(s,d,t) ~ ri(s,d) +Zp s, d)V (s, t + 1)
i=1..n
here V(s,t) = L9y (s, d, t). 4
where V (s, t) max Z wipi(s,d,t) 4)

i=1..n

Equations (4) form a set of |S| x | D| linear equations for each time step ¢ € 7', with variables w!,i =
1..n. These systems are clearly over-constrained (|S| x |D| > n), therefore we look for least-squares
solutions, instead of exact ones. The dynamic programming part of the approach comes from the fact
that the systems are solved separately for ¢ = H to 2, each solution vector w'*! being plugged into the
system obtained at time .

LSDP Algorithm

Systems (4) are too large to build when S is factored, not to mention solving. Therefore, we suggest
to consider only a subset of equations, corresponding to a subset of samples (called batch [14]) B =
{(s,d,t)} € S x D x T. We propose to build B from a finite set of simulated trajectories (length
H + 1) starting in s, obtained by simulating successive transitions. Decisions are chosen randomly,
either maximizing Q% (with probability 1 — &) or uniformly (with probability ¢) at each time step. Note
that € is the only parameter to tune in LSDP.

We use these batches to define the Least-Squares Dynamic Programming (LSDP) algorithm, a variant
of the policy iteration algorithm [13]. LSDP iterates updates of the current weights values w from a cur-
rent simulation batch, applying approximate dynamic programming and accepting the updated weights
values only if the value of the corresponding policy (estimated by simulation) improves the previous one.
If the value is not improved, another batch B’ is randomly built and used. A maximum number of batches
to simulate is fixed, and when reached, the current policy is returned.

Of course, one can note that for a given set of weights values, different batches may be obtained
by simulation, leading to different updated weights values and thus to different updated policies. Fur-
thermore, there is no guarantee that the updated policy improves the current policy in state s;. This is
why the value of the updated policy has to be estimated (by simulation) and compared to the value of
the previous policy, before being accepted if it actually improves. This conditional acceptation allows to
guarantee that the successive policies returned by the algorithm are of increasing value?.

*More rigorously since simulation is used to estimate policy values, these estimations may well be incorrect but lead to,
hopefully small, decrease in policy value.

@ COMPSTAT 2012

8 Sampling Design in MRF

Application to the OASMRF problem

In order to apply the LSDP algorithm to the OASMRF problem, we take into account the problem
structure (i) to define features ¢; and (ii) to propose an adapted batch construction method.

The BP-max heuristic (see [12] and section 4) can be mimicked by a linear combination of the
following features, with all weights equal to 1: Vi € {1,...,n},

QSi(s,d) = (1 —]l{i:d}) glgéﬁ)(% | mA) +]l{i:d}> where

Pz | 14) = IP’BP(xi)—i—Z[PBP(xi\xj)—IP’BP(:ci).
JjEA

A C O is the set of indices of previously observed variables, and PB” (z; |z;) are approximations of the
marginal computed by the Belief Propagation (BP) algorithm [10]. Starting the LSDP algorithm with
weights all equal to 1, iterated updates will allow to improve the value of the BP-max heuristic.

_ Since computing final reward rH+1 is too time consuming using BP algorithm, we use distribution
PP instead, which provides good empirical results. For the 10 x 10 grid experiment presented in Section
(6), we observed an acceleration of around 1 minute per iteration of LSDP with H = 40.

The second point is the construction of the batch of simulations. Simulating trajectories in the
OASMREF problem is complex since, for each transition, one has to simulate observations x4 from
the MRF distribution IP. This requires to apply the Gibbs Sampling algorithm, which is rather costly®,
thus severely limiting the size and number of batches that can be constructed. However, larger batches
can be constructed if we divide the construction into two phases. First, we simulate, off-line, a batch of
hidden maps, {x!,... 2P}, which will be used for all iterations of the LSDP algorithm. The construction
of this batch is done using Gibbs Sampling, and induces a single overhead cost for the whole algorithm.
Then, trajectories are easy to simulate: (i) a hidden map is selected, (ii) decisions are chosen randomly
(e-greedily with respect to the current policy) and (iii) successor states follow immediately by reading
the value of the variables corresponding to the current observation. This second phase of trajectories
simulation is fast. Furthermore, simulated trajectories do not have to be stored (only the batch of maps
does), thus saving much memory space.

6 EXPERIMENTAL EVALUATION

We present simulated problems to illustrate the gain of using LSDP instead of classical heuristics or
RL-based solution algorithms. We compared LSDP to the random heuristic, the BP-max policy, TD()\)
with tabular representation of the)-function and LSPI. We also compared LSDP to a greedy algorithm
based on the Mutual Information (MI) criterion [6].

The OASMREF problem considered is the following. The graph G is a regular gridand R = O = V.
One variable is observed at each decision step (. = 1) and sampling costs are null. We considered the
following Potts model distribution: V z € {1,2}"

1
Pg (w) X exp <2 Z]l{wi:wj}>.
(i,4)eE

4 x 4 grid. This small problem was used in the experiments since we were able to compute the
corresponding optimal policy, using the backward induction algorithm and the exact value of any policy.

* Around 1.3 seconds for each transition, for n = 100.

COMPSTAT 2012 Proceedings

Mathieu Bonneau, Nathalie Peyrard and Régis Sabbadin 9

TD(X) was run with A = 0.1, using an e-greedy method for action choice (¢ = 0.1). The LSDP and
LSPI algorithms were run with e = 0.9. For all RL algorithms we used the same batch size. The TD()\)
algorithm was run using 675000 simulated state-action trajectories. We ran LSDP and LSPI with a batch
of 100 maps and 6750 iterations. For LSDP the value of the policy obtained at the last iteration of the
algorithm was returned, while for LSPI the value of the best policy among all iterations was returned,
since the latter algorithm oscillates.

The first conclusion is that the absolute difference between the values of all policies is small: an
absolute increase of the percentages of 2.2 at most. We also compared the policies in terms of normalised

gain compared to the random one dr (Figure 1): the score of a given policy 9 is defined as scorel(d) =
V(§)-V(r)
V(6*)=V(or)"

E . o iny, ‘ i -
§ . . & .@
=¥ Optimal O LspI
0.3 , ©1sDP A TD)
3 ‘ + MI € BP-max
2 3 4 5 6

Number of observed variables (H)

Figure 1. OASMREF problem with 16 variables: scorel of LSPD and classical RL-based and heuristic
policies.

Among RL algorithms, TD()) is the best and LSDP gives very similar results. In comparaison, LSPI
shows a poor behaviour, always returning dominated policies. Surprisingly the relative value of the MI
policy decreases with the number of observed variables, while the opposite behavior is observed for the
BP-max heuristic. The poor performance of the BP-max heuristic with small sample size is explained
by the fact that with few observed sites, all sites have similar marginal probabilities, leading to a purely
random choice of samples.

10 x 10 grid. For this problem size, only LSDP, LSPI, BP-max and random policy can be computed.
For LSDP and LSPI we used a batch size of 1000 maps and 1000 iterations. The value of a policy was
estimated by Monte Carlo approximation. We modified scorel into score2(6) V()-V(or)

= V5P —maz) VORI
since the value of an optimal policy cannot be computed, dgp_mq, Serves as a reference. Results are

displayed on Figure 2.

©LsDP

N
o
S
S
@ e va.,

0— e e

o, oo
2 . . .
S 10 15 20 25 30 35 40

Number of observed variables (H)

Figure 2. OASMREF problem with 100 variables: score2 of LSDP and LSPI policies.

We observed again the poor performance of the LSPI algorithm (even dominated by the random

@ COMPSTAT 2012

10 Sampling Design in MRF

policies, for I = 10 to 20). On the contrary, LSDP performs quite better than the BP-max heuristic for
small sample sizes. LSDP also performs better than LSPI, in terms of computation time: for H = 40, an
iteration takes about 7 seconds for LSDP, 77 seconds for LSPI.

Constrained moves problem. We also compared LSDP, BP-max and random policies on a more
realistic sampling problem, involving constrained moves on the grid for observing sites. After having
observed a site, the agent can only move to distance-2 sites for the following observation.

5 10 15 20
Number of observed variables (H)

Figure 3. Constrained moves problem with 100 variables: score2 of LSDP policy.

We again observed that the absolute difference between all policies remained small (for H = 10, the
value of the LSDP policy is 61.7 while the value of the BP-max policy is 59.4). LSPI showed the same
poor behaviour than in the previous experiment. As we expected, the gain provided by LSDP in terms of
relative improvement of the random policy (H < 20, see Figure 3) is significant when the sample size is
small (Figure 3).

7 CONCLUSION

Comparison of the LSDP algorithm with heuristic algorithms and classical RL algorithms enables us to
draw the following conclusions. First, in small problems where the optimal policy can be computed, we
notice that the performance of a purely random strategy is quite close to that of the optimal one. This
seems to also hold for larger problems, where the estimated value of the random policy remains close
to that of the LSDP policy. However, in real-life applications of sampling for mapping, small errors
in the reconstruction of maps can lead to significant increases in management costs (think of imperfect
mapping and eradication of invasive species, leading to future outbreaks).

Second, for large problems, TD()\) or exact mutual information are too computationally intensive
to apply, and the adaptation of the LSPI approach does not perform well. On the contrary, both BP-
max heuristic and the LSDP algorithm provide good results. BP-max is less costly to apply than LSDP.
However, it is an ad-hoc method and its performance depends on which form of sampling costs are
considered. We can also predict poor performances when the set of observable variables differs from the
set of variables of interest in the reconstruction. This limits the applicability of BP-max. In contrast,
LSDP can handle different cost functions. It can also easily be adapted to other definitions of policy
value, provided that they can be estimated efficiently from a batch of trajectories. Furthermore, the
LSDP algorithm can be applied to general factored finite-horizon MDP, and not only to spatial sampling
problems.

LSDP is currently being validated on a real problem of sampling in crop fields for weeds mapping.
We also plan to use it to design policies for controlling spatio-temporal systems (eg weeds control) and
not only for building maps.

COMPSTAT 2012 Proceedings

Mathieu Bonneau, Nathalie Peyrard and Régis Sabbadin 11

Acknowledgement

We would like to thank Alain Dutech and Bruno Scherrer for fruitfull discussions on latest Reinforcement
Learning advances, as well as Sabrina Gaba whose research on weeds management motivated this work.
This work was funded by ANR project LARDONS under grant ANR-10-BLAN-0215.

Appendix

We establish that the GOASMREF problem is Pspace-complete. Let us define the state-disambiguation
(SD) problem. We have:

-Aset © = {61,...,0;} of possible states of the world and a probability distribution p over ©.

- A utility function u : © — [0; +-o00[: u(6;) is the utility of discovering that the state of the world is 6;.
- Aset @ = {Q1,...,Q} of queries. Q; = {gj1,.-.,qjm,} is a set of subsets of ©, such that
Ulgkgmj qjx = ©. If the true state of the world is 6; and @); is asked, an answer is chosen (uni-
formly) randomly among the answers ¢, containing 6;.

- A maximum number N of queries that can be asked and a target real value G > 0.

The SD problem consists in deciding whether there exists an adaptive policy, asking at most N
queries, that gives expected utility at least G. If ps(6;) denotes the probability of identifying 6; by using
policy 4, the SD problem amounts to deciding whether there exists d such that) , . -, p(6;)ps (0;)u(0;) >
G. It has been shown that SD is Pspace-hard, even when N <[[1]. o

In order to prove that the GOASMRF problem is Pspace-complete, we propose a reduction from
a SD problem to a GOASMREF problem as follows. Let SD = (0, u, Q, N, G) be given. We build a
GOASMREF over variables X = (0, q1,...,q,). Variables in the GOASMRF problem correspond to the
sets in the SD problem: 6 takes values in © and ¢; in ();. The considered graphical model is a simple
MREF with distribution:

P(X) =P(0) [[P(as16),
j=1

where P(0 = 6;) = p(0;),Vi = 1..n and the conditional probabilities are P(q; = g¢;x|0 = 0;) =
|{qjk’€Q]'1’9i€qjk’}| if 0; € q;i and P(q; = k|0 = 0;) = 0 else. Then, we set R = {f} and O =
{q1,...,q-}: we want to restore the value of variable 6, but can only sample variables ¢;. Only one site
(variable) can be sampled at each of IV time steps, and H = N. The cost function c is set uniformly null
(c(A) = 0,VA C O). And function fy is defined as: fp(6;,1) = p(6;)u(0;) and

fo(0i,v) =0,V0; € 6,0 < v < 1. We get a reward only when the value of is known with certainty.

In order to prove that solving the GOASMRF problem we have just defined also solves the SD
problem, it is enough to prove that: (i) any policy 6°” in the SD problem has an equivalent policy
§GOASMEF i1 the GOASMREF problem, and vice-versa, (ii) any two corresponding policies 557 and
§OASMEFE have identical values in their respective problems.

Point (i) is easy to prove, since available actions in both frameworks correspond to the same g;’s
(queries in the SD case and variables allowed for sampling in the GOASMREF case). Then, since possible
observations are the same in both cases and since the depth of both query trees are equal (to V), the set
of policies are the same, and these are in direct correspondence in both problems.

For point (ii) note that the two values of a policy ¢ are defined by:

YGOASMRE (5) _ Z P(x4)U(A,z4), and v7P(8) = Z p(0:)ps(0;)u(6;).
(A,xA)E’T,; 1<i<l

@ COMPSTAT 2012

12 Sampling Design in MRF

For any strategy 4, let Tgi denote the set of branches which, in the SD case, allow to disambiguate set ©
in #;. Then it is easy to see that v (§) = vFOASMEF (§) — D i<i<i Z(A R p(0;)P(x4)u(6;).

Bibliography

[1] V. Conitzer and T. Sandholm. Definition and complexity of some basic metareasoning problems.
In Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI’'03), pages
1099-1106, 2003.

[2] 1. de Gruijter, D. Brus, M. Bierkens, and K. Knotters. Sampling for Natural Resource Monitoring.
Springer, 2006.

[3] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. Journal of
Machine Learning Research, 6:503-556, 2005.

[4] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721-741, 1984.

[5] A. Krause and C. Guestrin. Optimal value of information in graphical models. Journal of Artificial
Intelligence Research, 35:557-591, 2009.

[6] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes:
theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9:235—
284, 2008.

[7] M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning Research,
2003.

[81 WG Miiller. Collecting spatial Data. Springer Verlag: Heidelberg, 2007. 3rd ed.

[9] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49:161-178,
2002.

[10] J. Pearl. Probabilistic Reasonning in Intelligent Systems. Morgan Kaufmann, 1988.

[11] N. Peyrard, R. Sabbadin, and U. F. Niaz. Decision-theoretic optimal sampling with hidden Markov
random fields. In European Conference of Artificial Intelligence (ECAI’10), 2010.

[12] N. Peyrard, R. Sabbadin, D. Spring, R. Mac Nally, and B. Brook. Model-based adaptive spatial
sampling for occurrence map construction. Statistics and Computing, 2012.

[13] M. Puterman. Markov Decision Processes : Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc, 1994,

[14] E. Rachelson, F. Schnitzler, and L. Wehenkel ans D. Ernst. Optimal sample selection for batch-
mode reinforcement learning. In Proceedings of the 3rd International Conference on Agent and
Artificial Inteligence (ICAART’11), Rome, Italy, 2011.

[15] R. S. Sutton and A.G. Barto. Reinforcement Learning : An Introduction. MIT Press, 1998.

[16] S. Thompson and G. Seber. Adaptive sampling. Series in Probability and Statistics. Wiley, New
York, 1996.

COMPSTAT 2012 Proceedings

