WHAT'S NEW ?

EggLib Documentation, Release 2.1.5

EggLib is a C++/Python library and program package for evolutionary genetics and genomics. Main features are sequence data management, sequence polymorphism analysis, coalescent simulations and Approximate Bayesian Computation. EggLib is a flexible Python module with a performant underlying C++ library (which can be used independently), and allows fast and intuitive development of Python programs and scripts. A number of preprogrammed applications of EggLib possibilities are available interactively. To get an idea of the possibilities offered by EggLib, see the Manual section.

SYNOPSIS

• An underlying C++ library which might be used independently.

• Two standalone programs:

eggcoal: an extensive coalescent simulator.

eggstats: a simple command line tool for analyzing diversity in fasta files.

• A flexible Python module bringing together the C++ library and additional high-level tools: Python module.

• A script egglib providing a number of modular tools for processing and analyzing sequence data (and others). See Directly executable commands. Chapter 2. Synopsis CHAPTER THREE

DOCUMENTATION

These pages describe the Python module and the C++ library. They are available as an independent downloadable archive from the download site. A pdf version of the general description of EggLib and reference manual of egglib-py is available here and a pdf version of the reference manual of the C++ library is available there. Chapter 3. Documentation CHAPTER FOUR

DETAILED CONTENTS

4.1 Download and install

Installation from source

Requirements

To build EggLib from source, you need a C++ compiler supporting the Standard Template Library and a UNIX shell-compatible environment (known as terminal, and available through cygwin on Windows). In addition, the Python development files are needed. These files should be available by default under Windows. In other systems, these files should be available as a separate package python-devel or python-header.

There are two optional dependencies:

• Bio++ (version 2.0.0 or higher). Bio++ contains a set of C++ libraries for sequence management, population genetics and phylogenetics. If Bio++ is present in the system, it will be automatically used to extend the possibilities of the population genetics functions of Egglib. A notable addition is the computation of the McDonald and Kreitman test table. If Bio++ is not detected, it will be skipped without generating errors.

• The GNU Scientific Library is needed for the most crucial parts of the ABC features of Egglib (namely the ABC class). If the GSL is not available, this class will not be available, but the rest of the library will be available.

The Python module (egglib-py) requires Python version 2.6 or higher but doesn't function under Python version 3.0. On some platform, installing the development package of Python will be needed. Part of EggLib functionalities require matplotlib or numpy. The presence of these modules are evaluated dynamically and an error is only reported when attempting to use the corresponding features.

EggLib can use external applications, provided that they are installed and available in the system. If they are absent or not detected, some features might not be available. These programs must be installed independently and their presence is evaluated at build time.

• The programs blastn, blastp, blastx, tblastn, tblastx and makeblastdb of the BLAST+ standalone package.

• clustalw.

• muscle.

• codeml from the PAML package.

• phyml version 3.

• ms.

• primer3 version 2.2.3 (earlier alpha and beta 2.x.x versions should work).

• dnadist, neighbor and seqboot from the PHYLIP package.

--------CACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446408 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACA----------CACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446409 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACA----------CACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446410 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACA----------CACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446411 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACA----------CACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446412 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACA------CACACACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446413 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACA------CACACACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446414 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACA------CACACACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446415 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACA------CACACACACACACGTGGCACTTTCTTCCTGCGGCAC >AY446416 GAGGCTCATCAGCCTGTTATTTACTGAAATTGAATGAAAAATGAGAGAGACGAGAAATGA GAAAAA-AATAAAATAAA-----ATAAAATAGTTCAGTTATGGATAAGCAAATACACAC-EggLib Documentation, Release 2.1.5

Note: When using groups=True when importing fasta data, always place group label tags at the end of the name without space. It will prevent lots of errors and allow consistent input/output operations (the input name can be generated again when exporting), which is the preferable behaviour.

Note:

The group label 999 (entered as @999 in input file) has a special meaning: it identifies an outgroup sequence. It is possible to enter several outgroup sequences.

Conversion to Container and Align types

The create() method can be called on either Container or Align classes to create corresponding instances. create() expects as argument an object of any iterable type, provided that the iterations return either (name, sequence) or (name, sequence, group) tuples. Note that both Container and Align are compatible. Therefore, create() can be used to perform a deep copy of sequence sets/alignments or convert one type into another:

>>> copy = egglib.Align.create(align) >>> container = egglib.Container.create(align)

Convert from Container to Align is unlikely to be needed. Note that conversion from Container to Align is only possible when all sequences have the same length, which can be fixed either using alignment utilities or using the equalize() method.

It is also possible to use create() to create an instance from an ad hoc object (provided that iterations returns two-or three-item tuples:

>>> sequences = [('name1', 'GAGCGTGCCGCGAGAGCGTTGCCAAGAGTGCCCGTGAT', 0), ... ('name2', 'GAGCGTGCCGCGAGAGCGTTGCCAAGATTGCGCGTGAT', 0), ... ('name3', 'GAGCGTGTCGCGAGAGCGTTGCCAAGAGTGCGCGTGAT', 0), ... ('name4', 'GAGCGTGTCGCGCGCGCGTTGCCAACAGTGCCCGCGAT', 1), ... ('name5', 'GAGCGTGTCGCGCGCGCGTTGCCAAGAGTGCCCGCGAT', 1), ... ('name6', 'GAGCGTGTCGCGCGCGCGATGCCAAGAGTGCCCGCGAT', 1)] >>> align = egglib.Align.create(sequences)

Remember that sequences must have the same length to be imported as an Align: >>> sequences = [('name1', 'GAGCGTGCCGCGAGAGCGTTGCCAAGAGTGCCCG'), ... ('name2','GAGCGTGCCGCGAGAGCGTTGCCAAGATTGCGCGTGAT')] >>> container = egglib.Container.create(sequences) >>> print 'Container created, length:', len(container) >>> align = egglib.Align.create(sequences) >>> print 'Align created, length:', len(align) results in:

Container created, length: 2 Traceback (most recent call last):

... traceback omitted ... ValueError: Sequence doesn't match the alignment length

Exports sequence data

Default format for sequence data is also Pearson's FASTA format. FASTA strings are automatically generated using the print statement (the align object used here is the same as the last but one example):

>>> print align results in:

>name1 GAGCGTGCCGCGAGAGCGTTGCCAAGAGTGCCCGTGAT >name2 GAGCGTGCCGCGAGAGCGTTGCCAAGATTGCGCGTGAT >name3 GAGCGTGTCGCGAGAGCGTTGCCAAGAGTGCGCGTGAT >name4 GAGCGTGTCGCGCGCGCGTTGCCAACAGTGCCCGCGAT >name5 GAGCGTGTCGCGCGCGCGTTGCCAAGAGTGCCCGCGAT >name6 GAGCGTGTCGCGCGCGCGATGCCAAGAGTGCCCGCGAT
This doesn't allow to export group labels. To do so, use the str() method, which take a exportGroupLabels option (and is available on both Container and Align):

>>> string = align.str(exportGroupLabels=True) >>> print string results in: >name1@0 GAGCGTGCCGCGAGAGCGTTGCCAAGAGTGCCCGTGAT >name2@0 GAGCGTGCCGCGAGAGCGTTGCCAAGATTGCGCGTGAT >name3@0 GAGCGTGTCGCGAGAGCGTTGCCAAGAGTGCGCGTGAT >name4@1 GAGCGTGTCGCGCGCGCGTTGCCAACAGTGCCCGCGAT >name5@1 GAGCGTGTCGCGCGCGCGTTGCCAAGAGTGCCCGCGAT >name6@1 GAGCGTGTCGCGCGCGCGATGCCAAGAGTGCCCGCGAT To export data directly to a file, use the write() method (also available on both Container and Align). This method calls underlying C++ code and, on large datasets, is far more efficient than generating the full string and placing it to a file. The below example generates a file containing the string of the last example: >>> align.write ("data3.fas",True) In particular in the case of Align instances, output in alternative formats can be performed using nexus(), phylip() and phyml() methods. Conversely, a few alternative alignment formats are available for input in the tools module (see the section "Specific data formats").

Manipulation of sequence sets and alignments

Iteration

Iteration is frequently useful, in particular for sequence data. When you iterate over a Container or a Align instance, each iteration step yields a SequenceItem object. You should never need to instanciate a SequenceItem yourself, and using it should be as simple as accessing it three attributes name, sequence and group. This class is designed to allow access/modify the instance without necessarily copy the sequence data. In the current implementation, the sequence data will still be extracted if sequence is accessed, however. Note that SequenceItem instances keep a record of their parent Container or Align instance and that, preferably, they should not be stored outside the loop.

Assume you have a FASTA file data4.fas with an alternative way of coding population membership (underscore instead of @):

>name1_1 GAGCGTGCCGCGAGAGCGTTGCCAAGAGTGCCCGTGAT >name2_1 4.2. Manual GAGCGTGCCGCGAGAGCGTTGCCAAGATTGCGCGTGAT >name3_1 GAGCGTGTCGCGAGAGCGTTGCCAAGAGTGCGCGTGAT >name4_2 GAGCGTGTCGCGCGCGCGTTGCCAACAGTGCCCGCGAT >name5_2 GAGCGTGTCGCGCGCGCGTTGCCAAGAGTGCCCGCGAT >name6_2 GAGCGTGTCGCGCGCGCGATGCCAAGAGTGCCCGCGAT
Here is how to import these labels and modify the underlying instance:

>>> align = egglib.Align("data4.fas") >>> for i in align: ... root, label = i.name.split('_') ... label = int(label) ... i.name = root ... i.group = label >>> align.write ("data5.fas",True) This generates the following file:

>name1@1 GAGCGTGCCGCGAGAGCGTTGCCAAGAGTGCCCGTGAT >name2@1 GAGCGTGCCGCGAGAGCGTTGCCAAGATTGCGCGTGAT >name3@1 GAGCGTGTCGCGAGAGCGTTGCCAAGAGTGCGCGTGAT >name4@2 GAGCGTGTCGCGCGCGCGTTGCCAACAGTGCCCGCGAT >name5@2 GAGCGTGTCGCGCGCGCGTTGCCAAGAGTGCCCGCGAT >name6@2
The syntax for name, sequence, group in align is supported but has two flaws: 1) it will cause a performance overhead in case sequences are long and/or numerous and that they don't need to be accessed, and 2) this doesn't allow to modify the underlying instances, since name, sequence and group variables are strings and integer, and therefore not modifiable.

Note: When setting the sequence attribute of a SequenceItem, the new sequence must match the length of the alignment.

Sequence data edition

It is possible to access (read or modify) full data at a given position using subscript indexing ([]). The operator takes or returns a three-item tuple:

>>> print align[0]

>>> align[0] = 'first name', 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA', 8 >>> print align[0] >>> align[0] = 'first name', 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT' >>> print align [0] results in:

('name1', 'GAGCGTGCCGCGAGAGCGTTGCCAAGAGTGCCCGTGAT', 1) ('first name', 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA', 8) ('first name', 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT ', 0) Note that, if the group label is omitted, the value of 0 is assumed and replaces the previous value.

It is possible to use negative indices, as in align[-1]. The del statement is allowed for removing a full entry (name, sequence and group) as in del align [2]. To remove a sequence based on its name, use remove().

It is never allowed to access indices equal to or larger than the current length of the sequence set or alignment, including to add a new sequence (see below). The methods set() and get() allow to access a single character at a specific position. Note also that the overloaded methods name(), sequence() and group() allow to access/modify only one of these attribute directly at a given position. sequenceByName() allows to get a sequence string using the name and not the index.

It is possible to add a stretch a sequence to a sequence at a given position, on Container only, using the method appendSequence().

The method append() allows to add a new sequence at the end of the sequence set or alignment, and the method addSequences() allows to do it repeatively.

On a Align instance, the methods column() and removePosition() allow to (respectively) access and remove a full column.

Finally, the code below allow to extract the first three sequences of an alignment, and only the first 10 and the last 10 positions:

>>> part = align.slice(0, 3) >>> part = part.extract(range(10)+range(-10,-1)) >>> print part results in:

>name1 GAGCGTGCCGTGCCCGTGA >name2 GAGCGTGCCGTGCGCGTGA >name3 GAGCGTGTCGTGCGCGTGA

Manipulation of other data types (trees, annotated sequences, SSR)

Phylogenetic trees are implemented as the class Tree and GenBank flatfile data as the class GenBank. Both can also be instanciated from files and strings. Similarly to sequence sets and alignments, iteration over instances of these two classes yield ad hoc class instances allowing to manage, respectively, a node of the tree and a feature. Available methods on trees allow to edit the them (such as rooting) and explore them (such as identifying monophyletic groups), while methods on GenBank flatfile data allow to access and edit annotation information and extract data (such as coding sequence strings). The SSR class is designed to import, export and compute statistics on microsatellite data.

Analysis of polymorphism

Function to compute polymorphism are available as methods of the Align and SSR classes:

• polymorphism(): compute standard statistics, neutrality indices, and differentiation statistics (if applicable).

• polymorphismBPP(): compute statistics available through the Bio++ library (including statistics based on nonsynonymous/synonymous variation, if applicable). Bio++ must have been available when installing EggLib to allow using this function.

• stats(): compute microsatellite statistics.

• Fstats(): compute F-statistics (based on Weir and Cockerham formulas) for microsatellite.

Note that the first three methods return dictionaries and that, in the case of the first two methods, the content of these dictionaries will depend on both the value of options (some statistics can be skipped) and on the content of the instance (differentiation statistics are not computed if only one population is present). Please refer to the documentation of these methods for more details.

Manual

Coalescent simulations

The structure of the simul module (see its description) is designed as a compromise between flexibility (make available all features of the underlying C++ library), usability (not being too clumsy with a large number of options in a single function) and simplicity (reduce the number of required steps). The below example shows how to perform a given number of simulations of a moderately complex model (two populations that of which one is the result of a founding event from the first one, and a standard model of mutation with an infinite number of sites). Note that many more elaborate scenarios and mutation models are available.

>>> # sets parameters >>> sample1 = 40 # number of sample in pop 1 >>> sample2 = 40

number of sample in pop 2 >>> date1 = 0.20 # end of bottleneck >>> date2 = 0.25 # split date/start of bottleneck >>> strength = 0.1 # strength of the bottleneck >>> migr = 0.0 # migration rate (default is 0.1) >>> theta = 2.

theta for gene >>> nrepets = 1000 # number of simulations >>> >>> # sets the two parameter classes >>> paramSet = egglib.simul.CoalesceParamSet ([sample1, sample2], M=migr) >>> paramSet.changeSinglePopulationSize(date1, 1, strength) >>> paramSet.populationFusion(date2, 0, 1) >>> mutator = egglib.simul.CoalesceFiniteAlleleMutator(theta=2.) >>> >>> # performs simulations >>> aligns = egglib.simul.coalesce(paramSet, mutator, nrepets) >>> >>> # computes statistics >>> pol_data = map(egglib.Align.polymorphism, aligns) 'Fst'] for i in pol_data] >>> print 'average D:', sum(D)/nrepets >>> print 'average Fst:', sum(Fst)/nrepets Note that is is not necessary to formally end the bottleneck by paramSet.changeSinglePopulationSize(date0, 1, 1.) since this population is removed at the same date.

>>> D = [i['D'] for i in pol_data] >>> Fst = [i[
Here's the result of a particular run: average D: -0.557003767734 average Fst: 0.373726230187

Interactive usage and Approximate Bayesian Computation

In this section we describe the command line tools available through EggLib. A number of short programs have been written under the form of subclasses of BaseCommand in the module utils. The egglib script (which is installed at the same tyme as the EggLib Python module), lets you run automatically these programs. In this section we present some generalities on the general usage of the egglib script, and then provide an example of usage with a tutorial for ABC analyses using such commands. Note that all commands presented below are system commands (entered through a command terminal) and not Python code.

The egglib script

The general usage of the egglib script is:

$ egglib <command> <options>
where command is the name of any of the available programs. An alternative syntax is available as python -m egglib.utils <command> <options>

By typing

$ egglib only, a list of all commands will be displayed. By typing the command name only (without options), you will be provided with the manual page of this command. For example in the case of one of the simplest commands, infos:

$ egglib infos
Concerning options, they are variables among commands (the command's manual page always provide the list and documentation). It is important to note that, even if the syntax is standardized over different commands, they really are different programs with different syntaxes (see however the quiet and debug boolean flags below. Options can be of two types:

• Keyword arguments. They are keyword-identified values, entered in the syntax keyword=value where keyword is one of the available options and value the value you wish to enter. They are usually some restrictions on the format of the value and some options are flexible. In some cases (especially for values that contain characters that can be mistaken with command interpreter modifiers such a spaces and semicolons) it can be necessary to wrap the option in quotes. Some keyword arguments have a default value, and some have not. The latter must be entered to run the command. The input option is found in most commands, and frequently expects a file name as in input=file (allowing sometimes to enter multiple file names as in input=file1,file2,file3), but in a few cases it expects the name of a directory containing files to process.

• Boolean flags. They are entered as a single token and they activate a specified feature. They are never required and are always off by default (but note that some flags have a negative effect, such a no_check in command cprimers). Two flags are available automatically for all commands:

quiet: If this flag is activated, the command will run without console output. Note that the flag has not effect on commands that don't generate console output anyway, as well as commands whose only task is to generate console output (this is the case for the infos command, for example).

debug: By default, all errors are intercepted by the egglib script and summarized in a one-line error statement. The flag debug allows to output the full error traceback (this is useful for debugging and reporting errors).

Options (keyword arguments as well as boolean flags) can be entered in any order, but cannot be repeated. It is always required to enter at least one keyword argument (sometimes, several must be entered).

Here is the end of the example with the infos command. Here is how to get information on the data4.fas: The default error statement (the file data6.fas doesn't exist):

$ egglib infos input=data6.fas An error occurred: [ValueError] cannot open data6.fas

And how to get more information:

$ egglib infos input=data6.fas debug An error occurred: [ValueError] cannot open data6.fas Traceback (most recent call last):

File "/usr/bin/egglib", line 67, in <module> obj.run(* args, ** kwargs) File "/usr/lib64/python2.7/site-packages/egglib/utils.py", line 209, in run self._run(* fargs, ** kwargs) File "/usr/lib64/python2.7/site-packages/egglib/utils.py", line 3386, in _run container = data.Container(fname) File "/usr/lib64/python2. (Of course in that case the source of the error can be identified with the message alone. In that case, the exception has been thrown by the Align constructor when the file was not found.)

ABC sampling

In this example we will consider a simulated dataset of 10 independent alignments of 1000 nucleotides, simulated under a model containing 2 isolated populations of equal size and connected with a bidirectional migration rate (4Nm) of 0.5, with a mutation rate (4Nu) of 3.5 for gene (that is 0.0035 per site). 20 sequences were sampled in each population. We will see if it is possible to reject the standard neutral model (SNM) in favour of the (real) island model with, in that case, two demes (IM) and if it is possible to correctly estimate the parameters.

We will first sample random parameters in uniform priors under these two alternative models (SNM and IM) and perform one simulation for each sample (one simulation contains the 10 loci). The command to do so is: egglib abc_sample dir=fas params=SNM.txt data=SNM.out model=SNM prior="%U(0;0.01)" stats=SFS:4

The following arguments were entered:

• dir: The name of a directory containing fasta files to analyze.

• params: The name of the run parameter output file.

• data: The name of data output file.

• model: The label of the demographic model, here the Standard Neutral Model.

• prior: The definition of the prior. Here, the prior is defined as a string (starting with a % character to indicate that the argument is not a file name), and specifies a uniform distribution bound between 0 and 0.01 (the SNM model has only one parameter).

• stats: The set of summary statistics, here the Site Frequency Spectrum. This particular set of summary statistics expects an argument (the number of classes in the spectrum), which is passed after the : character.

The following parameters were left to the default values:

• ext (fas): This argument allows to set the extension of fasta files to process.

• post (10000): The number of point to sample for posterior estimation.

• step (100): The rate of refreshing of the progress information.

• seeds (automatic): Random number generator seeds.

20

Chapter 4. Detailed contents

• restart: This option should be used to resume an interrupted. It takes a run parameter file (the file named by the params option) and will attempt to finish the run. No other options should be entered along with restart.

ABC rejection-regression procedure

The abc_fit command performs the steps of the standard rejection-regression procedure described in Beaumont et al. 2002 Genetics using the underlying C++ class ABC: egglib abc_fit input=SNM.txt tolerance=0.1 transform=tan output=SNM.fit

Here we filled all arguments. The input file is SNM.txt which actually contains only the values of the run parameters. The actual data file is given as one of the parameters and must be found in the same directory. The tolerance gives the proportion of points to select in the region closest to the observed statistics. This defines the local region and, in practice, should be more stringent than in this example.

The fitting procedure can be applied to data from a unique model only.

The transformation of parameter values (here, tangential transformation) is useful in particular to prevent parameters from exceeding prior bounds. The output file will contain only parameter values, selected and corrected, and will be considered as a posterior distribution.

Comparing ABC models

The rejection-based method of Fagundes et al. The different sample files are passed in the input argument. The tolerance argument is the same as for the fitting procedure, but note that here it applies to the sum of points over all the passed models. The output file will contain the accepted points, along with their weigths. The model probabilities will be displayed in the standard output (the terminal).

Analyzing posterior distribution

A set of commands are designed to help analyzing posteriors, after they have been fitted.

• abc_bin discretizes posteriors into a regular grid over all parameter dimensions.

• abc_statsmarg provide statistics for individual parameters independently, from a fitted posterior.

• abc_statsdisc (for models with more than one parameter), analyzes a discretized posterior (and, in particular, identifies the maximum density point of the distribution).

• abc_plot1D and abc_plot2D display graphical representations parameters (respectively, a single parameter and the covariation of two parameters). They require that matplotlib is available and they use discretized posteriors.

• abc_psimuls, finally, allows to use posteriors to generate new simulations for testing neutrality of loci or assess goodness-of-fit of models.

eggcoal

eggcoal is a standalone program for generating samples under the coalescent framework. It is based on the egglibcpp C++ library. It can be used independently from the rest of the package. It is based on the same assumptions as the ms software and uses the same rescaling of time units (time is counted in 4N generations, where N is

eggcoal

the number of diploid individuals in the populations). It also generates compatible output files. Here is a list of features provided by eggcoal:

• Haploid (1 gene) and/or diploid (2 genes per individual) samples.

• Partial selfing (panmixy is of course also allowed).

• Recombination (but not gene conversion and no variation of recombination rate along the sequence yet).

• Variation of population size.

• Population structure and arbitrary migration matrices.

• Exponential population growth or decline.

• Change of all migration rates in the past.

• Change of the selfing rate in the past.

• Change of the exponential growth/decline rate in the past.

• Instant population change.

• Population fusion or split.

• Composite bottleneck model (with one-parameter intensity combining duration and population size reduction).

• Standard infinite site mutation model.

• Finite site mutation models (with variation of site mutability).

• Possibility to set site locations (having effect on the recombination rate between them).

• Fixed number of mutations.

• Mutation models: finite allele model, infinite allele model, stepwise mutation model, two-phase mutation model.

• Microsatellite are exported in a slightly different format to accomodate allele values larger than 9.

• Possibility to implement mutation bias (e.g. transition vs. transversion).

• Generate fasta alignments.

• Generate newick trees (also for simulations with recombination).

• Output simulation statistics (not diversity statistics; for those, use a program such as eggstats).

Once the program is installed, type eggcoal -h for a short manual page and eggcoal -u for a longer manual.

eggstats

eggstats is a simple program to rapidly analyze a fasta alignment and perform diversity analysis. It can detect population labels from the fasta file (in the form of @0, @1, @2 labels. @999 is reserved for outgroup sequences.

If different populations and/or outgroups are present, additional statistics will be computed.

Once the program is installed, type eggstats to get a short manual page.

C++ library

The egglib-cpp package contains a fully object-oriented C++ library providing efficient implementation of task related with sequence data storage, simulation and polymorphism analysis.

Documentation

The documentation is available as a separate doxygen-generated reference manual.

Writing C++ programs using egglib-cpp

Here are the recommendations for using egglib-cpp in C++ applications:

• egglib-cpp headers will be available in a egglib-cpp/ directory so it is necessary to include them as in the following C++ code:

#include <egglib-cpp/Align.hpp>

• Link your program against egglib-cpp (as in -legglib-cpp). The library is static.

• All egglib-cpp objects are defined in an egglib namespace.

The following example shows how to perform coalescent simulations to obtain and display the average and standard deviation of Tajima's D over a pre-defined number of replicates and with a fixed number of segregating sites

Python module

egglib-py is the Python version of eggLib. It contains a wrapper of the eggLib-cpp library generated using SWIG as well as additional functionalies and a number of pre-implemented applications that can be used directly through the executable script egglib.

The different parts of egglib-py are described in the following sections.

Low-level binding of C++ library

Besides sequence storage classes Container and Align, the wrapped C++ library available through the egglib egglib-py module contains several classes that might be of use for Python scripts. Still, they are a priori not intended to be used directly and this page only provides automated documentation. The user is prompted to refer to the doxygen documentation of the C++ library for a more comprehensive documentation of these tools. Container supports call str() and expressions such as print container. In both cases, the result of the str() method (with default arguments) is returned. The result is a fasta-formatted string. Consider using the str() method to customize and write() to export the instance to a file on the disk.

Data

F(self) → double Fstar(self) → double H(self) → double He(self) → double He2(self) → double K(self) → unsigned int MK(self) → vectorui NI(self) → double NSsites(self) → double PiNS(self) → double PiS(self) → double S(self) → unsigned int SNS(self) → unsigned int SS(self) → unsigned int Sext(self) → unsigned int Sinf(self) → unsigned int Ssin(self) → unsigned int Ssites(self) → double T83(self) → double Ti(self) → unsigned int TiTv(self) → double Tv(self) → unsigned int eta(self) → unsigned int hasOutgroup(self) → bool load(self, Align align, unsigned int dataType = 1) load(self, Align align) ncodon1mut(self) → unsigned int nstop(self) → unsigned int nsyn(self) → unsigned int rhoH(self) → double tW(self) → double tWNS(self) → double tWS(self) →
Container instances have a len() (the result of ns() is returned) supports expressions such as name in container which return True if name is the name of one of the sequences contained in the instance. Changed in version 2.0.1: The [] operators accept only indices. sequenceByName() fulfils the dictionary-like behaviour. append(), extend() and __iadd__() (operator +=) are removed.

Constructor arguments

Parameters

• fname -the path of a fasta-formatted file or None.

• string -a string containing fasta sequences or None.

• groups -whether to import group labels. The labels should appear as strings @0, @1, etc. in the input file.

If fname and string are None, the value of groups is ignored and an empty instance is built.

appendSequence(pos, sequence)

Appends the sequence string to the end of the sequence at position pos of the instance.

clear()

Deletes all content of the current instance.

composition()

Gets the composition in characters of each sequence. Returns a dictionary with the sequence names as key. Each entry is itself a dictionary giving the absolute frequency of each character found in the corresponding sequences.

contains_duplicates()

True if the instance contains at least one duplicate.

classmethod create(obj) Creates an instance from the object obj. The created instance will match the type from which the method is called (Container.create(obj) will return a Container, and Align.create(obj) will return a Align, and the same goes if the method is called on an object). In the case of Align, the restriction of coherent sequence lengths applies (there is not automatic correction). obj is a priori a Container or a Align, but the method supports any iterable returning (name,sequence,group) or (name,sequence) tuples (in the latter case, groups will be initialized to 0. For example, the following is valid:

import egglib data = [] data.append(("sequence1", "AAAAAAAAA", 0)) data.append(("sequence2", "GGGG", 2)) data.append(("sequence3", "AAAAAAAAAAAAAA")) container = egglib. Container.create(data) New in version 2.0.1.

duplicates()

Returns the list of sequence names found more than once in the instance.

encode(nbits=10)

Renames all sequences using a random mapping of names to unique keys of lenght nbits. nbits cannot be lower than 4 (which should allow renaming several millions of sequence) or larger than 63 (which is the number of different characters available). Returns a dictionary mapping all the generated keys to the actual sequence names. The keys are case-dependent and guaranteed not to start with a number.

The returned mapping can be used to restored the original names using rename() New in version 2.0.1.

equalize(ch='?')

Appends character ch to the end of sequences such as all sequences have the same length. The length of all sequences will be the length of the longest sequence before call. This value is returned by the method.

find(string, strict=True)

Returns the index of the first sequence with the name specified by string.

groups()

Gets the group structure. Returns a dictionary with the group labels (as int) as keys. Values are the lists of sequence names corresponding to each group.

isEqual()

Returns True if all sequences have the same length, False otherwise.

ls(pos)

Returns the length of the sequence stringat position pos. New in version 2.0.1.

matches(format)

Returns the list of indices matching the passed format. The format is passed as-is the the re module using the function search() (which doesn't necessarily match the beginning of the string). If no sequence name matches the passed format an empty list is returned.

name(pos, name=None)

Sets/gets the name of the sequence at index pos. If name is None, returns the current name. Otherwise changes the name and returns nothing.

names()

Returns the list of sequence names no_duplicates() Discards all duplicates: for all sequences with the same name, the one with the largest index is removed.

ns()

Returns the number of sequences contained in the instance.

remove(name)

Removes the first sequence having name name. Holds sequences and ensures that they have the same length. This class is a C++-implemented class providing performant storage and access utilies, wrapped within at Python layer that interfaces several operations. In particular it allows direct instanciation from a fasta-formatted file or from a string stored in a Python str instance (see constructor's signature below).

Align also allow subscript indexing (as in align[0]) and iteration (as in for i in align). Returned items are SequenceItem instances that can be either converted in (name, sequence, group) tuples or modified to modify the underlying instance. For example, the following code resets all group indices of the Align instance align:

>>> for i in align: ... i.group = 0

Align supports calls to both str() (and, as a result, expressions such as print align). In both cases, the result of the str() method (with default arguments) is returned. The result is a fasta-formatted string. Consider using the str() method to customize and write() to export the instance to a file on the disk.

Align instances have a len() (the result of ns() is returned) supports expressions such as name in align which return True if name is the name of one of the sequences contained in the instance. Changed in version 2.0.1: The [] operators accept only indices. sequenceByName() fulfils the dictionary-like behaviour. append(), extend() and __iadd__() (operator +=) are removed.

Constructor arguments

Parameters

• fname -the path of a fasta-formatted file or None.

• string -a string containing fasta sequences or None.

• groups -whether to import group labels. The labels should appear as strings @0, @1, etc. in the input file.

If fname and string are None, the value of groups is ignored and an empty instance is built. If both fname and string are specified, an error is thrown. Changed in version 2.0.1: Doesn't accept simultaneous values for fname and string.

Methods

Rmin(minimumExploitableData=1.0, ignoreFrequency=0, validCharacters='ACGT', missingData='MRWSYKBDHVN?-')

Computes the minimal number of recombination events

The computation is performed as described in Hudson, RR and NL Kaplan. 1985. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111: 147-164. The returned parameter is the minimal number of recombination events, given by the number of non-overlapping pairs of segregating sites violating the rule of the four gamete. Only sites with two alleles are considered. Note that homoplasy (multiple mutations) mimicks recombination. The result of this function is not stored in this instance, and re-computed at each call.

addSequences(seqs)

Appends repetitively (name, sequence, group) tuples to the end of the object (passed the last sequence. seqs must be an iterable returning (name, sequence, group) tuples (such as a Container or Align instance). (the group item is optional and tuples can be of length 2.) Returns the number of sequences after the operation. New in version 2.0.1.

append(name, sequence, group=0)

Adds a sequence to the object. name is the sequence name, sequence the sequence string and group is the population label. Note that the length of sequence must match the length of the alignment, if self is of type Align. Returns the number of sequences after the operation.

appendSequence(pos, sequence)

Appends the sequence string sequence to the sequence at position pos.

binSwitch(pos)

Takes all characters at position pos; replaces 0 by 1 and all the way around, raises an exception if another character is found. This method doesn't have a return value.

character(s, p)

Fast accessor to a character. Returns character at position p of sequence s. This accessor is faster than get() because it doesn't perform out-of-bound check.

clear()

Deletes all content of the current instance.

column(pos)

Extracts the alignment column at position pos as a list of characters.

composition()

Gets the composition in characters of each sequence. Returns a dictionary with the sequence names as key. Each entry is itself a dictionary giving the absolute frequency of each character found in the corresponding sequences.

consensus()

Generates a consensus of the object, assuming nucleotide sequences. The consensus is generated based on standard ambiguity (IUPAC) codes. Acharacter is inserted if any sequence has a -. A ? character is inserted if any sequence has a ?. Returns the consensus string.

contains_duplicates()

True if the instance contains at least one duplicate.

classmethod create(obj) Creates an instance from the object obj. The created instance will match the type from which the method is called (Container.create(obj) will return a Container, and Align.create(obj) will return a Align, and the same goes if the method is called on an object). In the case of Align, the restriction of coherent sequence lengths applies (there is not automatic correction). obj is a priori a Container or a Align, but the method supports any iterable returning (name,sequence,group) or (name,sequence) tuples (in the latter case, groups will be initialized to 0. For example, the following is valid:

import egglib data = [] data
.append(("sequence1", "AAAAAAAAA", 0)) data.append(("sequence2", "GGGG", 2)) data.append(("sequence3", "AAAAAAAAAAAAAA")) container = egglib.Container.create(data) New in version 2.0.1.

dataMatrix(mapping='ACGT', others=999)

Returns a copy of the current instance as a DataMatrix Mapping must be a string of type 'ACGT' indicating valid characters that will be encoded by their position in the string (ie 0,1,2,3). others gives the index to affect to characters not found in the mapping string.

duplicates()

Returns the list of sequence names found more than once in the instance.

encode(nbits=10)

Renames all sequences using a random mapping of names to unique keys of lenght nbits. nbits cannot be lower than 4 (which should allow renaming several millions of sequence) or larger than 63 (which is the number of different characters available). Returns a dictionary mapping all the generated keys to the actual sequence names. The keys are case-dependent and guaranteed not to start with a number.

The returned mapping can be used to restored the original names using rename() New in version 2.0.1.

extract(*args)

Extract given positions (or columns) of the alignment and returns a new alignment. There are two ways of using this method. The first is by passing a range specification as in align.extract (100,200). The bounds will be passed as it to the slice operator on all sequences. The above example will extract columns 100 to 199. As a result, out of bound values will be silently supported. The second use of the method is as in align.extract ([80, 143, 189, 842, 967]). The single argument must be an iterable containing positions indices, that might contain repetitions and needs not to be sorted. The positions will be extracted in the specified order. New in version 2.0.1.

filter(ratio, valid='ACGT')

Removes the sequences with too few valid sites. ratio is the limit threshold (relative to the sequence with the largest number of valid characters). The user can specify the list of valid states through the argument valid. The comparison is case-independent. This method modifies the current instance and returns nothing.

find(string, strict=True)

Returns the index of the first sequence with the name specified by string. If strict is False, then the comparison ignores names that are longest than string. In other words, the name Alphacaga_tada1 will be recognized if find() is called with string Alphacaga and strict = False. If the name is not found, returns None. Changed in version 2.1.0: Returns None instead of -1 if the name is not found.

fix_gap_ends()

Replaces all leading or trailing alignment gaps (-) by missing data symbols (?). Internal alignment gaps (those having at least one character other thanand ? at each side) are left unchanged.

get(s, p)

Gets the character value of the sequence s at position p.

group(pos, group=None)

Sets/gets the group label of the sequence at index pos. If group is None, returns the current group label. Otherwise changes the group label and returns nothing. If not None, group must be a positive integer.

groupByName(name, strict=True)

Returns the group label corresponding to the first match of name. If the name is not found, raises a KeyError. If strict is True, seeks an exact match. If False, compares only until the end of the requested name (for example: 'ATCFF' will match 'ATCFF_01' if strict is false). New in version 2.0.1.

groups()

Gets the group structure. Returns a dictionary with the group labels (as int) as keys. Values are the lists of sequence names corresponding to each group.

ls()

Returns the length of the alignment.

matches(format)

Returns the list of indices matching the passed format. The format is passed as-is the the re module using the function search() (which doesn't necessarily match the beginning of the string). If no sequence name matches the passed format an empty list is returned.

matrixLD(minimumExploitableData=1.0, ignoreFrequency=0, validCharacters='ACGT', missingData='MRWSYKBDHVN?-') Generates the matrix of linkage disequilibrium between all pairs of polymorphic sites. The options have the same meaning as for polymorphism().

Returns a dictionary containing the following keys:

• minimumExploitableData (value of input parameter),

• ignoreFrequency (value of input parameter),

• n (number of pairs of sequences),

• d (alignment distance between polymorphic sites),

• D (D linkage disequilibrium statistic),

• Dp (D' linkage disequilibrium statistic),

• r (Pearson's correlation coefficient),

• r2 (square Pearson's correlation coefficient). D, Dp, r and r2 are four possible measures of linkage disequilibrium. minimumExploitableData, ignoreFrequency and n are provided as integer values. d, D, Dp, r and r2 are provided as nested dictionaries containing the matrix of values of the corresponding statistic between all pairs of polymorphic sites. The individual values can be accessed as this (example given for D): matrixLD() ['D'][i][j] where i is the alignment position of the first site and j is the alignment position of the second site such as i < j. The polymorphic sites as the same as those returned by polymorphism()['siteIndices'] (called on the same object with the same configuration options).

name(pos, name=None)

Sets/gets the name of the sequence at index pos. If name is None, returns the current name. Otherwise changes the name and returns nothing.

names()

Returns the list of sequence names

nexus(prot=False)

Generates a simple nexus-formatted string. If prot is True, adds datatype=protein in the file, allowing it to be imported as proteins (but doesn't perform further checking). Returns a nexusformatted string. Note: any spaces and tabs in sequence names are replaced by underscores. This nexus implementation is minimal but will normally suffice to export sequences to programs expecting nexus.

no_duplicates()

Discards all duplicates: for all sequences with the same name, the one with the largest index is removed.

ns()

Returns the number of sequences contained in the instance.

phylip(format='I')

Returns a phyml-formatted string representing the content of the instance. The phyml format is suitable as input data for PhyML and PAML software. Raises a ValueError is any name of the instance contains at least one character of the following list: "()[]{},;" as well as spaces, tabs, newlines and linefeeds. Group labels are never exported. Sequence names cannot be longer than 10 characters. A ValueError will be raised if a longer name is met. format must be 'I' or 'S' (case-independent), indicating whether the data should be formatted in the sequential (S) or interleaved (I) format (see PHYLIP's documentation for definitions).

phyml()

Returns a phyml-formatted string representing the content of the instance. The phyml format is suitable as input data for PhyML and PAML software. Raises a ValueError is any name of the instance contains at least one character of the following list: "()[]{},;" as well as spaces, tabs, newlines and linefeeds. Group information is never exported.

polymorphism(allowMultipleMutations=False, minimumExploitableData=1.0, ignoreFre-quency=0, validCharacters='ACGT', missingData='MRWSYKBDHVN?-', useZeroAsAncestral=False, skipDifferentiationStats=False, skipOutgroup-BasedStats=False, skipAllHaplotypeStats=False, skipHaplotypeDifferentiation-Stats=False) Computes nucleotide and haplotype diversity statistics.

Arguments:

•minimumExploitableData sites where the non-missing data (as defined by mapping strings, see below) are at a frequency larger than this value will be removed from the analysis. Use 1. to take only 'complete' sites into account and 0. to use all sites (the option is not considered for haplotype-based statistics).

•allowMultipleMutations: if False, only sites with 1 or 2 alleles are considered, and sites with more alleles are considered as missing data. The sum of the frequencies of all alleles not matching the outgroup will treated as the derived allele frequency (for orientable sites).

•ignoreFrequency: removes sites that are polymorph because of an allele at absolute frequency smaller than or equal to this value. If ignoreFrequency=0, no sites are removed, if ignoreFre-quency=1, singleton sites are ignored. Such sites are completely removed from the analysis (not counted in lseff). Note that if more than one mutation is allowed, the site is removed only if all the alleles but one are smaller than or equal to this value. For example, an alignment column AAAAAAGAAT is ignored with an ignoreFrequency of 1, but AAAAAAGGAT is conserved (including the third allele T which is a singleton).

•validCharacters: a string giving the list of characters that should be considered as valid data.

•missingData: characters indicating missing data, that is tolerated but ignored. All characters that are neither in validCharacters nor missingData, but found in the data, will cause an error.

•skipDifferentiationStats, skipOutgroupBasedStats, skipAllHaplotypeStats, skipHaplotypeDiffer-entiationStats allow the user to skip part of the analysis (in order to save time).

The method returns a dictionary containing the diversity statistics. Some of the statistics will be computed only in presence of more than one group in the alignment, or in the presence of an outgroup, or depending on the value of other statistics and or if skip flags were activated (otherwise, they will have a None value).

These statistics are always computed:

•nseff: Average number of analyzed sequences per analyzed site. It equals to ns() minus the number of outgroup sequences unless minimumExploitableData is set to a value < 1. In the latter case it can be a fraction.

•lseff: Number of analyzed sites.

•npop: Number of populations detected in the alignment.

•S: Number of polymorphic sites.

•eta: Minimal number of mutations (ignores allowMultipleMutations).

•sites: List of SitePolymorphism instances (one for each polymorphic site).

•siteIndices: List of alignment position of each polymorphic site.

•singletons: List of positions of singletons.

These statistics are computed only is lseff is > 0:

•thetaW: Theta estimator of Watterson (Theor. Popul. Biol. 7:256-276, 1975).

•Pi: Nucleotide diversity. This statistic is computed only is S is > 0:

•D: Tajima statistic (Genetics 123:585-595, 1989) These statistics are computed only if skipAllHaplotypeStats is False:

•He: Haplotypic diversity.

•K: Number of distinct haplotypes.

•alleles: A list giving the haplotype index for each sequence of the alignment, or -1 when not applicable, such as for the outgroup. This statistic is computed only if skipAllHaplotypeStats and skipHaplotypeDifferentiationStats are False, npop is > 1:

•Snn: Nearest neighbor statistics (Hudson Genetics 155:2011-2014, 2000).

These statistics are computed only if skipAllHaplotypeStats and skipHaplotypeDifferentiationStats are False, npop is > 1 and S is > 0:

•Fst: Population differentiation, based on nucleotides (Hudson et al. Genetics 132:583-589, 1992).

•Gst: Population differentiation, based on haplotypes (Nei version, Hudson et al. Mol. Biol. Evol. 9:138-151, 1992).

•Hst: Population differentiation, based on haplotypes (Hudson et al. Mol. Biol. Evol. 9:138-151, 1992).

•Kst: Population differentiation, based on nucleotides (Hudson et al. Mol. Biol. Evol. 9:138-151, 1992).

These statistics are computed only if skipDifferentiationStats is False and npop is > 1:

•pair_CommonAlleles: For each pair of populations, number of sites with at least one allele shared by the two populations. Alleles that are fixed in one or both populations are taken into account, provided that they are polymorphic over the whole sample.

•pair_FixedDifferences: For each pair of populations, number of sites with a fixed differences between the two populations.

•pair_SharedAlleles: For each pair of populations, number of sites with at least one allee shared by the two populations. Only alleles that are segregating in both populations are taken into account.

•pop_Polymorphisms: For each population, number of polymorphic sites in this population.

•pop_SpecificAlleles: For each population, number of sites with at least one allele specific to this population.

•pop_SpecificDerivedAlleles: For each population, number sites with at least one derived allele specific to this population.

•CommonAlleles: Number of sites with at least one allele shared among at least two populations.

•FixedDifferences: Number of sites with at least one difference fixed between two populations.

•SharedAlleles: Number of sites with at least one allele shared by at least two populations.

•SpecificAlleles: Number of sites with at least one allele specific to one population.

•SpecificDerivedAlleles: Number of sites with at least one derived allele specific to one population.

These statistics are computed only if skipDifferentiationStats is False, npop is > 1 and lseff > 0:

•average_Pi: Average of nucleotide diversity per population.

•pop_Pi: Vector of nucleotide diversity per population. This statistic is computed only if skipDifferentiationStats is False and npop is 3:

•triConfigurations: A list of 13 numbers counting the number of sites falling in the possible configurations in three populations. Only diallelic loci are considered and rooting is not considered. The possible configurations are explained using an example below. The order is as in the returned list (remember that indices start from 0 in Python). Each line gives the allele(s) present in each population: A means one allele, G the other allele and A/G both alleles (polymorphism within this population). A and G can be substituted (A/G, A, A is the same as A/G, G, G).

-0: A/G, A, A -1: A/G, A, G -2: A, A/G, A -3: A, A/G, G -4: A, A, A/G -5: A, G, A/G -6: A/G, A/G, A -7: A/G, A, A/G -8: A, A/G, A/G -9: A/G, A/G, A/G -10: A G G -11: A G A -12: A A G
These statistic are computed only if skipOutgroupBasedStats is False:

•lseffo: Number of oriented sites that were analyzed.

•So: Number of polymorphic sites among oriented sites.

These statistics are computed only if skipOutgroupBasedStats is False and So is > 0:

•thetaH: Theta estimator of Fay and Wu (Genetics 155:1405-1413, 2000).

•thetaL: Theta estimator of Zeng et al. (Genetics 174:1431-1439, 2006).

•H: Fay and Wu statistic (Genetics 155:1405(Genetics 155: -1413(Genetics 155: , 2000)) •Z: Fay and Wu statistic standardized by Zeng et al. Genetics 174:1431-1439, 2006).

•E: Zeng et al. statistic Genetics 174:1431-1439, 2006).

The returned dictionary also contains a nest dictionary options which feedbacks the values used at function call. Changed in version 2.0.2: Polymorphisms is renamed pop_Polymorphisms. The following statistics are added: pair_CommonAlleles, pair_FixedDifferences, pair_SharedAlleles, pop_SpecificAlleles, pop_SpecificDerivedAlleles.

The following statistic are now computed only if So > 0: thetaH, thetaL, E, H and Z. The following statistics are now computed only if lseff > 0: thetaW, Pi, pop_Pi and average_Pi.

The following statistic are computed only if S > 0: D, Fst, Gst, Hst and Kst. npop is always returned. For consistency, outgroup-based statistics are computed even if lseffo is 0 (except those who require that So > 0).Changed in version 2.1.0: The statistics not computed are now exported and set to None.

polymorphismBPP(dataType=1)

Computes diversity statistics using tools provided through the Bio++ libraries. Note that attempting to call this method from an EggLib module compile without Bio++ support will result in a RuntimeError.

Arguments:

•dataType: 1 for DNA, 2 for RNA, 3 for protein sequences, 4 for standard codons, 5 for vertebrate mitochondrial codons, 6 for invertebrate mitochondrial codons and 7 for echinoderm mitochondrial codons.

The method returns a dictionary containing the diversity statistics. Some keys will be computed only in the presence of an outgroup, or if sequences were specified as coding or depending on the value of other statistics (otherwise, they will be None).

The following statistics are always computed:

•S: Number of polymorphic sites.

•Sinf: Number of parsimony informative sites.

•Ssin: Number of singleton sites.

•eta: Minimal number of mutations.

•thetaW: Theta estimator (Watterson Theor. Popul. Biol. 7:256-276, 1975).

•T83: Theta estimator (Tajima Genetics 105:437-460, 1983)

•He: Heterozygosity.

•Ti: Number of transitions.

•Tv: Number of transversions.

•K: Number of haplotypes.

•H: Haplotypic diversity.

•rhoH: Hudson's estimator of rho (Genet. Res. 50:245-250, 1987).

The following statistic is computed only if Tv > 0:

•TiTv: Transition/transversion ratio.

The following statistic is computed only if S > 0:

•D: Tajima statistic (Genetics 123:585-595, 1989).

The following statistics are computed only if eta > 0:

•Deta: Tajima's D computed with eta instead of S.

•Dflstar: Fu and Li's D* (without outgroup; Genetics 133:693-709).

•Fstar: Fu and Li's F* (without ougroup; Genetics 133:693-709).

The following statistic is computed only if an outgroup is found:

•Sext: Mutations on external branches.

The following statistics are computed only if an outgroup is found and eta > 0:

•Dfl: Fu and Li's D (Genetics 133:693-709).

•F: Fu and Li's F (Genetics 133:693-709).

The following statistics are computed only if sequences are coding dataType = 4-7:

•ncodon1mut: Number of codon sites with exactly one mutation.

•NSsites: Average number of non-synonymous sites.

•nstop: Number of codon sites with a stop codon.

•nsyn: Number of codon sites with a synonymous change.

•PiNS: Nucleotide diversity computed on non-synonymous sites.

•PiS: Nucleotide diversity computed on synonymous sites.

•SNS: Number of non-synonymous polymorphic sites.

•SS: Number of synonymous polymorphic sites.

•Ssites: Number of synonymous sites.

•tWNS: Watterson's theta computed on non-synonymous sites.

•tWS: Watterson's theta computed on synonymous sites.

The following statistics are computed only if sequences are coding dataType = 4-7 and an outgroup is found:

•MK: McDonald-Kreitman test table (Nature 351:652-654, 1991).

•NI: Neutrality index (Rand and Kann Mol. Biol. Evol. 13:735-748).

The returned dictionary also contains a nest dictionary options which feedbacks the values used at function call. Changed in version 2.0.2: The following statistics are now computed only if S > 0: D, Deta, Dflstar, Fstar, Dfl, F.Changed in version 2.1.0: The statistics not computed are now exported and set to None.

remove(name)

Removes the first sequence having name name. If no sequence has this name, a KeyError is raised.

A workaround is easy to implement:

>>> index = align.find(name) >>> if index!=None: >>> del align[index]
Changed in version 2.0.1: New meaning.

removePosition(pos)

Removes character at position pos of all sequences (effectively removing a column of the alignment.

Returns the new length of the alignment.

rename(mapping, liberal=False)

Rename all sequences of the instance using the passed mapping.

Fstats(locus=None)

Computes F-statistics from the currently loaded data, using Weir and Cockheram (1984) method. If locus is an integer, the statistics for that locus are returned. If locus is None, the multi-locus version of the statistics are returned. This method returns a (Fis, Fst, Fit) tuple. If one or several values cannot be computed (due to lack of one or more components of the variance), the corresponding value is replaced by None. This method requires that all genotypes have two alleles. In case of missing data, complete genotypes (i.e. data for one individual at a given locus) are removed.

clear()

Removes all data from the instance.

load(dataMatrix, sampleConfiguration=None)

Imports the data present in the DataMatrix instance passed as dataMatrix. Note that the SSR instance is supposed to take ownership of the DataMatrix instance that should not be modified outside the class and that will be clear if the SSR is cleared. The appropriate behaviour is to delete any outside reference to dataMatrix after passing it to this method. The argument sampleConfiguration is an iterable indicating the number of samples per population. There must be one item per population. If items are integers, they give the number of diploid samples (one random chromosome per individual), otherwise they must be a sequence of two integers giving the number of diploid and haploid samples (in this order). The total sum of given integers must match the number of genotypes of dataMatrix.

numberOfGenotypes()

Returns the number of genotypes of the data currently loaded.

numberOfLoci()

Returns the number of loci of the data currently loaded.

parse(string, diploid=True, genotypeSeparator=None, alleleSeparator='/', header=True, miss-ing='999') Imports data from the string string. The data should follow the following format: one line containing locus names (if header is True) and then one line per individual. The header needs not to be aligned with the data matrix. It is only required that the number of items on the first line matches the number of genotypes given for each individual. Each line is made of a population name (if groups is True), the individual name followed by the appropriate number of genotype values. A given genotype is coded by two (if diploids is True) or one (otherwise) integer. If the latter case, the two values must be separated by alleleSeparator. genotypeSeparator gives the separator between values for one individual. The default value of genotypeSeparator matches all white spaces (including space and tabulation). The same separator is used between population and individual labels. The user must specify another value for genotypeSeparator to be able to import data with that have spaces in names. Unless using the default separator, ensure that the separator is not duplicated in the string (e.g. two spaces in a row between header items): this is supported only for the default (refer to the standard library str.split() method for more details. Missing data are coded by the string or the integer given by missing.

Example (to be read with default argument values): locus1 locus2 locus3 pop1 ind1 001/001 001/002 001/003 pop1 ind2 002/002 001/001 001/001 pop1 ind3 002/002 001/001 002/002 pop1 ind4 001/002 001/002 003/002 pop2 ind5 001/002 003/003 000/000 pop2 ind6 003/004 004/004 002/003

stats()

Computes diversity statistics from the currently loaded data. Returns a dictionary containing the following values:

•k, the number of alleles.

•V, the variance of allele size.

•He, the expected heterozygosity.

•thetaI, theta assuming IAM.

•thetaHe, theta from He (assuming SMM).

•thetaV, theta from V (assuming SMM).

Each entry is a list of the corresponding statistics computed for the corresponding locus.

str()

Returns a string representation of the object. The string can be parsed by the method parse() using default options.

TIGR class

class egglib.TIGR(fname=None, string=None) Bases: object Automatic wrapper around the TIGR XML format for storing genome annotation data.

Object initialization: TIGR(fname=None, string=None)

fname must be the name of a file containing TIGR-formatted XML data. string should be directly a string containing TIGR-formatted XML data. It is not allowed to specify both fname and string to non-None values, but at least one of the two arguments must be specified (it is currently impossible to create an empty instance).

extract(start, stop)

Returns a GenBank instance containing the sequence of the range [start, stop] and the features that are completely included in that range. Note that positions must be expressed in the TIGR system own coordinate system.

GenBank

add_feature(feature)

Pushes a feature to the instance. The argument feature must be a well-formed GenBankFeature instance.

extract(from_pos, to_pos)

Returns a new GenBank instance representing a subset of the current instance, from position from_pos to to_pos. All features that are completely included in the specified range are exported.

get_sequence()

Access to the sequence string.

number_of_features()

Gives the number of features contained in the instance.

rc()

Reverse-complement the instance (in place). All features positions and the sequence will be reverted and applied to the complementary strand. The features will be sorted in increasing start position (after reverting). This method should be applied only on genuine nucleotide sequences.

set_sequence(string)

Sets the sequence string. Note that changing the record's string might obsolete the features.

write(fname)

Create a file named fname and writes the formatted record in.

write_stream(stream)

Writes the content of the instance as a Genbank-formatted string within the passed file (or filecompatible) stream.

class egglib.GenBankFeature(parent) Bases: object

GenBankFeature contains a feature associated to a GenBank instance. Instances of this class should not be instantiated or used separatedly from a GenBank instance. The constructor creates an empty instance (athough a GenBank instance must be passed as parent) and either set() or parse() must be used subsequently.

add_qualifier(key, value)

Adds a qualifier to the instance's qualifiers.

copy(genbank)

Returns a copy of the current instance, connected to the GenBank instance genbank.

get_sequence()

Returns the string corresponding to this feature. If the positions pass beyond the end of the parent' sequence, a RuntimeError (instead of IndexError) is raised.

parse(string)

Updates feature information from information read in a GenBank-formatted string.

qualifiers()

Returns a dictionary with all qualifier values. This method cannot be used to change data within the instance. Changed in version 2.1.0: Meaning changed.

rc(length=None)

Reverse-complement the feature: apply it to the complement strand and reverse positions counting from the end. The length argument specifies the length of the complete sequence and is usually not required.

set(type, location, **qualifiers) Updates feature information: type is a string identifying the feature type (such as gene, CDS, misc_feature, etc.); location must be a GenBankFeatureLocation instance giving the feature's location. Other qualifiers must be passed as keyword arguments. Note that type can be any string and that it is not allowed to use "type" as a qualifier keyword.

shift(shift)

Shift all positions according to the (positive of negative) argument.

start()

Returns the first position of the (first) segment, such as start() is always smaller than stop().

stop()

Returns the first position of the (first) segment, such as start() is always smaller than stop().

type()

Returns the type string of the instance.

class egglib.GenBankFeatureLocation(string=None) Bases: object

Holds the location of a GenBank feature. Supports various forms of location as defined in the GenBank format specification. The constructor contains a parser working from a GenBankformatted string.

By default, features are on the forward strand and segmented features are ranges (not orders). GenBankFeatureLocation supports iteration and allows to iterate over (first,last) segments regardless of their types (for a single-base segment a position position, the tuple (position,position) is returned; similar 2-item tuples are returned for other types of segment as well). GenBankFeatureLocation also supports access (but not assignation nor deletion) thought the [] operator. A (first,last) tuple is returned as for the iterator. Finally, the instance can be GenBank-formatted using str(). The length of the instance is the number of segments.

addBaseChoice(first, last, left_partial=False, right_partial=False)

Adds a segment corresponding to a single base chosen within a base range. If no segments were previously enter, set the unique segment location. first and last must be integers. The feature will be set between first and last positions, including both limits. If the feature is intended to be placed on the complement strand between positions, say, 1127 and 1482, one must use addBaseChoice(1127,1482) in combination with setComplement(). All entered positions must be larger than any positions entered previously and last must be strictly larger than first. left_partial and/or right_partial must be set to True if, respectively, the real start of the segment lies 5' of first and/or the real end of the segment lies beyond last (relatively to the forward strand and consistently with the numbering system).

addBaseRange(first, last, left_partial=False, right_partial=False) Adds a base range the feature. If no segments were previously enter, set the unique segment location. first and last must be integers. The feature will be set between first and last positions, including both limits. If the feature is intended to be placed on the complement strand between positions, say, 1127 and 1482, one must use addBaseRange(1127,1482) in combination with setComplement(). All entered positions must be larger than any positions entered previously and last must be larger than first (but can be equal). left_partial and/or right_partial must be set to True if, respectively, the real start of the segment lies 5' of first and/or the real end of the segment lies beyond last (relatively to the forward strand and consistently with the numbering system).

addBetweenBase(position)

Adds a segment lying between two consecutive bases. If no segments were entered previously, set the unique segment location. position must be an integer. The feature will be set between position and position + 1. If the feature is intended to be placed on the complement strand between positions, say, 1127 and 1128, one must use addBetweenBase(1127) in combination with setComplement(). All entered positions must be larger than any positions entered previously.

addSingleBase(position)

Adds a single-base segment to the feature. If no segments were entered previously, set the unique segment location. position must be an integer. All entered positions must be larger than any positions entered previously.

asOrder()

Defines the feature as an order instead of a range.

asRange()

Defines the features as a range, with is the default.

copy()

Returns a deep copy of the current instance.

isComplement()

True if the feature is on the complement strand.

isRange()

True if the feature is a range (the default), False if it is an order.

rc(length)

Reverse the feature positions: positions are modified to be counted from the end. The length of the complete sequence must be passed.

setComplement()

Places the feature on the complement strand.

setNotComplement()

Places the feature on the forward (not complement) strand, which is the default.

shift(shift)

Shift all positions according to the (positive of negative) argument.

Tree class

class egglib.Tree(fname=None, string=None) Bases: object Handles phylogenetic trees. A tree is a linked collection of nodes which all have at least one ascendant and any number of descendants. Nodes are implemented as TreeNode instances. A node without descendants is a leaf. A node with exactly one ascendant and one descendant is generally meaningless, but is allowed.

All nodes (internal nodes as well as leaves) have a label which in the case of leaves can be used as leaf name.

It is not possible to apply a name and a label to leaf node, accordingly to the newick format. All connections are oriented and lengthed (although the lengths can be omitted) but note that labels are applied to nodes, not edges (aka branches). All Tree instances have at least one root node which is the only one allowed not to have an ascendant. This class allows network-like structures, but note that some operations are available only for genuine trees (ie without closed paths). Import and export to/from strings and files are in the bracket-based newick format, and is concerned by this limitation. Tree instances can be exported using the built-in str() function, and the methods newick() and write(). Tree instances are iterable. Each step yields a TreeNode instance, starting with the root node but without a defined order.

The instance can be initialized as an empty tree (with only a root node), or from a newick-formatted string. By default, the string is read from the file name fname, but it can be passed directly through the argument string. It is not allowed to set both fname and string at the same time. The newick parser expects a wellformed newick string (including the trailing semicolon). Changed in version 2.0.1: Imports directly from a file. If a string is passed, it is interpreted as a file name by default.

add_node(parent, label=None, brlen=None)

Adds a node to the tree. parent must be a TreeNode instance already present in the instance; label is the label to apply to the tree (or the taxon name if the node is intended to be terminal); brlen the length of the edge connecting parent to the new node. Their is no formal difference between introducing a new internal node and a terminal node (or leaf). The new node has initially no descendant and is therefore a leaf until it is itself connected to a new node. The newly created node can be accessed through last_node().

all_leaves()

Returns all leaves of the tree (nodes without descendant), as a list of TreeNode instances. If the tree is empty (that is, contains only a root node), this method returns an empty list.

clean_edge_lengths()

Ensures that all edge lengths are not different than None.

clean_internal_labels()

Ensures that all internal labels are not different than None.

collapse(node)

Collapses a branch. node must be one of the nodes contained in the tree (as a TreeNode instance).

It must have a unique ascendant. If not, a ValueError is raised. Obviously, the tree's root cannot be collapsed. The destruction of the node might discard the information of its label. This information will be transfered to the ascending node. The ascending node's label will carry the information of either one whichever is not None. If the two labels are identical, nothing will be done. If the two labels are different and different from None, they will be concatenated (ascending node first), separated by a semicolon like in oldlabel;newlabel. The length of the removed edge will be spread equally among all its descendants (see example below).

Collapsing node [4] on the following tree:

Although the total edge length of the tree is not modified, the relationships will be altered: the distance between the descendants of the collapsed node (nodes 5 and 6 in the example above) will be artificially increased.

copy()

Returns a deep copy of self.

findGroup(taxa)

Checks whether a group is one of the groups defined by the tree, regardless of the orientation of the tree. If so, returns the first node found as a TreeNode instance. Returns None if no such group is found. taxa is an iterable of leaf label strings. It is not required that all labels are unique. This method returns the first node encountered whose list of descending leaves matches exactly the list taxa or the whose list of ascending leaves (that is all leaves of the tree that are not among the descending leaves) matches exactly the list taxa. This method disregards the tree orientation; for a tree represented by ((A,B),(C,(D,E)),((F,G),(H,I)))), the call findGroup(['A','B','C','D','E']) will succeed and return the node placed at the root of ((F,G),(H,I)). If a monophyletic group must be explicitely searched for, consider using findMonophyleticGroup() instead. The order of leaves is irrelevant. This method returns the root node if taxa is the list of all tree's leaves. If taxa contains a single label matching a leaf of this tree, then the result will be the same as with get_node().

findMonophyleticGroup(taxa)

Checks whether a group is one of the monophyletic groups defined by the tree. If so, returns the first such node found as a TreeNode instance. Returns None if no such group is found. taxa is an iterable of leaf label strings. It is not required that all labels are unique. This method returns the first node encountered whose list of descending leaves matches exactly the passed list. This method assumes that the tree is rooted, ie the orientation of branches is irrelevant: for a tree represented by ((A,B),(C,(D,E)),((F,G),(H,I)))), the call findMonophyleticGroup(['A','B','C','D','E']) will not succeed (technically because the group is overlapping the root). If the group is searched regardless of the orientation of the tree, typically for unrooted trees, consider using findGroup() instead. The order of leaves is irrelevant. This method returns the root node if taxa is the list of all tree's leaves. If taxa contains a single label matching a leaf of this tree, then the result will be the same as with get_node().

frequency_nodes(trees, relative=False)

Labels all nodes of the current instances by integers counting the number of trees where the same node exists among the trees in the iterable trees. Each item must be a Tree instance defining exactly the same set of leaf lables. In case relative is True, the numbers are expressed as fractions. The label is converted to a string in both cases.

get_node(name)

Returns the first node of the tree bearing the given label. The returned object is a TreeNode. If no nodes of the tree match the passed name, None is returned. The order in which the nodes are examined is not defined. name can be of any type, including None (comparison is performed without conversion).

get_node_re(regex)

Returns the first node of the tree matching the regular expression regex. regex should be a valid regular expression (refer to the documentation of the re module of the standard Python library). If no nodes of the tree match the regular expression, None is returned. The order in which the nodes are examined is not defined.

get_nodes(name)

Returns all nodes of the tree that bear the given label. The returned object is always a list of zero or more TreeNode instances. The order in which nodes are sorted is not defined. name can be of any type, including None (comparison is performed without conversion).

get_nodes_re(regex)

Returns all nodes of the tree matching the regular expression regex. regex should be a valid regular expression (refer to the documentation of the re module of the standard Python library). The returned object is always a list of zero or more TreeNode instances. The order in which nodes are sorted is not defined.

get_terminal_nodes()

Returns the list of all TreeNode instances of this tree that don't have descendants. In case of an empty tree, an empty list is returned (ie the root is never returned).

last_node()

Returns the last loaded node (as a TreeNode instance). If no nodes were loaded, the root is returned.

lateralize()

At each node of the tree, sorts the descendants based on the number of leaves that descend from them.

The result is a tree where the richest branches are pushed to the back.

midroot()

Automatic rooting of the tree using the midpoint method. The tree must not be previously rooted, there must be not closed path or network-like structures, and must edges must have an available length value.

newick(labels=True, brlens=True)

Returns the newick-formatted string representing the instance. If labels is False, omits the internal branch labels. If brlens is False, omits the branch lengths. Doesn't support closed paths.

number_of_leaves()

Gives the number of leaves (terminal nodes) of the tree. Returns 0 if the tree contains the root only.

number_of_nodes()

Gives the number of nodes of the tree (including leaves and root).

remove_node(node)

Removes the node from the tree and all its descendants. Any node can be removed, including nodes without descendants, provided that the root is not among the nodes removed. The node in question must have only one ascendant. In case its ascendant had previously only two descendants and only one ascendant, it will be automatically removed.

reoriente(new_root)

Moves the root location of the tree. This method is solely intended to alter the representation of unrooted trees (trees that have a trifurcation at the root). new_root must be a TreeNode instance contained in this tree and representing the position of the new root. It might be the current root.It is illegal to call this method on trees that have a closed path between the current root and the new root.

A ValueError is raised whenever the tree cannot be reoriented.

If the original tree has this structure: smallest_monophyleticGroup(taxa, threshold=None, minimum=1) Returns the most recent common ancestor of a set of leaves, as a TreeNode instance. The node returned corresponds to the smallest clade fulfilling the criteria. taxa must be a list of leaf labels. All labels must be found within the clade, including duplicates whenever appropriate. threshold is the minimum numerical label the node must exhibit to be returned. If threshold is None, this criterion is not applied. Otherwise, nodes that have a label not convertible to float or whose label is inferior than threshold are not returned. minimum is the smallest number of descending leaf a clade must have to be returned. The root is never returned. Returns None if no valid node can be found. Changed in version 2.0.1: The root is never returned; duplicates are supported; the minimum argument is not checked; and nodes that don't have a numeric label are supported when threshold is not None (but they are excluded).

total_length()

Returns the sum of all branch lengths across all nodes. All branch lengths must be defined, otherwise a ValueError will be raised.

write(fname, labels=True, brlens=True)

Write the newick-formatted string representing the instance to a file named fname. If labels is False, omits the internal branch labels. If brlens is False, omits the branch lengths. Doesn't support closed paths.

class egglib.TreeNode Bases: object

This class provides an interface to a Tree instance's nodes and allows access and modification of data attached to a given node as well as the tree descending from that node. A node must be understood as the point below a branch. Edges (connections between nodes) have a direction: they go from a node to another node. Nodes have therefore descendants and ascendants. Connecting a node to itself or making a two-way edge (to edges connecting the same two nodes in opposite directions) is not explicitly forbidden. Duplicate edges (between the same two nodes and in the same direction) are however illegal.

The constructor instantiates a tree node with default value.

add_son(label=None, brlen=None)

Generates a new TreeNode instance descending from the current instance. label is to be applied to the new node. brlen is the length of the edge connecting the two nodes. Note that each node will refer to the other, generating a circular reference loop and preventing garbage collection of the node instances. It is therefore required to disconnect all nodes using the method disconnect(). Return the newly created node.

ascendants()

Returns the list of all ascendants as TreeNode instances.

branch_from(node)

Returns the length of the branch connecting node to this node. node but be a TreeNode instance present amongst this node's ascendants. This method returns None if the value is not defined.

branch_to(node)

Returns the length of the branch connecting this node to node. node but be a TreeNode instance present amongst this node's descendants. This method returns None if the value is not defined.

connect(node, brlen=None)

Connect this node to an other, existing, node. The orientation of the link is from the current instance to the passed instance. brlen is the length of the newly created edge. Note that each node will refer to the other, generating a circular reference loop and preventing garbage collection of the node instances.

It is therefore required to disconnect all nodes using the method disconnect().

descendants()

Returns the list of all descendants as TreeNode instances.

get_label()

Returns the node's label.

is_ascendant(node)

True if the TreeNode instance node is one of this node's ascendants.

Specific data formats

egglib.tools.aln2fas(fname) Imports a clustal-formatted alignment from the file name fname and returns a Align instance.

egglib.tools.staden(fname=None, string=None, delete_consensus=True) Imports a Staden output file as an Align instance. The file should have been generated from a contig alignment by the GAP4 contig editor, using the command "dump contig. to file". The sequence named CONSENSUS, if present, is automatically removed unless the option delete_consensus is False.

The Staden outfile file can be read from a file (using the argument fname or directly from a string (using string). It is required to pass either a file name as fname or a Staden string as string and it is not allowed to passb both.

Staden's default convention is followed:

•-codes for an unknown base and is replaced by N.

• * codes for an alignment gap and is replaced by -.

•. represents the same sequence than the consensus at that position.

•White space represents missing data and is replaced by ?.

New in version 2.0.1: Add argument delete_consensus.Changed in version 2.1.0: Read from string or fname.

egglib.tools.get_fgenesh(fname) Imports fgenesh output. fname must be the name of a file containing fgenesh ouput. The feature definition are parsed an returned as a list of gene and CDS features represented by dictionaries. Note that 5' partial features might not be in the appropriate frame and that it can be necessary to add a codon_start qualifier.

egglib.tools.genalys2fasta(iname)

Converts Genalys-formatted sequence alignment files to fasta. The function imports files generated through the option Save SNPs of Genalys 2.8. iname if the name of the Genalys output file. Returns an Align instance.

class egglib.tools.Mase(input=None) Bases: list

Minimal implementation of the mase format (allowing input/output operations). This class emulates a list of dictionaries, each dictionary representing a sequence and describing the keys header, name and sequence.

However, the string formatter (str(mase) or print mase, where mase is a Mase instance) generates a mase-formatted string. Object attributes are header (a string with file-level information), species (the species of the ingroup), align (an Align instance corresponding to the data contained in the instance, and created upon construction). Modifying this instance has no effect.

The constructor takes an optional argument that can be a string giving the path to a mase-formatted file, or a Align instance. The constructor is currently unable to import population labels, and only sequences marked as ingroup are imported. Changed in version 2.0.1: An IOError is raised upon file formatting error. In case several sequences have the same name in a given segment, the first one is considered and others are discarded. In case a sequence is missing for a particular segment, a stretch of non-varying characters is inserted to replace the unknown sequence.

Data analysis

aligns must be an iterable containing Align instances.

spacer specifies the length of unsequenced stretches (represented by non-varying characters) between concatenated alignments. If spacer is a positive integer, the length of all stretches will be identical. If spacer is an iterable containing integers, each specifying the interval between two consecutive alignments (if aligns contains n alignments, spacer must be of length n-1).

ch gives the character to used for conserved stretches and for missing segments.

If strict is False, the name comparison will not extend further than the length of the shorter name: for example, names anaconda and anaco will match, and the concatenated sequence will be named anaconda (regardless of which name appears first in the list of Align instances).

If groupCheck is True, an exception will be raised in case of a mismatch between group labels of different sequence segments bearing the same name. Otherwise, the group of the first segment found will be used as group label of the final sequence. New in version 2. Note that N means A, C, G or T but that codons containing ? orwill always be translated as X (except for ---codons that are be translated as -).

egglib.tools.ungap(align, freq, includeOutgroup=True) Builds a new Align instance containing all sequences of align and only the columns for which the frequency of gaps (-symbols) is less than the value given by freq.

If includeOutgroup is True, the sequences with group label 999 (if any) are considered for computing the frequency of gaps. These sequences are however always exported to the returned alignment). Changed in version 2.1.0: Added option includeOutgroup.

class egglib.tools.GeneticCodes Holds genetic code. Instantiating this class is pointless since its contains only class methods.

classmethod codes() Gives the list of code identifiers. Each code is represented by three identifiers: (index, short, long) where index is the integer identifier matching NCBI nomenclature (beware that indices are not consecutive); short is a egglib-defined word summarizing the code which can be used as an alternative access means; and long is the full name of the genetic code.

classmethod index(name) Tries to identify the index of the genetic code from its short or full name. Returns None if the string matches no model. The comparison is case-independent.

classmethod is_start(codon, code=1) Returns True if the codon is encoding one the observed translational start for this genetic code, False otherwise (including if the codon is invalid). Arguments are similar as for translate().

classmethod translate(codon, code=1) Translate the codon codon using the indicated code. code is an identifier (index, short or long name) matching NCBI nomenclature. Returns the one-letter amino acid code corresponding to codon, * for stop codon and X for any invalid codon (string with a length different than 3 or containing missing data or gaps). The codon specification is case-independent. Ambiguous codons might still be translated if the implied possibilities translate all to the same codon. The IUPAC nomenclature is used. Note that N means A, C, G or T but that codons containing ? orwill always be translated as X. However, --will be translated as -. Locates motifs in a nucleotide sequence. Standard ambiguity characters are supported (as explained in compare() documentation). sequence and motif are nucleotide sequence strings. mismatches gives the number of nucleotide differences allowed for motif match. If reverse is True, both strands are examined (otherwise, only the forward strand is considered. Returns a list of hits. Each hit is represented by a dictionary containing keys: start: starting position of the hit, sequence: sequence of the matching region, mismatches: number of mismatches in the hit, reverse: True if the hit is on the reverse strand. The hit position and the found motif are always given with respect to the passed sequence, even when the motif was found on the reverse hit.

Sequence comparison

egglib.tools.locate(sequence, motif, start=0, stop=-1)

Locates the position of the motif in sequence. motif and sequence should be DNA sequences Ambiguity characters (M, R, W, S, Y, K, B, D, H, V and N) are recognized and match the appropriate characters. ? matches any character. Note that the meaning of N (A, C, G or T) is very different to ? (any character). start and stop allow to restrict search to a given subset of sequence (the returned index is still given with respect to the full sequence). The function returns the position of the first exact match or, if there is not exact match, the position of the first matching position allowing ambiguity charactor, or, if there is no match at all, None.

if hasAmb is True, ambiguities will be supported in the target sequence (sequence). With that mode on, ambiguities of the motif sequence (motif) will only be considered as a match if the target sequence account for all Changed in version 2.1.0: Supports ambiguity characters in sequence. Returns exact matches first. frame must be a sequence of (start, stop, codon_start) sequences where start and stop gives the first and last position of an exon and codon_start is 1 if the first position of the exon is the first position of a codon (e.g. ATG ATG), 2 if the first position of the segment is the second position of a codon (e.g. TG ATG), 3 if the first position of the segment is the third position a of codon (e.g. G ATG), or None if the reading frame is continuing the previous exon. If codon_start of the first segment is None, 1 will be assumed. It is not possible to modify the codon positions held by the instance after construction.

codon(x)

If the position x falls in a complete codon, returns the three positions of that codon. If x fall outside of defined segments, or in a codon that appears not to be completely available, returns None.

Note: the codon positions are cached at build time. As a result, the result of this method will be incorrect if frame positions are changed after the creation of the instance.

codons()

Returns the list of complete codons (as triplets of absolute positions).

exon(x)

Returns the exon index of a position. Returns -1 if the position falls outside specified segments (out of ranges or in introns).

class egglib.tools.Updater(target=None) Helper designed to monitor progress of long-running tasks. In principle, Updater should be coupled to a repetitive process with a fixed and known number of steps to perform (target) each requiring the same amount of time. Updater should be updated regularly at reasonnable intervals (not to short to keep it from being itself a resource load).

The class can be used as in the following examples: Constructor's argument target gives the number of iterations to perform. If None, this information is not available.

close()

If anything was written using refresh(), writes any cached refresh data and writes a new line.

Otherwise, does nothing. This method is automatically called upon object destruction.

closed True if the instance has been closed using the close() method.

format(template=None, increment=1) Returns a string providing feedback about the run's progress. template gives the template of the string to return. Actual values will substitute to the following special strings:

•$DONE: Number of steps done.

•$TARGET: Total number of steps to do.

•$TODO: Number of steps left to do.

•$ELAPSED: Time used since object creation.

•$REMAINING: Estimated time to complete the task.

•$LREMAINING: Like $REMAINING but computed from the last time point.

•$TOTAL: Estimated total time (computed as $REMAINING + $ELAPSED)

•$PERCENT: Percentage done (including % symbol).

If template is None, a template defined at construction time is used. This template is $DONE|$ELAPSED when target is None and $DONE/$TARGET (remaining: $REMAINING) if target is specified. It is stored at the object attribute template and can be modified dynamically.

If increment is different than zero, increment() is called and this number is passed before formatting the string.

increment(number)

Adds number steps and update elapsed time and estimated running (if target was given). number might be negative.

refresh(template=None, increment=1, grain=1.0) This method generates a string exactly as format() does, but writes the string to sys.stdout instead. If the same object has already wrote anything, an equivalent number of backspaces are written, in principle allowing to overwrite the previous string and making the string appear to update itself. The result might no be so nice if something else is written to the console in the mean time or if the console doesn't support backspaces. This method doesn't write a newline, but the object will upon destruction or call to close(). The string will be stripped is it is longer than the object attribute length_max, which can be changed dynamically. If less than the number given by grain (in seconds) has occurred since the last refresh, nothing is printed.

stats()

Returns a dictionary with the current values of counters.

wipe()

Writes an empty line of the maximal possible length, therefore clearing the line from characters printed by another process (provided that these characters are not too many).

egglib.tools.wrap(string, length, indent=0) Formats the string string to ensures the line lengths are not larger than length. The optional argument indent specifies the number of spaces to insert at the beginning of all lines except the first. The line breaks are inserted at spaces.

An example is given below::

>>> import egglib >>> string = "Lekrrjf djdhs eeir djs ehehf bnreh eurvz rhffdvfu dksgta." >>> print egglib.tools.wrap(string, 20, 4) Lekrrjf djdhs eeir djs ehehf bnreh eurvz rhffdvfu dksgta.

wrappers

This module contains wrappers to external applications. They must be available on the user's system and detected properly at installation time. To detect a new application a posteriori, one needs to relaunch the detection procedure by typing python setup.py build_apps from the egglib-py directory, and then re-install the configuration file by typing python setup.py install.

Hudson's coalescent simulator egglib.wrappers.ms(nsam, howmany, theta=None, segsites=None, T=False, F=False, r=False, c=False, G=False, I=False, n=False, g=False, m=False, ma=False, eG=False, eg=False, eM=False, em=False, ema=False, eN=False, en=False, es=False, ej=False, tMRCA=False) Runs the program ms to generate random datasets by coalescence. ms must be installed in the system. Arguments are for the command ms (refer to the program's documentation for details). Note that all options starting by e (past demographic changes) as well a m, n and g expect a list of tuples (at least one), each tuple containing the appropriate number of arguments. Note also that the options are processed in the same order as in the function's signature. Note that if the tMRCA argument is set to True, the returned alignments will contain a tMRCA member. If both theta and segsites are specified to positive values, the returned alignments will contain a prob member. If the T flag is sets, the returned alignments will contain a tree member (that will be a Tree instance). New in version 0.1: Created to provide a closer wrapper of ms.Changed in version 2.1.0: Exported alignment might contain a prob and/or a trees member.

NCBI BLAST tools class egglib.wrappers.BLAST

Provides NCBI Basic Local Alignment Search Tools for finding homologues of query sequences against a local database. All proposed methods return a dictionary of processed BLAST results. This dictionary stores the hits for each sequences, indexed by its name string. If only one sequence is passed as a string, the output dictionary will always one item indexed by an empty string. For a given sequences, the results are presented as a list of HSPs (there can be several HSPs on a single hit sequence), each hit being a dictionary storing the following information: subject (the name of the hit sequence), bitScore (the bit score value), score (the raw score value), eValue (the expectation value), qstart and qend (the start and end positions on the query sequence), hstart and hend (the start and end positions on the hit sequence, qframe and hframe (the frame in which is locate the hit in respectively the query and the hit sequence), identity (the number of matching positions), gaps (the number of gapped positions), length (the length of the hit), *qseq (the sequence of the query sequence at the HSP), hseq (the sequence of the hit sequence at the HSP) and midline (the string summarizing the quality of the local alignment, indicating matching positions). The full XML document is nonetheless accessible as instance's member xml_results after each call to any of the method.

xml_results is None by default.

blastn(query, target, evalue=None, penalty=None, **params) Searches a nucleotide database using nucleotide queries. query can be a string, a Container or Align instance. In the latter cases, all sequences will be processed. target must refer to a valid database of the correct data type, either represented by its file system path or by a BLASTdb instance. evalue is the expectaction value (expected number of random hits by chance alone, depending on the database size). The default value is e -6 (therefore much less, and more stringent, than blastn's default value which is 10). penalty is the penalty to apply for nucleotide mismatch (the default reward for nucleotide match is +1). The default value is -2. The value must be negative, and should be increased to account for most distant homologies. "A ratio of 0.33 (1/-3) is appropriate for sequences that are about 99% conserved; a ratio of 0.5 (1/-2) is best for sequences that are 95% conserved; a ratio of about one (1/-1) is best for sequences that are 75% conserved" (from BLAST online documentation).

All other BLAST parameters can be set as keywords arguments. Keyword arguments are passed as is to the blastn program and can overwrite arguments default values of evalue and penalty. For example it is possible to set reward as a keyword argument as in reward=5 penalty=-4.

blastp(query, target, evalue=None, **params) Searches a protein database using protein queries. Arguments are as for blastn() with the exception that reward and penalty are not applicable. Parameters matrix, gapopen and gapextend are defined automatically based on the average length of query sequences. These automatic settings can be overriden by keyword arguments.

blastx(query, target, evalue=None, **params) Searches a protein database using translated nucleotide queries. Arguments are as for blastp().

tblastn(query, target, evalue=None, **params) Searches a translated nucleotide database using protein queries. Arguments are as for blastp(). To process containers containing duplicates and for which group label information is not important, set the flag nogroups to True.

tblastx(query

Tree building and analysis

egglib.wrappers.phyml(input, model='GTR', rates=1, boot=0, topo=None, start=None, search='NNI', quiet=True) Reconstructs phylogeny using maximum likelihood through the PhyML software. input should be a Align instance. model indicates the model to use. Accepted values are HKY85, JC69, K80, F81, F84, TN93 and GTR for nucleotides and LG, WAG, JTT, MtREV, Dayhoff, DCMut, RtREV, CpREV, VT, Blosum62, MtMam, MtArt, HIVw and HIVb for protein sequences. rates gives the number of discrete categories of evolutionary rate. boot sets the number of bootstrap repetitions. Values of -1, -2 and -3 activates one the test-based branch support evaluation methods that provide faster alternatives to bootstrap repetitions. A value of 0 will provide no branch support at all. topo allows to fix the tree topology. start allows to set the starting topology (it is illegal to set both topo and start to non-None values. search can be NNI (fastest), SPR or BEST''(best of both methods). For * topo * or * start * , a :class:'~egglib.Tree' instance must be passed. If present, branch lengths and branch labels will be ignored. If * quiet * is ''True, the standard output of the wrapped program will be intercepted and discarded. The function returns a tuple (tree, loglk) where tree is a Tree instance and loglk the log-likelihood reported by PhyML.

egglib.wrappers.nj(input, groups=False, quiet=True)

Constructs a neighbor-joining tree using programs from the PHYLIP package (dnadist and neighbor). input should be a Align instance containing DNA sequences only. If group is True, the group labels will be appended to sequence names and therefore will appear in the final tree. If quiet is True, the standard output of the wrapped program will be intercepted and discarded. The function returns a Tree instance.

class egglib.wrappers.Codeml(aln, tree=None) Interface to non-synonymous/synonymous substitution rate analyses available in the codeml program of the PAML package. The sequences and tree are loaded at construction time. The results can be accessed through the return value of fit() or as a pre-formatted string by calling str(codeml) (where codeml is a Codeml instance). Default options of influencal parameters are: start omega value of 0.4, omega not fixed and 10 discrete omega categories. They can be changed using the appropriate accessors. After running fit(), the instance caches the control file as controlfile, the codeml main output file as outputfile and codeml standard output (where you might be able to read error messages) as standardoutput. This is done to allow manual inspection in case of errors.

Constructor arguments: aln, a Align instance, tree, a Tree instance. The names of aln and tree must match (except that $x and $x labels -where x is an integer-are ignored at the end of tree leaf names). If tree is None, a star topology will be used. Branch lengths from the tree are discarded.

fit(MODEL, quiet=True)

Fits a given model and collects the result.

MODEL must be only of the following model specifications:

• M0: fixed-omega model.

• M1a: nearly-neutral model.

• M2a: positive selection model.

• M8a: nearly-neutral beta model.

• M8: positive selection beta model.

• A0: branch-site null model.

• A: branch-site model.

• nW: independent omegas in subtrees.

• b: branch-independent model.

The results are returned as a dictionary containing these keys (note that keys irrelevant to me fitted model will not be exported):

•model: the model fitted.

•lnL: the log-likelihood.

•np: number of parameters.

•kappa: the transition/transversion ratio.

•omega: omega estimate, as a single value M0, a list of two values for M1a, three values for M2a, eleven values for M8a and M8, k values for nW (where k is the number of clades in the tree), alist of four tuples of two values for A0 and A.

•freq: estimates of the frequency of the different categories, None for M0 and nW, a list of two values for M1a, three values for M2a, eleven values for M8a and M8 and four values for A0 and A.

•beta: a tuple for p and q (beta distribution parameters), None for all models but M1a and M2a.

•site_method: method used to estimate posterior site.

•trees: the trees found in the results (in order) as a list of tree instances.

•site_proba: list with one list per site, each list contains the posterior probability of the site under each omega category, for models M1, M1a, M2a, M8a, M8, A0, A.

•site_class: the list of highest probability class for each site, for models M1a, M2a, M8a, M8, A0, A.

•site_omega: the list of average posterior omega for each site, for models M1, M1a, M2a, M8a, M8.

•site_error: the standard deviation of posterior omega for each site, for models M2a and M8.

If quiet is True, the standard output is intercepted and discarded.

fix_omega(value)

Fixes omega to value. It is not required to call this method for fitting models that require a fixed value of omega.

number_of_categories(value)

Sets the number of discrete omega categories.

start_omega(value)

Sets the start value of omega to value. It is not legal to call this method when omega is fixed.

unfix_omega(value)

Releases omega from a previous call to fix_omega() and set the start value to value.

Primer detection

class egglib.wrappers.Primer3(sequence, **params) Primer design using the program PRIMER3. The constructor takes a sequence and optional parameters. The list of parameters and default values can be accessed through the class-level attribute dictionary default_parameters.

sequence must be a nucleotide sequence. Parameter values can be passed as keyword arguments. Parameter default values are taken from Primer.default_parameters. Parameters are restricted to the default list, such as spelling errors might result in a crash later, during primer search.

check_pairs()

Checks primer pairs defined using find_pairs() and discards the pairs that fail to pass the test. This method includes a second call to the PRIMER3 application.

clean_pair_ends(number)

Deletes all primer pairs that contain at least one invalid character (fully resolved, not missing). All primer pairs with a least one primer containing a character other than A, C, G and T (case-independent) close to the 3' end are removed. number gives the number of characters to consider. If the number of larger than the length of the primer, the complete sequence is considered. Returns the number of pairs.

clean_primer_ends(number)

Similar to clean_pair_ends() except that the lists of forward and reverse primers are considered. The pairs, if they were generated, are not affected. Returns a tuple (nf, nr) with nf and nr the numbers of forward and reverse primers, respectively. default_parameters = {'PRIMER_MAX_SIZE': 27, 'PRIMER_SALT_DIVALENT': 0.0, 'PRIMER_SALT_MO Class-level dictionary holding default values for all run parameters. find_pairs(mini=70, maxi=9999) Finds primer pairs. Primers must have been previously designed. mini and maxi gives the range of accepted products. This method doesn't involve any call to PRIMER3.

find_primers()

Finds primers. Returns a tuple (nf, nr) where nf is the number of forward primers found and nr the number of reverse primers found.

forward_primers()

Returns a reference to the list of forward primers (that must have been previously detected using find_primers()). Each item of the list represents a primer as a dictionary containing the following keys: seq (the primer sequence, given in the 5' to 3' orientation), pos (the position of nucleotide at the 5' end), GC%, Tm, Q (the quality value), END (not defined in PRIMER3 documentation, might be the maximum secondary structure stability) and ANY (also not documented in PRIMER3, might be maximum misannealing stability with respect to the provided sequence). The last two parameters should be minimized, and their definition will be confirmed as soon as possible.

pairs()

Returns the list of primer pairs found by find_pairs(). Each item is a directory with the values: F (the forward primer), R (the reverse primer), start, end and size. The primers are the same as given by forward_primers() and reverse_primers().

reverse_primers()

Equivalent to forward_primers(), except that the pos value is the position of the nucleotide at the 3' end of the primer, therefore the first nucleotide when reading in the original orientation of the provided sequence.

select(number)

Sorts the list of primer pairs (based on the sum of primer qualities) and select best primers. number gives the number of primer pairs to retain. If there is less pairs, they will all be retained, but still be sorted. Returns the number of pairs retained. The lists of forward and reverse primers are not affected.

sort()

Sorts all class attributes (forward and reverse primers and primer pairs) based on quality (sum of both primer qualities for pairs).

simul

This module wraps the C++-implemented coalescent simulator. To perform coalescent simulations, the user must create a CoalesceParamSet instance with the desired parameter values (and call the appropriate methods to set optional demographic changes), and an instance of one of the subclasses of CoalesceMutator, and then pass these two objects to the simulation function. The function will return a list of Align or SSR instances.

Note: Only polymorphic sites are returned. This can be significant when computed polymorphism statistics be expressed per site. Such statistics should then be multiplied by the length of the corresponding alignments (that is, the number of segregating sites) to obtain a gene-wise value.

Simulation function

egglib.simul.coalesce(paramSet, mutator, repets=1, random=None, maxNumberOfItera-tions=1000000, convert=True, forceSSR=False) Generates simulated datasets, using the incorporated coalescent simulator.

paramSet must be a CoalesceParamSet instance; it holds parameters controlling the demographic process (and therefore the shape of generated genealogical trees).

mutator must be an instance of a subclass of CoalesceMutator (but not CoalesceMutator itself); it holds parameters controlling the generation of genetic data (sequence or microsatellites).

repets gives the number of repetitions to perform. random controls the pseudo-random number generator. This argument is polymorph: if None, the generator is automatically set (using the system clock to determine seed values); if random is a sequence of two numbers, they will be used a seeds of the random number generator (therefore allowing to replicate results with a given set of parameters); alternatively, seeds can be a Random instance. maxNumberOfIterations sets the maximum number of steps in the coalescent algorithm (provided as a safeguard). convert if True, converts the generated DataMatrix objects to high-level types (Align or SSR). Otherwise, returns them as is.

forceSSR if True and if convert is True, return SSR instances whatever options were passed regarding the mutation model (that is, even if a finite-allele model with 4 or less alleles was used). The value of this option is ignored if convert is True.

Returns a list of simulated data sets. Data sets are instances of DataMatrix if convert is False. Otherwise, they are automatically converted to SSR instances or to Align instances. Conversion to Align is only performed if the mutator is of type CoalesceFiniteAlleleMutator, the number of alleles is smaller than or equal to 4 and if forceSSR is False.

All returned instances have non-default members providing simulation statistics:

•tMRCA (the time to the most recent common ancestor),

•totLength (sum of tree branch lengths),

•nMutations (number of mutations that occurred),

•nRecomb (number of recombination events).

New in version 2.0.1.Changed in version 2.1.0: forceSSR is added, and Align instances are no longer returned if the number of alleles is above 4.

Parameter holder class

class egglib.simul.CoalesceParamSet(singleSamples, doubleSamples=None, s=0.0, rho=0.0, nsites=1, alpha=0.0, M=0.1, N=1.0) Holder for coalescent parameters related to the reconstruction of genealogical trees. The value of different demographic parameters are passed to the constructor, and the user can subsequently add demographic changes. The order in which demographic changes are entered is not important (they are sorted automatically by date). New in version 2.0.1. Constructor arguments:

singleSamples and doubleSamples specify the number of sampled genes. Since the underlying model is diploid, it is possible to sample either one or both chromosomes of a given individual. singleSamples specifies the number of individuals of which one (random) chromosome was sampled. doubleSamples specifies the number of individuals of which both chromosomes were sampled. For each of these options, an int, a sequence can be passed, as well as None, which means that no samples of this type were collected. The number of populations in the model is implied by these two options. The number of populations is given by the length of the passed list (one population if integers are passed). The number of populations implied by these two options must be consistent, except if one of them is None (in what a list of 0 is assumed). An example is singleSamples= [10,20], doubleSamples=[5, 0] which sums up to 20 genes in both populations.

s gives the selfing rate. s=0. means total panmixia and s=1. total autogamy. rho is the recombination rate, expressed as 4Nc where N is the population size (number of diploid individuals) and c the per-gene instantaneous recombination rate. If rho is >0, it is required to provide a value of nsites >1.

nsites is the number of recombining sites (ignored if rho is zero). alpha is the exponential growth/decline rate. A value of alpha greater than 0 means that the population size was smaller in the past. If a float is passed, the same value will be applied to all populations. If a sequence is passed, is specifies individual, population-specific, rates and the length of the sequence must match the length of singleSamples and/or doubleSamples.

M is the migration rate, expressed as 4Nm where N is the population size (number of diploid individuals) and m the instantaneous migration rate (the probability that a given individual changes deme). If M is a float, all non-diagonal values of the migration matrix will be set to M/(k-1) where k is the number of populations in the system (the proportion of migrants will always be M). Otherwise M must be a sequence of sequences of dimensions kxk where k is the number of populations. It is illegal to set the diagonal of the matrix, and therefore it is enforced that all values of the diagonal are None. Here is an example for 2 populations with asymetric migration rates: M=[[None, 0.1], [0.2, None]], and an example for 3 populations with a "stepping stone" model of migration:

M=[[None, 0.1, 0.0], [0.1, None, 0.1], [0., 0.1, None]].
N is the relative size of all populations. It is possible to pass a float, what sets all populations to the same size and corresponds to rescaling the time scale. Otherwise a sequence of float must be passed, and the length of this sequence must match the length of singleSamples and/or doubleSamples.

bottleneck(date, strength)

At time date, apply a bottleneck of strength strength to all populations. The bottleneck strength corresponds to an amount of time where the time counted is blocked and only coalescences are allowed (resulting in a given -and random -number of instantaneous coalescence with branches of length 0).

changeAllGrowthRates(date, value)

At time date, change all growth rates to value. At time date, all the lineages from the population daughter are moved to the population mother and all mutation rates to the population daughter are cancelled.

populationSplit(date, population, probability)

A the time given by date, the population population is split in two. An additional population (incremented from the current total number of populations) is created and lineages are randomly picked from population population and moved to the new population, with probability probability. If probability is 0., the simulator creates an empty population (thinking forward in time, this corresponds to a population extinction).

samples()

Returns a list of (d,s) tuples (one per population), with d the number of diploid samples and s the number of haploid samples from a given population singlePopulationBottleneck(date, population, strength) At time date, apply a bottleneck of strength strength to population population. The bottleneck strength corresponds to an amount of time where the time counted is blocked and only coalescences are allowed (resulting in a given -and random -number of instantaneous coalescence with branches of length 0).

Specifying mutation model using dedicated classes

class egglib.simul.CoalesceMutator(theta) Base class for mutator objects. New in version 2.0.1.

fixedNumberOfMutation(number)

Fix the final number of mutations to number. It is not guaranteed that it equals to the number of polymorphic sites unless the number of mutable sites is infinite. It is required that the object was created with theta = 0 to use this method.

numberOfMutations()

Returns the number of mutations yielded by the last simulation (returns 0 by default).

setSites(sites)

sites gives the number of mutable sites. If it equals to 0 or False or has length 0, an infinite number of sites will be assumed and all mutations will hit a different site. If sites is an integer, it specifies the number of mutable sites. They all will be placed at equal distance along a virtual chromosome bound by 0 and 1 and have equal mutation weight. Otherwise, sites must be a sequence. The length of the sequence gives the number of sites. Each site must be represented by a sequence of two items: the site position (between 0. and 1.) and its weight. The weight can be any positive number and gives the relative probability that a given mutation hits that particular site.

class egglib.simul.CoalesceFiniteAlleleMutator(theta=0, alleles=2, randomAncestral-State=False) Bases: egglib.simul.CoalesceMutator Represents a mutation model with fixed number of alleles. At each mutation, alleles are drawn from a finite set of possible values. It is possible to set no equiprobable transitions to the different transition using the method transitionWeights(). This model sets by default an infinite number of mutable sites.

Constructors arguments: theta is the mutation rate, expressed as 4Nu where N is the number of diploid individuals of a population and u is the per-gene mutation rate. alleles is the number of possible alleles. If randomAncestralState, the ancestral state is drawn randomly from possible states (otherwise, it will be zero).

fixedNumberOfMutation(number)

Fix the final number of mutations to number. It is not guaranteed that it equals to the number of polymorphic sites unless the number of mutable sites is infinite. It is required that the object was created with theta = 0 to use this method.

numberOfMutations()

Returns the number of mutations yielded by the last simulation (returns 0 by default).

setSites(sites)

sites gives the number of mutable sites. If it equals to 0 or False or has length 0, an infinite number of sites will be assumed and all mutations will hit a different site. If sites is an integer, it specifies the number of mutable sites. They all will be placed at equal distance along a virtual chromosome bound by 0 and 1 and have equal mutation weight. Otherwise, sites must be a sequence. The length of the sequence gives the number of sites. Each site must be represented by a sequence of two items: the site position (between 0. and 1.) and its weight. The weight can be any positive number and gives the relative probability that a given mutation hits that particular site.

transitionWeights(matrix)

Sets the weights to apply to each possible transition. Here, a transition is taken as any mutation from one character to an other. If the number of alleles is k, matrix must be a sequence of k sequences of k weights (strictly positive values). The higher the weight, the more likely the transition. The values on the diagonal are required to be None. theta is the mutation rate, expressed as 4Nu where N is the number of diploid individuals of a population and u is the per-gene mutation rate.

fixedNumberOfMutation(number)

Fix the final number of mutations to number. It is not guaranteed that it equals to the number of polymorphic sites unless the number of mutable sites is infinite. It is required that the object was created with theta = 0 to use this method.

numberOfMutations()

Returns the number of mutations yielded by the last simulation (returns 0 by default).

setSites(sites)

sites gives the number of mutable sites. If it equals to 0 or False or has length 0, an infinite number of sites will be assumed and all mutations will hit a different site. If sites is an integer, it specifies the number of mutable sites. They all will be placed at equal distance along a virtual chromosome bound by 0 and 1 and have equal mutation weight. Otherwise, sites must be a sequence. The length of the sequence gives the number of sites. Each site must be represented by a sequence of two items: the site position (between 0. and 1.) and its weight. The weight can be any positive number and gives the relative probability that a given mutation hits that particular site.

class egglib.simul.CoalesceStepwiseMutator(theta=0) Bases: egglib.simul.CoalesceMutator

Represents the stepwise mutation model. Each mutation randomly increments or decrements the current allele value with a step of one unit. This model sets by default one possible mutable site.

theta is the mutation rate, expressed as 4Nu where N is the number of diploid individuals of a population and u is the per-gene mutation rate.

fixedNumberOfMutation(number)

Fix the final number of mutations to number. It is not guaranteed that it equals to the number of polymorphic sites unless the number of mutable sites is infinite. It is required that the object was created with theta = 0 to use this method.

numberOfMutations()

Returns the number of mutations yielded by the last simulation (returns 0 by default).

setSites(sites)

sites gives the number of mutable sites. If it equals to 0 or False or has length 0, an infinite number of sites will be assumed and all mutations will hit a different site. If sites is an integer, it specifies the number of mutable sites. They all will be placed at equal distance along a virtual chromosome bound by 0 and 1 and have equal mutation weight. Otherwise, sites must be a sequence. The length of the sequence gives the number of sites. Each site must be represented by a sequence of two items: the site position (between 0. and 1.) and its weight. The weight can be any positive number and gives the relative probability that a given mutation hits that particular site.

class egglib.simul.CoalesceTwoPhaseMutator(theta=0, proba=0.5, param=0.5) Bases: egglib.simul.CoalesceMutator

Represents the two-phase mutation model. Each mutation randomly increments or decrements the current allele value with a variable step. With a given probability, the step is 1; otherwise it is drawn from a gamma distribution. This model sets by default one possible mutable site.

theta is the mutation rate, expressed as 4Nu where N is the number of diploid individuals of a population and u is the per-gene mutation rate. proba gives the probability of drawing the mutation step from the gamma distribution of parameter param. Both proba and param must be in range [0,1].

fixedNumberOfMutation(number)

Fix the final number of mutations to number. It is not guaranteed that it equals to the number of polymorphic sites unless the number of mutable sites is infinite. It is required that the object was created with theta = 0 to use this method.

numberOfMutations()

Returns the number of mutations yielded by the last simulation (returns 0 by default).

setSites(sites)

sites gives the number of mutable sites. If it equals to 0 or False or has length 0, an infinite number of sites will be assumed and all mutations will hit a different site. If sites is an integer, it specifies the number of mutable sites. They all will be placed at equal distance along a virtual chromosome bound by 0 and 1 and have equal mutation weight. Otherwise, sites must be a sequence. The length of the sequence gives the number of sites. Each site must be represented by a sequence of two items: the site position (between 0. and 1.) and its weight. The weight can be any positive number and gives the relative probability that a given mutation hits that particular site.

fitmodel

Approximate Bayesian Computation components. Part of the underlying C++ utilities are (currently) without Python wrapper, so should be used directly throught the binding. Please refer to the C++ library documentation for the following class:

• ABC: the class to perform the rejection-regression operations.

Utilities class egglib.fitmodel.Dataset

Bases: object Manages a set of read or simulated alignments. Supports len(). Note that, on observed data and when there are several populations and/or outgroups , sort_aligns() should be called to handle the case where the different populations are mixed in alignments,

add(align)

Add an Align instance (which will be copied by reference).

config()

Returns a list with -for each alignment -a tuple containing 4 items: total sample size, list of sample size per population (excluding outgroups), number of outgroups, alignment length. The alignment length is excluding not usable sites (corresponding to lseff). Populations are sorted by their label.

iterator(config=None)

This iterator zips the object passed as config the alignments stored in the instance. The user should ensure that the object passed as config is an iterable and has the same length as the current instance (it will not be done automatically). Each iteration round returns a (align, configItem) tuple, where configItem an item of config. If config is None, the result of config() will be used.

pops()

Returns the set of distinct populations in the data set (note that all populations are not required to be represented in each locus). The outgroup is not considered.

sort_aligns()

Sort each alignment such as they match the exported config (all populations appear grouped and in the increasing order, with outgroups at the end). Returns a tuple (params, data) where params is the list of parameter names (automatic if header is not present) and data is a list of lists, one list per parameter (note that the returned list is transposed with respect to the input file). Beware that headers with number-only parameters will be mistaken with values.

Prior implementations class egglib.fitmodel.PriorParseError Raised by Prior parse() methods when the format is found to be incorrect. It can be caught to auto-detect prior types.

class egglib.fitmodel.PriorDiscrete(random=None) Bases: object

This prior is based on discrete categories. It consists in a set of weighted categories with free boundaries. Within a category, the probability density is uniform. It allows using uniform distribution with fixed bounds, discretized empirical distribution and theoretical laws of distribution as priors.

PriorDiscrete instances have a length (the number of categories) and are iterable. Each iteration yields a (p, bounds) tuple with p the frequency of a class and bounds a list giving the bound values (themselves as a tuple) for all parameters.

Constructor argument random must be a Random instance and will be used to generate pseudorandom numbers.

add(freq, *bounds)

Adds a category to the distribution. freq gives the frequency of the category. The frequencies don't need to be relative. bounds must be separate 2-item lists or tuples giving the lower and upper bound values for each parameter.

clear()

Clears the instance.

draw()

Generates a set of random values for all parameters.

force_positive()

Enforces that drawn parameter values are >=0 (values <0 will be ignored). This flag is not cancelled if clear() is called. New in version 2.0.2.

number_of_params()

Returns the number of parameters, (0 if no data loaded).

parse(string)

Imports data from the string string. The data format is: one line per category (in any order), each line following the format freq down1;up1 down2;up2 ... where freq is the frequency of the category (needs not to be relative), down the lower bound value and up the upper bound value for a given parameter. The function raises a PriorParseError in case of format error.

str()

Formats the content of the instance as a string, in a format appropriate for passing to parse().

class egglib.fitmodel.PriorDumb(random=None)

Bases: object

This prior doesn't allow covariation between parameters or discrete categories. The probability distribution for each parameter is specified has a uniform or continuous statistical distribution. The list below presents the available distribution types, with the one-letter code and the list of expected parameters, expected by the method add():

•U: uniform probability between down and up.

•E: exponential distribution of mean mean.

•P: Poisson distribution of parameter p.

•G: gamma distribution of parameter p.

•N: normal distribution of mean m and standard deviation s.

•F: parameter fixed to the value v.

Constructor argument random must be a Random instance and will be used to generate pseudorandom numbers.

add(type, *parameters)

Adds a parameter to the distribution. type a one-letter code identifying the type of statistical distribution and parameters are the distribution's parameters, given in the appropriate order.

clear()

Resets the instance.

draw()

Draws a ParamSample from the instance.

force_positive()

Enforces that drawn parameter values are >=0 (values <0 will be ignored). This flag is not cancelled if clear() is called. New in version 2.0.2.

number_of_params()

Returns the number of parameters.

parse(string)

Imports data from the string string. The data format is: one token per parameter. The token can be arranged as one per line or separated by any white space characters. Each token must follow the format X(...) where X is the one-letter code specifying the type of distribution (F, U, N, G, P or E) and ... The constructor expects a boolean to indicate whether recombination must be implemented.

represents

generate(cfg, ps, random)

Generates a simulated dataset based on the passed sample configuration and the parameter sample.

class egglib.fitmodel.DOM(recombination)

Bases: object Domestication model, with optional recombination. Parameters:

•THETA

•SIZE (size of the cultivated population)

•DATE (date of the bottleneck)

•DUR (duration of the bottleneck)

•STRENGTH (size of the bottleneck population)

•MIGR (bidirectional migration rate)

•RHO (optional)

The size of the wild population is 1. The domestication date is DATE+DUR.

The constructor expects a boolean to indicate whether recombination must be implemented.

generate(cfg, ps, random)

Generates a simulated dataset based on the passed sample configuration and the parameter sample.

egglib.fitmodel.models = [<class 'egglib.fitmodel.SNM'>, <class 'egglib.fitmodel.PEM'>, <class 'egglib.fitmodel.BNM This list contains the class objects (different from class instances, they are the classes themselves) corresponding to demographic models. They must define a generate() method taking a configuration list and a param sample, their constructor must take 0 or more integer arguments and then a boolean indicating whether recombination occurs. They must define a class-level string name and a class-level list of strings parameters and an informative docstring. All this is not (yet) enforced. This list is designed to help interactive commands to detect automatically available models.

egglib.fitmodel.add_model(name)

Adds a name model contained in the file name.py. The model will be accessible in the fitmodel.models list.

Summary statistics implementations

class egglib.fitmodel.TPH Bases: object

Computes the following statistics: thetaW, Pi, He (averaged over all loci).

class egglib.fitmodel.TPS Bases: object

Computes the following statistics: total thetaW, Pi for each populationm and Hudson's Snn (nearest neighbor statistic). The number of statistics will be 2 + the number of populations. Statistics are averaged over all loci.

class egglib.fitmodel.SFS(number) Bases: object

Compute the site frequency spectrum. The statistics are the average thetaW over all loci, and then the relative frequency of a user-defined number of bins of allele minor frequencies. For example, if the number of bins if 4, the 5 statistics will be: average thetaW, and then proportion of all polymorphic sites from all loci with minor allele <=0.125, >0.125 and <=0.25, >0.25 and <=0.375, and >0.375 and <=0.5. Expected argument: number of categories in the spectrum.

class egglib.fitmodel.JFS(number) Bases: object Compute the joint frequency spectrum. This set of summary statistics requires two populations The first two statistics are the average thetaW over all loci in both populations, and then the relative frequency of a userdefined number of bins of the frequencies of the minor allele in both populations. If the number of bins if 4, there will be 2+4**4 = 18 statistics: average thetaW in the first populations, in the second populations, and then the proportion of mutations with the minor allele at frequency <=0.125 in both populations, and then at frequency <=0.125 in the first population but at frequency >0.125 and <=0.25 in the second population, and so on. Expected argument: number of categories in one dimension of the joint spectrum.

There are some restrictions when using this summary statistics set: there must be exactly two populations; sequences for the first population must be consecutive; there must be exactly two alleles at each site and there cannot be any missing data.

egglib.fitmodel.summstats = [<class 'egglib.fitmodel.SDZ'>, <class 'egglib.fitmodel.TPH'>, <class 'egglib.fitmodel.T This list contains the class objects (different from class instances, they are the classes themselves) corresponding to sets of summary statistics. They must define a compute() method taking a dataset and a sample configuration. This method must create a stats member containing a defined number of number (statistics). The constructor might (or might not) take integer arguments. A name() class member and an informative docstring are also required. All this is still not (yet) enforced. This list is designed to help interactive commands to detect automatically available sets of summary statistics.

Utils module

Executable tools. This module defines the classes Option and BaseCommand that allow to develop automatically executable commands. A utilitary script egglib will load this module at runtime and let the user run any of this commands as if they were independent programs. class egglib.utils.BaseCommand Abstract base class for executable commands. Several members and function have to be overriden to provide all information needed by the egglib script.

brief = ''

This member must be overriden. One-line summary.

debug Flag indicating whether full error messages should be returned.

description = ''

This member must be overriden. Full description.

flags = []

This member must be overriden. List of flag, each given as a tuple of two strings: (label, description).

options = []

This member must be overriden. List of Option instances.

process_cmdline_arguments(arguments)

Processes arguments; returns a (fargs, kwargs) tuple. Don't change anything of the instance (i.e. don't set anything). Don't check anything.

quiet Flag indicating whether information should be displayed in the standard output stream (if quiet is True, information is not displayed). Defines the type, default value and requirements of all program options (except flags that are dealt with otherwise).

name is the name of the option, doc must be a string providing documentation. convert should be a function taking a string and returning a value of the appropriate type (can also be classes such as int, float or lambda expressions, providing that they take a string and process it the appropriate way), default is the default value (None means that the option must be specified) and requirements is a list of requirements, each of them under the form of a function taking a possible option value and returning True is the option is valid.

egglib.utils.execute(*fargs, **fkwargs) Execute utils commands. This functions takes arguments to specify the command name and its options.

There must be at least one positional argument: the first positional argument gives the function name and other (optional) positional arguments give the command flags to be activated. The keyword arguments give the command options. Flag, option names but also option values should be string (option values will be converted automatically). In case options are of a simple type (int, float), they can be passed as such. But options that are described as a string presenting a list of values separated by commas CANNOT be passed as a list using the function. If there is no argument whatsoever, arguments will be read from sys.argv. In this case, the first argument will be ignored; the second argument must be the command name; and keyword arguments must be passed under the form key=value where key is the option name.

For example, running the command:

egglib ungap input=file1.fas output=file2.fas threshold=0.5 triplets is the equivalent of calling the function:

>>> egglib.utils.execute ('ungap', 'triplets', input='file1.fas', output='file2.fas', threshol where threshold can also take the string "0.5".

test

This subpackage contains test functions organized in modules matching the module of the EggLib Python package.

Use the top-level test_all() function to launch all tests, as in the following:

>>> from egglib import test >>> test.test_all()
Note that all optional dependencies are required to run the tests, and that test procedures make use of unsecure local temporary files that might result of user files if they accidently have the same name as one of the test files ("test.fas", for example). If you wish to run the test suite, we strongly advice you to run them in an empty directory.

egglib.test.test_all() Call all test_all() functions of test modules.

Directly executable commands

The commands make available a bunch of pre-implemented applications that can be launched directly from a command interpreter. A script named egglib is installed in system directories and can be used as follows: egglib <command> <option>=<value> <option>=<value> ... <flag> <flag> where command is one of the command names, option is the name of an option and value is the associated value, and flag is the name of a boolean option the must be activated. The syntax <option>=<value> is required for all options that expect a value, options can be omitted when they define a default value. Flags are always off by default. All commands accept a debug flag that activates the output of full error message (in particular, this information is required when identifying the reason of problems that don't arise from a mistake in options, input file etc. The same set of summary statistics must have been used during simulations. This command expects a list of config files that must all present the same statistics but may have been generated under different models, or models with differing constraints. This command will display the proportion of accepted points from each file in the console (and ignore the 'quiet' arguments). The posterior must have been discretized using the command 'abc_bin'. The command will plot the marginal distribution of of either one (specified) or all parameters as png (portable network graphics) files. The graphics will be histogram, when the class limits will be fully defined by the discretization step accomplished previously. The Python module matplotlib is needed to use this command. The posterior must have been discretized using the command 'abc_bin'. The command will plot the (marginal) distribution of of two specified parameters as a png (portable network\ graphics) file. The graphics will be a two-dimensional density plot, where the class limits will be fully defined by the discretization step accomplished previously. The distribution should be called 'marginal' if the model has more than two parameters and will be the full posterior distribution (with all information visible) if the model has two parameters. This command generates a defined number of a user-defined list of statistics for one locus. A different set of parameter values is randomly drawn for each repetition. Simulations are conditioned on the number(s) of sequences and alignment length(s) passed as arguments. The command generates a comma-separated table without header that is displayed in the console. 'None' denote unavailable statistics (such as those that are undefined because of the lack of polymorphism). The argument 'quiet' is ignored. Note that binarized posterior files generated by the 'abc_bin' command are compatible. (required) ns Sample configuration: gives the number of sequence sampled in one or more subpopulations. Each value must be an integer and, when more than one, values must be separated by commas. Each locus must contain at least two samples (in any subpopulation) (required) ls Sample configuration: gives the number of sites to simulate. The argument must be an integer (required) nrepets ... Number of repetitions to perform (required) stats Labels of the statistics to compute. The statistic names correspond to the arguments of the EggLib function 'polymorphism' (note that some statistics are only available when more than one population is defined and/or when EggLib's core was linked to the Bio++ libraries at compile-time). The statistics are printed to the console in the order given by this option, one line per simulation (required) seeds Seeds of the random number generator. They must be given as two integer separated by a comma, as in 'seeds=12345,67890'. By default, the random number generator is seeded from the system time (default: '0') add_model . The name of a file containing a model definition information) (must be specified) If an argument is needed, it must be given as in the following example: 'AM:2' (for the model AM) (default: '') prior Prior distribution file (use option 'prior?' for more information) (must be specified) (default: '') stats Set of summary statistics (use option 'stats?' for more information) (must be specified). If an argument is needed, it must be given as in the following example: 'SFS:4' (for the statistic set SFS) (default: '') post Number of points to sample (default: '10000') seeds Seeds of the random number generator. They must be given as two integer separated by a comma, as in 'seeds=12345,67890'. By default, the random number generator is seeded from the system time (default: '0') restart Complete an interrupted run. The arguments are read from the file and all other command line arguments are ignored. The argument must be the name of a 'params' file (or an empty string to disable this function). Note that it is currently impossible to restore the random number generator status (meaning that the seeds will be lost and that the new run will be based on seeds based from system time) (default: '') add_model ... The name of a Python module containing a model definition. Pass a module name (without dots or dashes), such as "MyModel" and create a file "MyModel.py" (with a py extension in addition of the module name. The class defining the model must have the same name ("MyModel") (default: '') max_threads . Maximum number of threads to start for parallel computations.

List of commands

abc_sample: prior specification

Prior specification for 'abc_sample'

There are two ways of specifying priors: by passing the name of a file containing a prior specification string, and by passing this string itself. The prior specification format depends on the prior type and is given in the documentation of the 'fitmodel' module of the EggLib python package, and examples are given later in this document. Note that the prior type is automatically detected from the string.

Currently available prior types: PriorDumb, PriorDiscrete, PriorParser An example of prior specification for 'PriorDiscrete' is: 0.8 0.00;0.05 0.0;0.5 0.1 0.05;0.10 0.0;0.5 0.1 0.00;0.05 0.5;5.0

It specifies an almost flat uniform prior from 0. to 0.1 on the first axis and from 0. to 5.0 on the second axis, with an increased probability for values with THETA lesser than 0.05 and ALPHA lesser than 0.5.

An example of prior specification for 'PriorDumb' is:

U(0.,0.5) E(0.1)
This prior specifies a flat uniform prior distribution for the first parameter and an exponential distribution with mean 0.1 for the second parameter . Note that it is also possible to write the specification for individual parameters on separated lines.

To pass a file name, use the 'prior' option normally, as in:

egglib abc_sample prior=filename

To pass a raw string and avoid that it is mistaken for a file name, use a % character as below:

egglib abc_sample prior="%0.9 0.00;0.10" For prior specifications that require more than one line, use the line separator '\n' as below:

egglib abc_sample prior="%0.9 0.00;0.05\n0.1 0.05;0.10"

abc_sample: demographic models

Demographic models (with list of parameters) for 'abc_sample': ------------------Population Expansion Model (exponential growth), with optional recombination. Parameters: THETA, ALPHA, RHO (optional). --------------------------------------THETA DATE DUR BOTSIZE ANCSIZE [RHO] - -------------------------------------Bottleneck Model, with optional recombination. Parameters:

===== SNM ===== ------------- THETA [RHO] ------------- Standard Neutral Model: constant-sized single population. Allows optional recombination. Parameters: THETA, RHO (optional). ===== PEM ===== ------------------- THETA ALPHA [RHO] -

===== BNM =====

-THETA -DATE (date of the end of the bottleneck) -DUR (bottleneck duration) -BOTZISE (size of the population during the bottleneck) -ANCSIZE (size of the ancestral population) -RHO (optional) Note that if botsize is >1, the model can be generalized to a double instant change model. ------------------------- -------------------------Composite-parameter bottleneck, after the formalization of Galtier, Depaulis and Barton bottleneck model, with optional recombination. The bottleneck is implemented as a number of coalescent events occurring precisely at the time given by the DATE parameter. The STRENGTH is expressed as an amount of time of the normal coalescent process during which only coalescent occur (no migraton, not mutation) and during which the global time counter doesn't change. ----------------------------------THETA DATE STRENGTH ANCSIZE [RHO] - ----------------------------------Generalized Galtier, Depaulis and Barton with optional recombination. See GDB model. ANCSIZE gives the ancestral population size. Parameters: THETA, DATE, STRENGTH, ANCSIZE, RHO (optional). -----------------Island Model, with optional recombination. The number of populations is automatically detected from the observed dataset. Parameters: THETA, MIGR, RHO (optional).

===== GDB =====

==== IM ==== ------------------ THETA MIGR [RHO] -

=====

IMn ===== ----------------------------THETA MIGR SIZE1 .. ----------------------------Island Model with different population sizes, with optional recombination. The size of the first population is fixed to 1, therefore the size of all populations with index >1 must be specified as parameter. Parameters: THETA, MIGR, population sizes, RHO (optional). ------------------------THETA MIGR ALPHA [RHO] - ---------------------- -----------------------------------THETA MIGR ALPHA1 ALPHA2 .. ------------------------------------Island Model with Independent exponential Growth in each population, with optional recombination. The growth rate of each population must be provided. Parameters: THETA, MIGR, ALPHA for all populations, RHO (optional).

. [RHO]

===== IMG =====

. [RHO]

=======

IMiGn ======= --THETA MIGR ALPHA1 ALPHA1 ... SIZE2 .. --Island Model with Independent exponential Growth in each population, different population sizes and with optional recombination (the size of the first population is fixed to 1). The growth rate of each population must be provided, and the size of all populations save for the first one as well. Parameters: THETA, MIGR, growth rates, population sizes, RHO (optional). ----------------------------- -----------------------Admixture Model, with optional recombination. The DATE argument sets the time when ancestral populations joined and MIGR the migration rate that occurred between these populations. Note that the migration rate must not be 0 because coalescent time might be infinite. Present-day samples are not structured. Parameters: THETA, DATE, MIGR, RHO (optional). In 'abc_sample', specify this model as 'AM:k' where 'k' is the number of ancestral populations. -----------------------THETA MIGR DATE [RHO] -----------------------Split Model (thinking forward), with optional recombination. The DATE parameter sets the split date and MIGR the migration rate after the split. Parameters: THETA, MIGR, DATE, RHO (optional). ---THETA SIZE DATE DUR STRENGTH MIGR [RHO] - --------------------------------------- The size of the wild population is 1. The domestication date is DATE+DUR.

. [RHO]

===== MRC =====

==== SM ====

===== DOM =====

abc_sample: sets of summary statistics

Sets of summary statistics for 'abc_sample':

===== SDZ =====

Computes the following statistics: S, D, H (averaged over all loci excluding, for D and Z (standardized H), loci without polymorphism). Warning: when alignments have a tMRCA member, it will be assumed that they are simulated and that A is always the ancestral allele. In that case, they should not have any outgroup sequence. Alignments created from fasta file don't have a tMRCA member.

===== TPH =====

Computes the following statistics: thetaW, Pi, He (averaged over all loci).

===== TPS =====

Computes the following statistics: total thetaW, Pi for each populationm and Hudson's Snn (nearest neighbor statistic). The number of statistics will be 2 + the number of populations. Statistics are averaged over all loci.

===== TPF =====

Computes the following statistics: total thetaW, Pi for each

96

Chapter 4. Detailed contents population, and Fst. The number of statistics will be 2 + the number of populations. Statistics are averaged over all loci.

===== TPK =====

Computes the following statistics: total thetaW, Pi for each population, and Kst. The number of statistics will be 2 + the number of populations. Statistics are averaged over all loci.

===== SFS =====

Compute the site frequency spectrum. The statistics are the average thetaW over all loci, and then the relative frequency of a user-defined number of bins of allele minor frequencies. For example, if the number of bins if 4, the 5 statistics will be: average thetaW, and then proportion of all polymorphic sites from all loci with minor allele <=0.125, >0.125 and <=0.25, >0.25 and <=0.375, and >0.375 and <=0.5. Expected argument: number of categories in the spectrum.

===== JFS =====

Compute the joint frequency spectrum. This set of summary statistics requires two populations The first two statistics are the average thetaW over all loci in both populations, and then the relative frequency of a user-defined number of bins of the frequencies of the minor allele in both populations. If the number of bins if 4, there will be 2+4 ** 4 = 18 statistics: average thetaW in the first populations, in the second populations, and then the proportion of mutations with the minor allele at frequency <=0.125 in both populations, and then at frequency <=0.125 in the first population but at frequency >0.125 and <=0.25 in the second population, and so on. Expected argument: number of categories in one dimension of the joint spectrum.

There are some restrictions when using this summary statistics set: there must be exactly two populations; sequences for the first population must be consecutive; there must be exactly two alleles at each site and there cannot be any missing data.

===== DIV =====

Computes the following statistics: total thetaW, total Pi, total He, Fst, Gst, Snn, and, for each population, thetaW, Pi and He. The number of statistics will be 6 + 3 * the number of populations. Statistics are averaged over all loci. abc_statsdisc abc_statsdisc: Properties of a discretized posterior distribution The posterior must have been discretized using the command 'abc_bin'. The joint properties of distribution are computed and displayed in the console. The argument 'quiet' is ignored. input .. Name of the 'ms' output file to read. By default (empty string), data are read from standard input) (default: '') config . Sample configuration. In case of a structured sample, this option gives the number of samples from each population, each separated by a comma, as in 'config=20,20,18'. For a unique and non-subdivised population, a single integer should be passed (required) mis Misorientation rate (if >0, reverse randomly the assignation ancestral/derived with the probability) (default: '0.0') stats .. Specifies the list of stats (and the order) to compute.

The list must be comma-separated and contain only names of valid statistics that can be computed from the 'ms' data passed. Still, invalid statistic will be silently skipped. Generates consensus primers (degenerated if needed) from a nucleotide sequence alignment. Ideally, expects a coding sequence alignment as 'input' from which the primers will be designed and an annotated sequence as 'gbin' containing the full sequence with introns which will be used to select only primers contained in exons and filter the primers overlapping splicing sites out. Generates three output files where 'output' is an optional base name passed as option: 'output.list.txt', 'output.pairs.txt' and 'output.primers.gb'. The first file contains a list of the generated primers, the second contains a list of the generated pairs and the last one present the reference sequence with annotations showing the position of all primers. no_check . Don't check for primer dimerization and other primer pair problems (ie, pairs counts) are separated from each other and from the type symbol by any number of spaces (tabs are also supported). Frequencies must be 0 or more. Unsampled populations ('0,0') are allowed. (If a population is missing for all loci, better use the 'k' option to specify the real number of populations). The first and second alleles are equivalent (no orientation) but they must be the same across all populations of a given locus.

An example of the input file is provided below. This data set comprises two reference loci and one locus to be used for testing only, a total of five populations with varying sample size.

A comment

Reference locus 1 $ 10,4 4,1 5,0 12,1 6,3 Reference locus 2 $ 4,5 3,2 2,4 4,6 3,5 Test locus 1 % 15,1 8,0 3,1 2,12 0,10

The command will first perform the number of requested simulations, unless the argument 'load_simuls' is set. In this case, simulations will be imported from a text files containing He, Fst values (one pair per line). In this case, simulations parameters ('simuls' and 'step') will be ignored. The option 'save_simuls' (inactive by default) allows to save simulations and to import them in a following run, eg for trying out different values of the binarization factor.

The final file contains, for all loci, its He and Fst value, and the p-value derived from the distribution. This command uses all sequences from a fasta file of source sequences to blast against a database and reports (in a fasta file) all sequences of the target database that produce a significant hit with any of the source sequences. To use this command, you need to have the NCBI BLAST+ package installed. You need a fasta file of protein of nucleotide sequences. You need a target database (from which sequences should be extracted) as a fasta files. Computes association statistics between two alignments. It is required that both sequence alignments contain the exact same list of sequence names (duplicates are not supported) and there should be at least four sequences in each alignment. In the definition of statistics, an allele is a haplotype as determnined by the method Align.polymorphism(). The frequency of allele i at one locus is Pi, the frequency of the combination i,j (i at locus 1 and j at locus 2) is Pij. For a given pair of alleles i,j (i at locus 1 and j at locus j), Dij is Pij -PiPj. D'ij is Dij/Dijmax if Dij>=0 and Dij/Dijmin if Dij<0, where Dijmax is min(Pi(1-Pj), (1-Pi)Pj) and Dijmin is min(PiPj, (1-Pi)(1-Pj)). To obtain the complete LD estimates both measures are averaged over all allele pairs as Dijtot = sum(PiPj|Dij|) of all i,j pairs). This command performs a 'bl2seq' search using the first sequence as query and the second sequence as target. It then produces a genbank record containing the first sequence with annotation features indicating the positions of the hits with the second sequence. The * long * sequence should not contain gaps. This command reconstructs a phylogenetic tree and, optionnally, performs bootstrap repetitions. Crashes occurring during the bootstrap procedure due to estimation problems are ignored, allowing to complete the run. The substitution model name implies data type (HKY85, JC69, K80, F81, F84, TN93 and GTR imply nucleotides, others imply amino acids). 'LG' is default for amino acids in the stand-alone 'phyml' software. This command doesn't actually root (or reroot) the tree; the original tree must not be rooted (it must have a trifurcation at the root, and resulting tree will be likewise (only the representation will be altered to present the outgroup as one of the basal groups. A list of leaves representing a monophyletic group of the current tree (without encompassing the root) must be passed. The 'quiet' argument is ignored. By default, the command uses the midpoint method.

General usage: egglib reroot OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input Name of newick-formatted tree file (required) output ... Name of output file (required) outgroup . List of leaves constituting the outgroup, separated by commas when more than one. It is possible to place the list in a file (one per line) and pass the name of the file (say, 'fname') using the '@' prefix, as in 'outgroup=@fname' (there must be exactly one item and no comma separator in that case). By default (empty string) the command uses the midpoint method (default: '')

Flags (inactive by default):

quiet . Runs without console output debug . Show complete error messages select select: Select a given list of sequences from a fasta file.

The names should not include any group label ('@0', '@1', '@999' etc. tags) is they are present in the file (group labels are ignored). When a name is duplicated in the file (whether the different duplicates bear different group label or not), they are all exported to the output file. It is required that all names passed are found at least once. Sequences are exported in the order as they appear in the passed list.

General usage:

egglib select OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ...

Options:

input .. Name of fasta-formatted file (required) output . Name of the output file (required) list ... List of names of sequences that should be selected, separated by commas when more than one. It is possible to place the list of names in a file (one per line) and pass the name of the file (say, 'fname') using the '@' prefix, as in 'list=@fname' (there must be exactly one item and no comma separator in that case) (default: '') This version fixes the following minor bugs:

• [Codeml] the wrapper was failing to import site probability for models M1a, M2a, M8a and M8 if the reference was a gap (if the first position reference was a gap, a crash occurred; otherwise, the site probability table was truncated from the first gap position and on) (thanks to Nathalie Chantret).

• [matcher] a ValueError was fixed.

This version makes the following minor changes:

• [Random] the seed1 and seed2 getters become const.

• [Codeml] the wrapper now exports a np key (the number of parameters).

• [fitmodel] a new prior type is added (PriorParser).

10/02/12

This version fixes the following bugs:

• [fitmodel, abc_sample] the statistics set TPF was repaired (it is also modified compared to its previous definition).

• [Align.phylip, wrappers.nj] the phylip converter of Align had a bug and has been repaired and rewritten.

• [tools] a non-ASCII character was accidentally inserted in a comment in tools.py, preventing the package to load on at least some systems.

08/02/12

This version fixes the following bugs:

• [eggstats] the option groups was ignored (the default value was always used).

• [SitePolymorphism, data.Align.polymorphism, eggstats, etc.] non polymorphic sites were not considered as orientable: as a result, the number of orientable sites was always incorrectly reported as <= S.

• [fitmodel, abc_sample] model AM was incorrectly implemented, leading to invalid results.

This version incorporates the following improvements:

• [eggstats] the option outgroup is added, as well as a few statistics.

• [fitmodel, abc_sample] added summary statistics set SDZ Note on interface changes:

• [eggstats] one additional option.

• [eggstats] if you parse eggstats's output, beware that statistics have been added, the order is changed and some statistics might be skipped if you set the groups option to no.

26/01/12

This version fixes a single bug: in eggcoal, the default number of threads could be smaller than the number of CPUs under some conditions. The links are updated following the move from the seqlib to egglib sourceforge project.

2.1.0. 24/01/12

Version 2.1.0 is a preliminary version of the 2.1 release that will include an additional round of interface-changing changes. The changes listed below are mostly bug-fixes.

• Align and Container method find() now returns None instead of -1 when the specified name is not found.

• There were a few mistakes in the documentation included in the file apps.conf.ini.

• In the documentation of the command ungap, the word "newick" was incorrectly used instead of "fasta" (when specifying the format of the input file).

• Some other minor documentation fixes.

• The documentation of the Align method matrixLD() has been completed.

• The method coalesce now returns ~egglib.SSR instances instead of ~egglib.Align if the number of alleles specified in the mutator if above 4.

• A flag forceSSR is added to the method coalesce.

• All classes of the data module are converted to new-style classes.

• In ~egglib.SSR, when using the load method, population labels were not changed to strings.

• ~egglib.SSR improvements: addition of a str() method and str() support (string formatting), and addition of the indiv2pop mapping data member.

• When egglib.Align.polymorphism() and egglib.Align.polymorphismBPP() are unable to compute a statistics, the corresponding key in the returned dictionary is given a None value (rather than not reporting the statistic at all).

• A check is added in ABC regression method to prevent attempting to fit data files containing model labels.

• Align.remove() in egglib-cpp was returning the length of the alignment instead of the new number of sequences.

• An error lied in the low-level Edge class of the coalescent simulator, potentially generating errors when formatting newick string from ancestral recombination graphs and, potentially, skipping some mutations.

• A tiny change is made to the error message shown by EggInvalidCharacterError.

• In the C++ library, HaplotypeDiversity.haplotypeIndex() nows performs out of bound checking.

• LinkageDisequilibrium.correl() generated invalid results due to a bug.

• tMRCA values obtained by the Ms class of egglib-cpp are changed to double type (previously, they were float, what could cause rounding shifts when accessing them from Python).

• shuffle() had a bug.

History

• simErrors() is not available for Container instances anymore (for which it was not working).

• The stability of SSR is improved in case of empty data sets and when importing haploid data sets.

• The stability of the parser and extractor of TIGR has been improved.

• The stability of the parser of GenBank was improved.

• The meaning of qualifiers() of egglib.GenBankFeature is changed (the previous version was incorrect).

• rc() of egglib.GenBankFeature.rc doesn't require an argument anymore.

• Errors corrected in GenBankFeatureLocation methods to add sub-locations.

• Fixed a bug in Tree method to set branch lengths.

• Error fixed in :class:~egglib.Tree.frequency_nodes'.

• BLAST doesn't accept containers with duplicated names anymore.

• Errors have been fixed in egglib.Tree.get_nodes_re(), egglib.TreeNode.set_branch_from() and egglib.TreeNode.set_branch_to().

• The Clustal alignment format parser in aln2fas() has been fixed and improved.

• The staden() was interpreting the fname as a Staden string. It is now possible to use both mode (read from file or from a string).

• An error was fixed in get_fgenesh().

• In Mase, only ingroup sequences are imported (previously, outgroup sequences were imported at the instance level but not in the internal Align instance. The species name (species attribute) is stripped.

• longest_orf() now takes an option to specifies the minimal length of the returned ORFs. The default value is 1 codon, meaning that single stop codons are no longer returned by default.

• Error management in rc() is slightly modified.

• ungap() now takes an option for ignoring gaps in the outgroup sequence(s).

• Bug fixed in index().

• There was a bug in motifs(): the position of reverse hits was incorrect.

• locate() returns None (instead of -1) for motifs not found.

• exon() of ReadingFrame now returns None if the position is not in an exon.

• Updater now always shows null remaining time when "done" gets larger than "expected".

• wrap() is slightly improved.

• The ms wrapper support the "prob" line that appears in ms output when both theta and the number of segregating sites have been specified.

• The ms wrapper support the tree line(s) that appear in ms output when it has been requested, and adds a list of :class;'~egglib.Tree' instances to the returned instances under the name trees.

• BLAST wrappers are slightly improved.

• The clustalw wrapper and parser have been improved to support the current version of the program.

• clustal() and muscle() now attempt to preserve group labels and as a result no longer support duplicates in continers. They now take a nogroup flap to disable this feature.

• The following stability issues have been fixed in Codeml: regular expressions sometimes failed to catch some beta parameters; the number of classes of M8a/M8 models was incorrectly reporter as incorect when the number of categories was not default; and, for models A0, A and nW, the class did not checked that the tree has labels beforehand.

• The following stability issues have been fixed in Primer3: "primer not found" messages could occur when lower-case sequences were passed (the comparison are case-dependent -now the sequence is automatically converted to upper case), and when modifying the primer3 parameter relative to the primer first base index (previously, the class did not take this into account when locating the primer).

• The member nMutations was missing from DataMatrix instances returned by coalesce().

• The option randomAncestralState of mutators of the simul module was broken.

• Modification in eggcoal: the program takes a "suffix" option and the "prefix" option can be skipped using a backlash character. The underlying variable _fastaPath becomes _fastaPrefix for clarity.

• eggcoal is also parallelized an accept a max_threads option.

• The command abc_sample now supports parallel computing. See the max_threads option. The step option is removed.

• phyml (both function and utils command) allows to set the starting tree without fixing the topology.

• small bugs fixed in IMn, IMG, IMiG, IMiGn and DOM (with recombination) demographic models.

• The ABC summary statistics stats JFS yielded invalid results.

• The command abc_psimuls now manages simulations without mutations (they previously caused an error). Missing statistics (such as those that are undefined when no polymorphism, or those that are not available) are now replaced by "None".

• The function execute() of the utils module can be run directly to execute utils commands from python (as normal functions).

• There was a bug in command concatgb's default value for option "spacer".

• Command consensus did not accept separator of length 1 (the separator must be a single character).

• The consensus() method of Align() is made more restrictive: only IUPAC characters are accepted. It returns an alignment gaps only if the gap is fixed (previously it returned a gap when there was at least one gap in the column).

• In extract_clade command, nodes that have a support value equal to the threshold were rejected instead of accepted.

• In extract_clade command, nodes that did not have labels were not supported when the threshold option is used.

• In the family command, BLAST failed when the source sequences were proteins (because the data were cleaned assuming they were nucleotides).

• In the interLD command, the output file had "file 1" twice.

• locate() is changed. Ambiguity characters are now allowed in the target sequence and, importantly, exact matches are found in priority (in order to fasten searches).

• Command staden2fasta had a bug that prevented it from reading any file.

• In the coalescence simulator, if the length of the tree is 0 (no samples), there will be no mutations regardless of the fixed number of mutations (previously, a bug occurred when a fixed number of mutations was requested with no samples).

History

• A copy constructor is added to Mutator (in egglib-cpp).

• A test subpackage is added to the Python package. It is included in the distributed version although it has not be designed to be routinely used by end-users (it has minimal documentation, a crude reporting system and generates local temporary files in the current directory, so it might deletes user's files if they happen to have the same name as one of the temporary file names used). This test package helped detect most of the bugs listed above.

2.0.3. 07/10/11

This version incorporates a number of minor changes:

• Small changes:

-The utils command phyml accepted an option add_model that was meaningless (and ignored). It is now removed.

eggstats and the egglib script (or python -m egglib.utils) now reports the version number in the default manual page.

eggcoal takes a -version or -v option to print out the version number.

• Implementation changes:

-The C++ Fasta parser now provides methods that append sequences to an existing Container.

• Fixed bugs:

-Container could not instanciate from strings.

-The clean command of egglib-py setup.py was broken and caused an error.

-The method Convert.Align() and the program eggcoal, when running with a fixed alignment length and using default mutation positions, failed to sort the mutation positions leading to either incorrect positions (they were clustered to the right-hand end of the alignment) or an error.

16/09/11

The change below fixes an error in the calculation of a statistic:

• Fixed an error in the calculation of triConfigurations (some patterns were counted several times).

• triConfigurations now ignores sites that have 0 sequence in either of the populations.

The changes below are fixes corresponding to crashes or errors:

• Fixed an error that prevented data.Align.polymorphismBPP from running.

• Added an inclusion to the SWIG interface that was necessary for compiling the Python module on a least one system.

• tools.Primer3 (and consequently the utils command sprimers) was broken with recent versions of the program. Now updated to primer3 version 2.2.3.

• Fixed an error that resulted in a crash when displaying help for utils commands (under Windows and source version only).

• The ABC class and the abc_fit commande were unable to compute threshold/perform rejection when at least one statistic was not variable; now they still are unable to do so, but report an informative message error.

• abc_sample (linked to a method of both Prior type) now takes an argument "force_positive" that enforces that drawn parameter values are >=0 (an error is thrown if no positive value is found after a fixed number of tries).

• Documentation of executable commands (python -m egglib.utils concat for example) caused a crash on Windows installations.

• In the coalescent simulator, the case when M=0 preventing simulations to complete was not handled properly (an incorrect error message was issued).

• The stability of wrappers.Primer3.find_primers() was improved (some errors occurred, typically with repetitive sequences where primers could be found at multiple positions in sequences).

The changes below are minor improvements:

• The function for adding models to the ABC analysis is modified. Now the model must be specified as a class with the same name as the module.

The changes below are corrections to the names of statistics reported by polymorphism():

• Polymorphisms is renamed pop_Polymorphisms.

• The following statistics are reported: pair_CommonAlleles, pair_FixedDifferences, pair_SharedAlleles, pop_SpecificAlleles, pop_SpecificDerivedAlleles.

Some statistics are now no longer returned by both polymorphism() and polymorphismBPP() depending on the values of other statistics. For example thetaW and Pi are no longer returned if lseff is 0 and D if S is 0. This is clearly documented in the documentation of both methods.

In addition, several typos were corrected in the documentation.

2.0.1. Windows pre-compiled modules -11/04/11

• The code from the egglib script is moved to egglib.utils.execute.

• egglib.utils is executable (as an alias for the egglib script).

• egglib.utils.commands is created to hold all executable command classes.

2.0.1 -26/04/11 New major release. The interface is modified in depth. A few of the many changes are higlighted below:

• The name of the package is changed from SeqLib to EggLib to avoid confusion with other seqlib packages in the same field.

• The C++ library is formally distinct (egglib-cpp).

• Two separate C++ programs (eggstats and eggcoal) are also separated from the rest.

• The remainder is the Python module, egglib-py, whose structure is slightly modified: toolkit becomes tools and utils functions cannot be called anymore from Python code (not easily at least).

• Classes Container, Align, Tree and GenBank are extended and improved (and their names take capitals). In particular, polymorphism analysis is performed though Align methods. They all have more powerful iteration methods. A SSR class is added.

• Additional genetic code are supported for translations.

• Ported to Bio++ version 2.

• The ABC module was rewritten, and made more easy to extend. The regression steps are performed at the C++ level and is more efficient (supports very large data files).

• Interactive commands are standardized under a common interface controlling parameter input and documentation.

• The C++ coalescent simulator is rewritten and now includes recombination, microsatellite and finite site mutation models.

• The Python interface to the C++ coalescent simulator is redesigned to make it more easy to handle.

• The extension module (binding to egglib-cpp) now uses SWIG and doesn't require any external dynamic library.

• The building process is based on autotools for the C++ packages and on distutils for the Python package.

History

• Documentation using sphinx.

• Many more changes not documented: please refer to the documentation when migrating from seqlib to EggLib.

1.6 -02/07/10

This version cumulates several bug fixes and additions. Rule H is modified (single backward compatibility change) and rule I is added. (These rules use the frequency spectrum; type $python -m seqlib.run abc_stats to know more. Note that rule I automatically implies a missing data threshold of 0.70.). Among bug fixes, a problem occurred with haplotype analysis when the outgroup was not at the last position (resulting in memory crashes and possibly in erroneous computation of statistics K, Hd and Fst estimators based on haplotypes).

1.5 -26/11/09

More minor improvements and bug fixed. The change log is, unfortunately unavailable but notable changes are the addition of stat rule H to the ABC scheme (using the allele frequency spectrum as rejection/regression criteria) and the removal of a bug in the coalescent simulator (that led to the duplication of simulations without polymorphism under a certain combination of options).

1.4 -24/10/09

Few minor improvements: The command abc_psimuls accepts an option "excludefixed" that allows discarding simulations with S=0 for computing the P-values of D, H and Z statistics. The rule G is changed.

1.3 -23/10/09

One important bug fix and one addition.

BUG FIX: Migration times were incorrectly drawn in the coalescent simulator. The source code line doing that was accidently deleted! ADDITION: addition of one set of statistics to the ABC system, allowing to use thetaW, Pi, Snn and their respective coefficient of variation in order to fit structure population models.

1.2 -06/10/09

With respect to version 1.0, this version fixes bugs and introduces candidate features. The first bug listed led seqlib to output incorrect results. Thanks to Sonja Kujala and Thomas Källman for helping solving these problems.

BUG FIXES:

• The statistics H, thetaH and Z (Fay and Wu's test) were incorrect. H was incorrect since version 1.0 and Z was incorrect since the beginning. The error was causing a deviation or an order of ~0.1 of statistics H and Z that was consistent between simulations and computations from real data.

• The method rempos (of Align and align) did not terminate correctly sequence strings.

• The coalescent simulator used population indices starting at 0 when S was 0 and from 1 otherwise. Now indices always start at 0.

• abc_stats didn't support fixed parameters (when min=max).

• a 'collinear matrix' error message was returned by ''abc_fit' ' when one (or more) of the statistics where not variable within the local region. Now, abc_fit takes an argument force that forces it to proceeds to the analysis in such case (as long as at least one statistic is variable), although it is always preferable that at least as many independent statistics as the number of parameters to estimate are available.

• the pyinter class container had a method column() whose use led to a bug.

ADDITIONS

• class tree (of toolkit) enhanced with new methods, including midroot() that performs automatic rooting using the midpoint method.

• creation of class codeml.

• creation of function phyml3 (planned to replace the class phyml and using PHYML v. 3).

• creation of command picker to replace family (it is strongly advised to keep using family).

• new statistics in Polymorphism and polymorphism(), including singletons.

• member shuffle() in class container.

• argument "strict" of ''container'' classes' method find().

• clustal() uses temporary files, allowing its use in several parallel instances of Python.

• creation of the command interLD, allowing computing linkage disequilibrium between two loci (based on haplotypes, considering all alleles), and test it by random permutations.

1.1

No information available.

1.0 -07/06/09

The changes from version 0.8 are listed below. The list is unfortunately non-exhaustive. In particular, many small interface changes and bug fixes are not listed. The changes are grouped by subpackage:

• seqlib (top-level)

-A user manual is now included.

-The utils commands must be launched through the had-oc module seqlib.run.

-The presence of external applications is monitored by the file config.py created by setup.py at installation.

-Ported to Python 2.6 (this is now the primary target).

-The structure is changed: the library is split into core, pyinter, toolkit, and utils.

-The contents of pyinter and toolkit are both loaded both in the top seqlib namespace.

-The doxygen documentation is fixed (but some formatting troubles remain).

-The package is reorganized to fit to a correct Python module.

• core -Errors generated in seqlib.core's code systematically raise SeqlibException.

-The previous error() flag system is removed.

-Container/Align: * All sequences have an integer label (supposed to indicate population membership). This modification is supported by IO, Polymorphism and Coalesce.

* The internals of both classes are reimplemented, allowing better performance for data access.

• toolkit phyml: debugged.

-longest_orf() has been reimplemented -the external application getorf is no longer required.

Faster.

-The function rlen() is moved from the module seqtools.py to tools.py.

tree: bug fixed in frequency_nodes().

gb:

* was sometimes unable to import TITLE.

* supports any carriage return.

-Added functions stats() and correl(), and classes paml, updater and timer.

distribution.py is deleted.

cprimers(), sprimers(): bug fixes and minor improvment of usability.

rc(): faster implementation.

backalign(): added option name_table.

flocate() replaces locate(). Use locate() for the fast (and only available) implementation.

ranges(): supports unsorted data.

-primer3: the fixed parameters are put into string_init and string is reinitialized at each call to find().

isstream: broken method read().

chisquare(): the function was broken, and returns the critical value for (n+1) ddl instead of n.

• utils -The module tools is removed. The classes implementing abc commands are now directly in the seqlib.utils namespace.

rs (and other rs* commands) are removed and replaced by abc_* commands and a set of classes. Note that the behaviour of rs can be reproduced by abc_sample and abc_fit (with regress=False).

-Approximate Bayesian Computation: The commands abc_sample, abc_fit, abc_stats and abc_psimuls are introduced.

rs and associated commands (rsplot, etc.) are removed and replaced by commands names abc_sample, abc_fit, etc.

the abc family of commands extends the features previously incorporated in rs, but also incorporates a number of modifications from version 0.8.

-Faster implementation of the ABC discretization method.

-Added commands: fasta2phyml(), winphyml(), translate(), instruct(), extract_clade(), extract_nclade(), infos().

sprimers: significantly improved, with option additions and behavior change. In particular the blast check step was refined (with significantly improved stringency). The position score (3' preference) was wrong (reverted because of BLAST). Bug fixed (gaps were allowed in blast searches).

analyser() and stats() outputs Gst (and so on)stats() supports group labels in input fasta file. codalign(): changed to support longer file names, and doesn't alter names anymore (spaces replaced by underscores). Added option "software" (can use muscle rather than clustalw).

-fasta2nexus(): generates valid protein nexus files.

analyzer() becomes analyser().

input/output arguments syntax extended or modified for: clean_seq(), clean_tree(), codalign(), concat(), concatgb(), extract(), extract_clade(), fasta2nexus(), fasta2phyml(), fg2gb(), matcher(), rename(), select() (and others).

select(): * removes the "*" wild-card.

* the list file must use newlines as item separators. 0.8-22.10.08

• core now compiles successfully with GCC 4

• tree:

fixed: when several trees where imported, they were all accidentally merged (problem with superficial copy).

added: rename_leaves, clades, frequency_nodes methods.

• Polymorphism and polymorphism provide the list of polymorphic sites

• discret becomes rs_analyse and now produces an output with stats.

• stats function added to utils.

• coalesce output was crappy (ie not supported by function ms) for simulations without polymorphic sites.

(4.)0.7.2 -16.10.08

A few improvments and bug fixes.

(4.)0.7.1 -16.09.08

• pylab import generated crash when matplotlib was absent (fixed: the presence of matplotlib is no longer enforced)

• useless params output by sprimers was fixed

• Hnew of polymorphism renamed to Z

• default values of simulators changed

• added a trim option to discret

• sprimers has been improved:

filter replaced by filter1 and filter2 (filter1 occurring before the blast step)

both sorting steps (before and after the blast step) were wrong

• additions:

ranges, ungap, names and rename as utils commands names, duplicates, contains_duplicates and no_duplicates as fasta methods translation in toolkit nexus method in fasta.align and fasta2nexus command (4.)0.7.0 -12.09.08

• fasta string import extended to containers.

• plot is depreciated replaced by 4.10. Historydiscret (doesn't clean up empty classes any more)

plot

• align is fixed to support alignments with length = 0

• Random seeds are now static: that means that seeds are set by the complete program. Previously (since 4.0.4), different objets created with less than 1 second of delay had the same seeds. As a result, rs simulated identical loci, resulting in increased variance of statistics and a very poor estimation.

• rs:

error in time formatting after more than one day (fixed).

incremental counting of time (a priori, transparent change)

trims 0-frquency classes out of prior fixed bug cause by Random error (above)

fixed error in SPM (M was ignored and errorly fixed at simul's default value!)

uses a harcoded (not in a separated file) very large prior distribution.

• the setup.py script is radically modified: clean: removes object files and cleans sip configure: only creates a Makefile sip: compiles sip install: same as before The installation process should go:

> python setup.py sip > python setup.py configure > make > python setup.py install setup also accepts some arguments to modify a few system options

• sprimers check was so stringent that the step was completely removed

• gb: added method rc (reverse-complement)

• utils: added commands extractgb and gb2fas (no doc written yet) (4.)0.6 -27.08.08

• added composition() method to fasta base class.

• additions to Toolkit:

-genalys2fasta() * this function is directly imported from a script "Genalys2Fasta" (version 05/07/06).

* the function has not been tested at all (more than the previous script). there may be a problem if initial files were not named .ab1.

• blast hits are sorted according to e-values.

• codalign(): cds argument may be a container instance.

• primer3: check() is made a different function from pair() and find_and_pair() (both lose the argument check)

• created a function flocate() in Toolkit (faster implementation on the basis of a regular expression search).

• blast: inclusion of query-from, query-to and midline in hits entries.

• added fasta string import to IO (core) and to align (pyinter) constructor.

• ms parser draws nucleotides randomly. * dot ('.') characters are supported and resolved using CONSENSUS (before deletion:).

* no generation of consensus sequences

• bug fixed in mase parser.

• mase extended: copy from align instances, and writer function.

(4.)0.4 -18.08.08

• created help page for utils direct calls.

• io.ms() IO.ms() both use (by default) standard input.

• Align and Container had a problem in copy constructors: an empty sequence (instead of no sequences at all) was added when copying from an empty object.

• Ms (and therefore IO.ms() and io.ms()) did not support an trailing empty null simulation.

• dist() function (in pyinter, manips) was fixed and the order of parameters in the output tuple was changed (to be compatible with polymorphism::pairwise())

• dist(): argument type added.

• slider() added to toolkit.

• introduced mode debug for running utils function through seqlib (shows full error message).

• extensions of rs: introduction of option rule and addition of model 6 (using ms).

• ms incorporated in the package.

• Random used to take its address on memory as second seed. This seemed to cause problems depending on the system and was changed to a constant second seed (0.). The first seed is still the system time, and it's still possible to set arbitrary seeds.

• added import_posterior, clean_tree, clean_seq concatgb and concat functions to Utils.

• non-keyword arguments are passed to Utils functions (they may be ignored, as well as unknown keywords.

• primer3 default Tm range was much narrower than claimed (61-65 instead of 55-65).

• a problem with the function ranges of prior was fixed (appeared when using priors with more than 1 class).

• rs accepts a maxsim argument to stop simulations after a givennumber of simulations (by default, 1000000000).

(4.)0.3 -07.08.08

• SIP is now included in the distribution.

• setup.py changes:

options removed: pyinc, pylib, cpath and compiler compiles SIP enforces the use of g++

• Toolkit/blast: each hit entry contains:

-'pos', the positions of the first Hsp (individual hit fragment),

the e-value ('e'),

History

• Consensus/Polymorphism/Staden/IO:

noted a possible problem(in consensus generation): example A+T+A (rigorous) ->W+A -> A (= problem)

• newick is not stable, apparently (TODO: use standard libraries for XML and tree)

• reprogram XML using default python modules

• reprogram tree and newick

• memory leak in rs

CHANGES

• Lots of changes in the interface and the implementation.

• Not all changes are listed below.

• creation of the seqlib namespace

• added a simplified wrapper of vector for Align (VAlign) and unsigned int (Vuint) with no checking these classes provide a SIP interface and are designed for being used by a Python wrapper (never directly)

• incorporation of the module coalesce doesn't write anything anywhere, except a report in an internal string note: some use of vector (check whether any other container may be better)

missing: missing code in input (?)

disagrement: code for disagreemnt in output (non rigorous mode) (Z)

• Polymorphism: wrong data type leads to 0 polymorphism, not error (false characters are taken as missing)

• Site:

don't store actual data anymore (no more get() accesser)

carriers reimplemented as a pointer, and initialized at construction vslice(vector<>) re-implemented (a bit) more efficiently, but now the order in the vector is strictly followed 3.2.8 -28.04.08

• 28/04/08: SequenceAlignment::getColumn returns NULL in case of invalid index (and error statements)

• 13/03/08: slice now accepts a=b arguments 3.2.7 -12/03/08

• Pairwise: dist() was wrongly divided by the number of (overall) polymorphic sites 3.2.6 -04/03/08

• GetMs: reading buffer increase to 500000 (instead of 50000): support larger lines (ie simulations with many more sites)

 holders class egglib.egglib_binding.Align(*args) Proxy of C++ egglib::Align class __init__(self) -> Align __init__(self, unsigned int number_of_sequences, unsigned int alignment_length) -> Align __init__(self, Container container) -> Align append(self, char name, char sequence, unsigned int group = 0) → unsigned int append(self, char name, char sequence) -> unsigned int appendSequence(self, unsigned int pos, char sequence) binSwitch(self, unsigned int pos) character(self, unsigned int s, unsigned int p) → char clear(self) equalize(self, char ch = '?') → unsigned int equalize(self) -> unsigned int find(self, char string, bool strict = True) → int find(self, char string) -> int get(self, unsigned int sequence, unsigned int position) → char group(self, unsigned int pos, unsigned int group) group(self, unsigned int pos) -> unsigned int hslice(self, unsigned int a, unsigned int b) → Container isEqual(self) → bool ls(self) → unsigned int ls(self, unsigned int pos) -> unsigned int name(self, unsigned int pos, char name) name(self, unsigned int pos) -> char ns(self) → unsigned int numberOfSequences(self) → unsigned int numberOfSites(self) → unsigned int populationLabel(self, unsigned int sequenceIndex) → unsigned int remove(self, unsigned int pos) → unsigned int removePosition(self, unsigned int pos) → unsigned int sequence(self, unsigned int pos) → char sequence(self, unsigned int pos, char sequence) set(self, unsigned int sequence, unsigned int position, char ch) sitePosition(self, unsigned int position) → double vslice(self, vectorui list_of_sites) → Align vslice(self, unsigned int a, unsigned int b) -> Align class egglib.egglib_binding.CharMatrix(*args, **kwargs) Proxy of C++ egglib::CharMatrix class character(self, unsigned int sequence, unsigned int site) → char numberOfSequences(self) → unsigned int numberOfSites(self) → unsigned int populationLabel(self, unsigned int row) → unsigned int sitePosition(self, unsigned int column) → double class egglib.egglib_binding.Container(*args) Proxy of C++ egglib::Container class __init__(self) -> Container __init__(self, Container source) -> Container append(self, char name, char sequence, unsigned int group = 0) → unsigned int append(self, char name, char sequence) -> unsigned int appendSequence(self, unsigned int pos, char sequence) clear(self) equalize(self, char ch = '?') → unsigned int equalize(self) -> unsigned int find(self, char string, bool strict = True) → int find(self, char string) -> int get(self, unsigned int s, unsigned int p) → char group(self, unsigned int pos, unsigned int group) group(self, unsigned int pos) -> unsigned int hslice(self, unsigned int a, unsigned int b) → Container isEqual(self) → bool ls(self, unsigned int pos) → unsigned int name(self, unsigned int pos, char name) name(self, unsigned int pos) -> char ns(self) → unsigned int remove(self, unsigned int pos) → unsigned int sequence(self, unsigned int pos, char sequence) sequence(self, unsigned int pos) -> char set(self, unsigned int sequence, unsigned int position, char ch) class egglib.egglib_binding.DataMatrix(*args) Proxy of C++ egglib::DataMatrix class __init__(self) -> DataMatrix __init__(self, unsigned int numberOfSequences, unsigned int numberOfSites) -> DataMatrix __init__(self, DataMatrix arg0) -> DataMatrix character(self, unsigned int sequence, unsigned int site) → char clear(self) get(self, unsigned int sequence, unsigned int site) → int numberOfSequences(self) → unsigned int numberOfSites(self) → unsigned int populationLabel(self, unsigned int sequence, unsigned int value) populationLabel(self, unsigned int sequence) -> unsigned int resize(self, unsigned int newNumberOfSequences, unsigned int newNumberOfSites) set(self, unsigned int sequence, unsigned int site, int value) shift(self, int minimum) sitePosition(self, unsigned int site, double value) sitePosition(self, unsigned int site) -> double Conversion and parsing class egglib.egglib_binding.Consensus Proxy of C++ egglib::Consensus class __init__(self) -> Consensus ambiguousPositions(self) → vectori atLeastPartiallyResolvedAmbiguities(self) → vectori check_sequences(self, Align align) → bool complementaryPositions(self) → vectori consensus(self, Align align, char separator = '_', bool rigorous = True) → Align consensus(self, Align align, char separator = '_') -> Align consensus(self, Align align) -> Align consistentPositions(self) → vectori firstSequenceNames(self) → vectors inconsistentPositions(self) → vectorvi roots(self) → vectors secondSequenceNames(self) → vectors setDisagreement(self, char arg0) setMissing(self, char arg0) uninformativePositions(self) → vectori class egglib.egglib_binding.Convert(*args, **kwargs) Proxy of C++ egglib::Convert class static align(*args) align(DataMatrix dataMatrix, unsigned int length = 0, Random random = None, bool random-izePositions = False, bool randomizeNonVaryingStates = False, bool randomizeAlleles = False, bool enforceLength = False, string mapping = "ACGT", char unknown = '?', char nonVary-ingState = 'A') -> Align align(DataMatrix dataMatrix, unsigned int length = 0, Random random = None, bool random-izePositions = False, bool randomizeNonVaryingStates = False, bool randomizeAlleles = False, bool enforceLength = False, string mapping = "ACGT", char unknown = '?') -> Align align(DataMatrix dataMatrix, unsigned int length = 0, Random random = None, bool random-izePositions = False, bool randomizeNonVaryingStates = False, bool randomizeAlleles = False, bool enforceLength = False, string mapping = "ACGT") -> Align align(DataMatrix dataMatrix, unsigned int length = 0, Random random = None, bool random-izePositions = False, bool randomizeNonVaryingStates = False, bool randomizeAlleles = False, bool enforceLength = False) -> Align align(DataMatrix dataMatrix, unsigned int length = 0, Random random = None, bool random-izePositions = False, bool randomizeNonVaryingStates = False, bool randomizeAlleles = False) -> Align align(DataMatrix dataMatrix, unsigned int length = 0, Random random = None, bool random-izePositions = False, bool randomizeNonVaryingStates = False) -> Align align(DataMatrix dataMatrix, unsigned int length = 0, Random random = None, bool random-izePositions = False) -> Align align(DataMatrix dataMatrix, unsigned int length = 0, Random random = None) -> Align align(DataMatrix dataMatrix, unsigned int length = 0) -> Align align(DataMatrix dataMatrix) -> Align class egglib.egglib_binding.Fasta(*args, **kwargs) Proxy of C++ egglib::Fasta class static format(*args) format(Container container, bool exportGroupLabels = False, unsigned int lineLength = 50) -> string format(Container container, bool exportGroupLabels = False) -> string format(Container container) -> string static formatf(*args) formatf(char fname, Container container, bool exportGroupLabels = False, unsigned int line-Length = 50) formatf(char fname, Container container, bool exportGroupLabels = False) formatf(char fname, Container container) static parse(string str, bool importGroupLabels = False) → Container parse(string str) -> Container parse(string str, Container container, bool importGroupLabels = False) parse(string str, Container container) static parsef(char fname, bool importGroupLabels = False) → Container parsef(char fname) -> Container parsef(char fname, Container container, bool importGroupLabels = False) parsef(char fname, Container container) class egglib.egglib_binding.Ms(*args, **kwargs) Proxy of C++ egglib::Ms class static format(DataMatrix dataMatrix, bool separated = False) → string format(DataMatrix dataMatrix) -> string static get(string arg0, unsigned int ns, bool separated = False) → DataMatrix get(string arg0, unsigned int ns) -> DataMatrix static prob() → double static tMRCA() → double static trees() → string class egglib.egglib_binding.Staden(*args, **kwargs) Proxy of C++ egglib::Staden class static parse(string string, bool deleteConsensus = True) → Align parse(string string) -> Align Analysis of polymorphism class egglib.egglib_binding.BaseDiversity Proxy of C++ egglib::BaseDiversity class __init__(self) -> BaseDiversity get_position(self, unsigned int index) → unsigned int get_site(self, unsigned int index) → SitePolymorphism reserve(self, unsigned int numberOfSites) reset(self) class egglib.egglib_binding.BppDiversity Proxy of C++ egglib::BppDiversity class __init__(self) -> BppDiversity D(self) → double Deta(self) → double Dfl(self) → double Dflstar(self) → double

 double class egglib.egglib_binding.FStatistics Proxy of C++ egglib::FStatistics class __init__(self) -> FStatistics F(self) → double Vallele(self) → double Vindividual(self) → double Vpopulation(self) → double alleleFrequencyPerPopulation(self, unsigned int populationIndex, unsigned int alleleIndex) → unsigned int alleleFrequencyTotal(self, unsigned int alleleIndex) → unsigned int alleleValue(self, unsigned int alleleIndex) → unsigned int f(self) → double genotypeFrequencyPerPopulation(*args) genotypeFrequencyPerPopulation(self, unsigned int populationIndex, unsigned int alleleIndex1, unsigned int alleleIndex2) -> unsigned int genotypeFrequencyTotal(self, unsigned int alleleIndex1, unsigned int alleleIndex2) → unsigned int loadIndividual(self, unsigned int genotype1, unsigned int genotype2, unsigned int population-Label) numberOfAlleles(self) → unsigned int numberOfGenotypes(self) → unsigned int numberOfPopulations(self) → unsigned int populationFrequency(self, unsigned int populationIndex) → unsigned int populationLabel(self, unsigned int populationIndex) → unsigned int reserve(self, unsigned int numberOfIndividuals) theta(self) → double class egglib.egglib_binding.HFStatistics Proxy of C++ egglib::HFStatistics class __init__(self) -> HFStatistics T1(self) → double T2(self) → double alleleFrequencyPerPopulation(self, unsigned int populationIndex, unsigned int alleleIndex) → unsigned int alleleFrequencyTotal(self, unsigned int alleleIndex) → unsigned int alleleValue(self, unsigned int alleleIndex) → unsigned int loadIndividual(self, unsigned int genotype, unsigned int populationLabel) numberOfAlleles(self) → unsigned int numberOfGenotypes(self) → unsigned int numberOfPopulations(self) → unsigned int populationFrequency(self, unsigned int populationIndex) → unsigned int populationLabel(self, unsigned int populationIndex) → unsigned int reserve(self, unsigned int numberOfIndividuals) theta(self) → double class egglib.egglib_binding.HaplotypeDiversity Proxy of C++ egglib::HaplotypeDiversity class __init__(self) -> HaplotypeDiversity Fst(self) → double Gst(self) → double He(self) → double Hst(self) → double K(self) → unsigned int Kst(self) → double Snn(self) → double get_position(self, unsigned int index) → unsigned int get_site(self, unsigned int index) → SitePolymorphism haplotypeIndex(self, unsigned int arg0) → unsigned int load(*args) load(self, CharMatrix data, bool allowMultipleMutations = False, unsigned int ignoreFrequency = 0, string characterMapping = dnaMapping) load(self, CharMatrix data, bool allowMultipleMutations = False, unsigned int ignoreFrequency = 0) load(self, CharMatrix data, bool allowMultipleMutations = False) load(self, CharMatrix data) reserve(self, unsigned int numberOfSites) reset(self) class egglib.egglib_binding.LinkageDisequilibrium Proxy of C++ egglib::LinkageDisequilibrium class __init__(self) -> LinkageDisequilibrium D(self, unsigned int pair_index) → double Dp(self, unsigned int pair_index) → double Rmin(self, CharMatrix data) → unsigned int correl(self) → double d(self, unsigned int pair_index) → int get_position(self, unsigned int index) → unsigned int get_site(self, unsigned int index) → SitePolymorphism load(*args) load(self, CharMatrix data, double minimumExploitableData = 1., unsigned int ignoreFrequency = 0, string characterMapping = dnaMapping) load(self, CharMatrix data, double minimumExploitableData = 1., unsigned int ignoreFrequency = 0) load(self, CharMatrix data, double minimumExploitableData = 1.) load(self, CharMatrix data) numberOfPairs(self) → unsigned int r(self, unsigned int pair_index) → double r2(self, unsigned int pair_index) → double reserve(self, unsigned int numberOfSites) reset(self) site1(self, unsigned int pair_index) → unsigned int site2(self, unsigned int pair_index) → unsigned int class egglib.egglib_binding.MicrosatelliteDiversity Proxy of C++ egglib::MicrosatelliteDiversity class __init__(self) -> MicrosatelliteDiversity He(self, unsigned int siteIndex) → double load(self, DataMatrix dataMatrix, int missingData = 999, bool noMissingData = False) load(self, DataMatrix dataMatrix, int missingData = 999) load(self, DataMatrix dataMatrix) numberOfAlleles(self, unsigned int siteIndex) → unsigned int numberOfSites(self) → unsigned int sizeVariance(self, unsigned int siteIndex) → double thetaAssumingIAM(self, unsigned int siteIndex) → double thetaAssumingSMMfromHe(self, unsigned int siteIndex) → double thetaAssumingSMMfromSizeVariance(self, unsigned int siteIndex) → double class egglib.egglib_binding.NucleotideDiversity Proxy of C++ egglib::NucleotideDiversity class __init__(self) -> NucleotideDiversity CommonAlleles(self) → unsigned int CommonAlleles(self, unsigned int pop1, unsigned int pop2) -> unsigned int D(self) → double E(self) → double FixedDifferences(self) → unsigned int FixedDifferences(self, unsigned int pop1, unsigned int pop2) -> unsigned int H(self) → double Pi(self) → double Polymorphisms(self, unsigned int pop) → unsigned int S(self) → unsigned int SharedAlleles(self) → unsigned int SharedAlleles(self, unsigned int pop1, unsigned int pop2) -> unsigned int So(self) → unsigned int SpecificAlleles(self) → unsigned int SpecificAlleles(self, unsigned int pop) -> unsigned int SpecificDerivedAlleles(self) → unsigned int SpecificDerivedAlleles(self, unsigned int pop) -> unsigned int Z(self) → double average_Pi(self) → double eta(self) → unsigned int get_position(self, unsigned int index) → unsigned int get_site(self, unsigned int index) → SitePolymorphism load(*args) load(self, CharMatrix data, bool allowMultipleMutations = False, double minimumExploitable-Data = 1., unsigned int ignoreFrequency = 0, string characterMapping = dnaMapping, bool useZe-roAsAncestral = False) load(self, CharMatrix data, bool allowMultipleMutations = False, double minimumExploitable-Data = 1., unsigned int ignoreFrequency = 0, string characterMapping = dnaMapping) load(self, CharMatrix data, bool allowMultipleMutations = False, double minimumExploitable-Data = 1., unsigned int ignoreFrequency = 0) load(self, CharMatrix data, bool allowMultipleMutations = False, double minimumExploitable-Data = 1.)

 If sampleConfiguration is None, it it assumed that all samples are haploid samples. The population labels from the passed DataMatrix are discarded unless sampleConfiguration is None. Below are some examples of accepted values for the second argument. 20 individuals from 4 populations with boths chromosomes sampled: [10, 10, 10, 10]. 10 individuals from 4 populations with one chromosome sampled: [(0,20), (0,20), (0,20), (0,20)]. A mixture of samples: [10, (0,20), (5,10), (1,18)]. In all these three examples, 20 chromosomes are sampled from each population, suming up to a total of 80 samples. Changed in version 2.1.0: Population names were previously integers, they now are converted to strings.

 class egglib.simul.CoalesceInfiniteAlleleMutator(theta=0) Bases: egglib.simul.CoalesceMutator Represents a mutation model with an infinite number of alleles. Each mutation creates a different new allele. This model sets by default one possible mutable site.

 class egglib.fitmodel.ParamSample(length) Bases: object Holds a list of float values (parameters) of fixed length. Supports len(), use of the subscript ([]) operator for accessing or modifying values (but not deleting) and str() (str(paramSample) or with print()). String formatting returns a space-delimited string of the values.The constructor expects a length argument to fix the number of parameters.values()Gets a deep copy of the values contained in the instance egglib.fitmodel.import_posterior(fname) Imports a posterior file fname must be the name of a file containing fitted ABC data, one sample per line and one parameter per column. Header line is optional and is automatically detected. If present, no parameter name can be provided as a number.

 run(*fargs, **kwargs) Execute commands. fargs are flag arguments and kwargs are keyword arguments. class egglib.utils.Option(name, doc, convert=<type 'str'>, default=None, requirements=[])

 Ref.: Fagundes et al. PNAS 2007. General usage: egglib abc_compare OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input One or several ABC config files, separated by commas when more than one. (required) tolerance . Proportion of samples to include in the local region (example: a value of 0.05 specifies that the 5% closest samples should be used). (required) Flags (inactive by default): quiet . Runs without console output debug . Show complete error messages abc_fit abc_fit: Uses samples to fit models using Approximate Bayesian Computation Performs rejection-regression method of Beaumont et al. Genetics 2002. Note: ensure that enough samples will pass the tolerance threshold. General usage: egglib abc_fit OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input Name of data file to analyze. The file must be the parameter file generated by 'abc_sample' (by default: 'abc_sample.txt') (required) tolerance . Proportion of samples to include in the local region (example: a value of 0.05 specifies that the 5% closest samples should be used). (required) transform . Data transformation to apply. Accepted values are 'none', 'log' and 'tan' (default: 'none') output Name of the output file. (default: 'abc_fit.out') Flags (inactive by default): quiet . Runs without console output debug . Show complete error messages abc_plot1D abc_plot1D: Plots marginal distributions from a discretized posterior

 General usage: egglib abc_plot1D OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: Flags (inactive by default): quiet . Runs without console output debug . Show complete error messages abc_plot2D abc_plot2D: Plots discretized posterior on a two-dimensional plan

 by default): CI displays the 95% credible interval as colored region quiet . Runs without console output debug . Show complete error messages abc_psimuls abc_psimuls: Performs posterior simulations

 General usage: egglib abc_psimuls OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: model Model to use for simulation. This argument corresponds to the model specification in the 'abc_sample' command (required) prior Distribution of parameters. This argument corresponds to the prior specification in the 'abc_sample' command.

 without console output debug . Show complete error messages abc_sample abc_sample: Generates samples to fit Approximate Bayesian Computation models This command draws a given number of random sample from the prior distribution and generates associated set of summary statistics. Note that the output file is overwritten without prompting. General usage: egglib abc_sample OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: dir Directory containing fasta files (default: '.') ext Extension of files to import. If an empty string is passed (as in 'ext='), only files without extension (without any dot in their name) are processed (default: 'fas') params Name of report file. (default: 'abc_sample.txt') data name of main output file (default: 'abc_sample.out') model Demographic model (use option 'model?' for more

 -THETA DATE STRENGTH[RHO] -

 Ref: Galtier * et al. * * Genetics * ** 155 ** :981-987, 2000. Parameters: THETA, DATE, STRENGTH, RHO (optional). ====== GGDB ====== -

 -Island Model with exponential Growth, with optional recombination. Parameters: THETA, MIGR, ALPHA, ====== IMiG ====== -

 -THETA DATE MIGR0 MIGR1 [RHO]------------------------------Migration Rate Change, with optional recombination. MIGR0 is the current migration rate and MIGR1 the ancestral migration rate. Parameters, THETA, DATE, MIGR0, MIGR1, RHO (optional).==== AM ====-----------------------THETA DATE MIGR[RHO]

-

 Domestication model, with optional recombination. Parameters: -THETA -SIZE (size of the cultivated population) -DATE (date of the bottleneck) -DUR (duration of the bottleneck) -STRENGTH (size of the bottleneck population) -MIGR (bidirectional migration rate) -RHO (optional)

 cprimers cprimers: Finds consensus primers.

 General usage: egglib cprimers OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input Nucleotide sequence alignment file (required) output Base file name for results (default: 'cprimers') gbin Reference genbank file (if empty, the first sequence of the alignment will be used (default: '') ndeg Maximum number of degenerate positions allowed, per pair (default: '3') liml Left limit of the selected region (based on the reference sequence, not the alignment) (default: '1') limr Right limit of the selected region (based on the reference sequence, not the alignment) ('-1' means the end of the sequence) (default: '-1') clean_ends . Number of clean positions (without degenerated bases) at the end of primers (default: '3') nseq Number of sequences to include (the default, 0, corresponds to all) (default: '0') Flags (inactive by default):

 familyfamily: Finds homologs of a gene family using BLAST.

 infos infos: Displays basic information from fasta files. The commands displays the number of sequences and alignment length (length of the longest sequences for unaligned sets of sequences) for all fasta files passed. The 'quiet' option is ignored. General usage: egglib infos OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input . One or more fasta file names, separated by commas when more than one (required) Flags (inactive by default): quiet . Runs without console output debug . Show complete error messages interLD interLD: Computes linkage disequilibrium statistics between two loci.

 alignment (required) align2 . Second alignment (required) permus . Number of permutations to perform. If the value is larger than 0, the distribution of linkage statistics is computed by randomly shuffle the sequences of one of the alignments. (default: '0') output . Name of output file (default: 'interLD.txt') Flags (inactive by default): quiet . Runs without console output debug . Show complete error messages matcher matcher: Finds homologous regions between two sequences.

 phyml phyml: Performs maximum-likelihood phylogenetic reconstruction.

 function re-implements part of the program tofasta as of version 2.5 tofasta is now deprecated. changes: * the interfaces changes * CONSENSUS is always deleted.

-

 deletion of BaseCoalesce (classes are integrated in the Seqlib hierarchy) other classes are just ported with minor compatibility changes -Coalesce: * pi attribute of Coalesce changed to Pi * uses new version of Polymorphism * removed clear_error * statistics of irrelavant data type are initialyzed * in case of error: sets everything to 0/default * apparently its impossible to set alpha<0. the blocking is maintained. * blank line added after header in data file, plus between simulations for microsats * added tMRCA statistic • other former classes of the BaseCoalesce hierarchy are in a "coalesce" namespace • creation of BppWrapper: available only with mode dna at the moment (translated as DNA for bpp) • Pairwise: deleted and transfered to Polymorphism • ReadingFrame: compatibility changes the constructor closes the input file after use return Vuint objects • Consensus (incorporated in Polymorphism):

-

 constructor calling directly analyze both take more arguments the same object can be used several times analyze returns the number of polymorphic sites or -1 in case of error site accessors are deleted (sites are not stored any more) sites with more than 2 alleles are accepted: always: eta consensus() function pairwise() function collecting Pairwise functionalities

--

 minor change in interface no destruction of the data pointer automatic conversion to upper case possible to set an outgroup with mode b -otherwise, 0 are taken to be ancestral the linked list feature is DELETED • ReadingFrame: -observations (these are no change):* the usage of newlines for separating exons is enforced in constructor but no in method import() * the format is very sensitive to spaces, don't add any other positions than specified * the numbering of the input is not converted• GetMS:renamed to Ms and linked to from IO copy is implicitely allowed the class manages a pointer to the stream size limits are removed• GetStadenAlign:renamed as Staden simplified interface: only import which returns an Align import uses CONSENSUS to resolve . characters import deletes CONSENSUS• SequenceContainerIO:renamed as IO significant changes of the interface: reading functions return an object and writing functions take an object as argument no longer length limit (use of queues) incorporates a call to Staden::convert (less efficient because of an additional object copy)incorporates Ms call• Seqlib:removed DATA_TYPE, MINIMUM_READ, SKIP_RM, SMALL_DIFF and MULTIPLE_HITS_ACCEPTED change interface of isValid() to accept type character -isValid() is made case-insensitive• Sequence:add constructor Sequence(number, char) to initialize an empty sequence concatenating sequences with different names is no longer fatal oor errors for get(), set(), rem()-suppress build_helper() helper function and lname, lseq members pname(), psequence() become name() and sequence() copy constructor supports overwriting • SequenceContainer: -remSeq() now checks equalize() takes an optional padding character as argument pname, psequence, psequence2 renamed to name, sequence and getSequence (respectively) slice() becomes hslice() still doesn't perform any test • SequenceAlignment: get() checks -binSwitch() checks p and binary data subset() becomes vslice() (with an overloaded function vslice(a,b)

•

 ReadingFrame: added function last() • Polymorphism: change in D(): in case the variance is close to zero (compared to SMALL_DIFF) is catched and its set to zero this avoids taking the square root of a (slightly) negative number and having an indefinite #IND D (although it will stay infinite #INF) • Added field SMALL_DIFF in Seqlib (used by Polymorphism:D() as stated above) 4.10. History

 And how to get information on several files (data2.txt contains names but no sequences):

	... alignment
	... length: 38
	$ egglib infos input=data4.fas
	data4.fas
	... 6 sequences
	... alignment
	... length: 38
	$ egglib infos input=data1.fas,data2.fas,data3.fas,data4.fas
	data1.fas
	... 10 sequences
	... alignment
	... length: 160
	data2.fas
	... 10 sequences
	... alignment
	... length: 0
	data3.fas
	... 6 sequences
	... alignment
	... length: 38
	data4.fas
	... 6 sequences

 7/site-packages/egglib/data.py", line 767, in __init__ if not os.path.isfile(fname): raise ValueError, 'cannot open %s' %fname ValueError: cannot open data6.fas

apply(self, ParamSet paramSet, Controller controller) date(self) → double date(self, double value) population(self) → unsigned

	thetaL(self) → double class egglib.egglib_binding.Arg(*args) class egglib.egglib_binding.Controller(*args) top doubles(self, unsigned int populationIndex) → unsigned int class egglib.egglib_binding.PopulationGrowthRateChange(*args) date(self) → double Random number generator
	Proxy of C++ egglib::Arg class Proxy of C++ egglib::Controller class Edge_top_get(Edge self) -> double doubles(self, unsigned int populationIndex, unsigned int value) Proxy of C++ egglib::PopulationGrowthRateChange class date(self, double value) thetaW(self) → double triConfiguration(self, unsigned int index) → unsigned int class egglib.egglib_binding.SitePolymorphism(*args) Proxy of C++ egglib::SitePolymorphism class __init__(self) -> SitePolymorphism __init__(self, unsigned int npop) -> SitePolymorphism __init__(self, SitePolymorphism source) -> SitePolymorphism allele(self, unsigned int index) → char alleleFrequency(self, unsigned int alleleIndex) → unsigned int alleleFrequency(self, unsigned int popIndex, unsigned int alleleIndex) -> unsigned int derivedAlleleFrequency(self) → unsigned int hasSpecificAllele(self, unsigned int popIndex, bool restrictToDerived) → bool haveCommonAllele(self, unsigned int pop1, unsigned int pop2) → bool haveFixedDifference(self, unsigned int pop1, unsigned int pop2) → bool haveSharedAllele(self, unsigned int pop1, unsigned int pop2) → bool isOrientable(self) → bool isPolymorphic(self, unsigned int popIndex) → bool load(self, unsigned int populationIndex, char character) ns(self) → unsigned int ns(self, unsigned int popIndex) -> unsigned int numberOfAlleles(self) → unsigned int __init__(self, Current current, unsigned int numberOfSegments) -> Arg MRCA(self, unsigned int segmentIndex) → Edge addTime(self, double increment) ageMRCA(self, unsigned int segmentIndex) → double ageUltimateMRCA(self) → double coalescence(*args) coalescence(self, double incr, unsigned int pop, unsigned int index1, unsigned int index2) coalescence(self, double incr, unsigned int pop, Random random) mute(self, unsigned int segment, double treePosition) → Edge newick(self, unsigned int segment) → string numberOfEdges Arg_numberOfEdges_get(Arg self) -> unsigned int numberOfRecombinationEvents Arg_numberOfRecombinationEvents_get(Arg self) -> unsigned int numberOfSamples numberOfSegments recombination(self, double incr, Random random) class egglib.egglib_binding.Edge(*args) Proxy of C++ egglib::Edge class mutationRate(self) → double mutationRate(self, double arg0) Split population(self, unsigned int value) setGroups(self, DataMatrix dataMatrix) __init__(self) -> PopulationSplit __init__(self, double date, unsigned int pop, double proba) -> Population-population(self) → unsigned int setGroups(self, DataMatrix dataMatrix, bool labelIndividuals = False) Arg_numberOfSegments_get(Arg self) -> unsigned int reset(self, ParamSet paramSet) totalNumberOfLineages(self) → unsigned int mutationModel(self) → char mutationModel(self, char arg0) Proxy of C++ egglib::PopulationSplit class date(self, double value) selfingRate(self, double value) class egglib.egglib_binding.PopulationSplit(*args) date(self) → double selfingRate(self) → double Arg_numberOfSamples_get(Arg self) -> unsigned int __init__(self) -> Controller __init__(self, ParamSet paramSet, Random random) -> Controller bottleneck(self, unsigned int populationIndex, double strength) getArg(self) → Arg class egglib.egglib_binding.GrowthRateChange(*args) Proxy of C++ egglib::GrowthRateChange class __init__(self, double date, double value) -> GrowthRateChange apply(self, ParamSet paramSet, Controller controller) growthRate(self, unsigned int populationIndex) → double growthRate(self, unsigned int populationIndex, double value) migrationRate(self, double value) nextChangeDate(self) → double __init__(self, double date, unsigned int population, double value) -> PopulationGrowthRateChange class egglib.egglib_binding.Random(*args) dest(self) → unsigned int Proxy of C++ egglib::Random class dest(self, unsigned int arg0) apply(self, ParamSet paramSet, Controller controller) __init__(self) -> Random __init__(self, double seed1, double seed2) -> Random source(self) → unsigned int date(self) → double source(self, unsigned int arg0) erand(self, double expectation) → double date(self, double value) moveAllLineages(self, unsigned int source, unsigned int dest) moveSomeLineages(self, unsigned int source, unsigned int dest, double probability) reset(self) step(self) → unsigned int class egglib.egglib_binding.Current(*args) Proxy of C++ egglib::Current class __init__(self) -> Current __init__(self, ParamSet paramSet) -> Current __init__(self, Current arg0) -> Cur-rent addPopulation(self) numberOfPopulations(self) → unsigned int population(self, unsigned int populationIndex) → Population populationNumberOfLineages(self, unsigned int populationIndex) → unsigned int date(self) → double date(self, double value) value(self) → double value(self, double value) class egglib.egglib_binding.Mutator Proxy of C++ egglib::Mutator class __init__(self) -> Mutator TPMparam(self) → double TPMparam(self, double value) TPMproba(self) → double TPMproba(self, double value) fixedNumberOfMutations(self) → unsigned int fixedNumberOfMutations(self, unsigned int arg0) nextChangeDo(self, Controller controller) value(self) → double grand(self, double arg0) → unsigned int population(self) → unsigned int population(self, unsigned int value) value(self, double value) irand(self, unsigned int max) → unsigned int numberOfPopulations(self) → unsigned int numberOfSamples(self) → unsigned int numberOfSegments(self) → unsigned int numberOfSegments(self, unsigned int value) pairwiseMigrationRate(self, unsigned int source, unsigned int dest) → double pairwiseMigrationRate(self, unsigned int source, unsigned int dest, double value) populationSize(self, unsigned int populationIndex) → double recombinationRate(self) → double value(self, double value) apply(self, ParamSet paramSet, Controller controller) reset(self) value(self) → double __init__(self, double date, unsigned int population, double value) -> SinglePopulationSizeChange recombinationRate(self, double value) population(self, unsigned int value) Proxy of C++ egglib::SinglePopulationSizeChange class population(self) → unsigned int class egglib.egglib_binding.SinglePopulationSizeChange(*args) populationSize(self, unsigned int populationIndex, double value) value(self) → double class egglib.egglib_binding.SingleParamChange(*args, **kwargs) nrand(self) → double Proxy of C++ egglib::SingleParamChange class value(self, double value) prand(self, double p) → unsigned int apply(self, ParamSet paramSet, Controller controller) class egglib.egglib_binding.PopulationParamChange(*args, **kwargs) Proxy of C++ egglib::PopulationParamChange class seed1(self) → double date(self) → double seed1(self, double arg0) date(self, double value) apply(self, ParamSet paramSet, Controller controller) date(self) → double date(self, double value) seed2(self) → double value(self) → double value(self, double value) seed2(self, double arg0)
	load(self, CharMatrix data, bool allowMultipleMutations = False) load(self, CharMatrix data) lseff(self) → unsigned int lseffo(self) → unsigned int npop(self) → unsigned int nseff(self) → double nseffo(self) → double polymorphic_positions(self) → vectorui popLabel(self, unsigned int popIndex) → unsigned int numberOfPopulations(self, unsigned int npop) outgroup(self, char state) Coalescent simulator class egglib.egglib_binding.AllMigrationRateChange(*args) reset(self, Current current) segmentLengths Arg_segmentLengths_get(Arg self) -> double set(self, Current current, unsigned int numberOfSegments) time(self) → double totalLength __init__(self, unsigned int numberOfSegments) -> Edge bottom Edge_bottom_get(Edge self) -> double coalescence(*args) coalescence(self, double date, Edge son1, Edge son2, unsigned int edgesPerSegments, Edge MRCA, mute(self, Arg arg, Random random) → DataMatrix numberOfAlleles(self) → unsigned int numberOfAlleles(self, unsigned int arg0) numberOfMutations(self) → unsigned int numberOfSites(self) → unsigned int singles(self, unsigned int populationIndex) → unsigned int apply(self, ParamSet paramSet, Controller controller) value(self) → double singles(self, unsigned int populationIndex, unsigned int value) value(self, double value) date(self) → double class egglib.egglib_binding.PopulationBottleneck(*args) date(self, double value) Proxy of C++ egglib::PopulationBottleneck class Approximate Bayesian Computation population(self) → unsigned int __init__(self, double date, unsigned int population, double value) -> PopulationBottleneck population(self, unsigned int arg0) class egglib.egglib_binding.ABC double totalLength, double segmentLengths) numberOfSites(self, unsigned int arg0) probability(self) → double Proxy of C++ egglib::ABC class Proxy of C++ egglib::AllMigrationRateChange class __init__(self, double date, double value) -> AllMigrationRateChange apply(self, ParamSet paramSet, Controller controller) date(self) → double date(self, double value) value(self) → double value(self, double value) class egglib.egglib_binding.AllPopulationSizeChange(*args) Proxy of C++ egglib::AllPopulationSizeChange class __init__(self, double date, double value) -> AllPopulationSizeChange apply(self, ParamSet paramSet, Controller controller) Arg_totalLength_get(Arg self) -> double class egglib.egglib_binding.Bottleneck(*args) Proxy of C++ egglib::Bottleneck class __init__(self, double date, double param) -> Bottleneck apply(self, ParamSet paramSet, Controller controller) date(self) → double date(self, double value) value(self) → double value(self, double value) class egglib.egglib_binding.Change(*args, **kwargs) Proxy of C++ egglib::Change class coverage randomAncestralAllele(self, bool flag) probability(self, double arg0) __init__(self) -> ABC Edge_coverage_get(Edge self) -> unsigned int label(self) → unsigned int length Edge_length_get(Edge self) -> double numberOfSons Edge_numberOfSons_get(Edge self) -> unsigned int randomAncestralAllele(self) -> bool int class egglib.egglib_binding.SelfingRateChange(*args) add_fname(self, char arg0, int arg1) Proxy of C++ egglib::SelfingRateChange class reset(self) population(self, unsigned int value) get_threshold(self, double tolerance) __init__(self, double date, double value) -> SelfingRateChange sitePosition(self, unsigned int siteIndex) → double sitePosition(self, unsigned int siteIndex, double position) siteWeight(self, unsigned int siteIndex) → double siteWeight(self, unsigned int siteIndex, double weight) value(self) → double number_of_samples(self) → unsigned int apply(self, ParamSet paramSet, Controller controller) value(self, double value) number_of_statistics(self, unsigned int ns) date(self) → double class egglib.egglib_binding.PopulationFusion(*args) date(self, double value) obs(self, unsigned int index, double value) Proxy of C++ egglib::PopulationFusion class recombination(*args) recombination(self, double date, Edge dest1, Edge dest2, Random random, double totalLength, double segmentLengths) reset(self) transitionWeight(self, unsigned int i, unsigned int j, double value) transitionWeight(self, unsigned int i, unsigned int j) -> double class egglib.egglib_binding.ParamSet(*args) Proxy of C++ egglib::ParamSet class value(self) → double regression(self, char infname, char outfname, TransformMode mode, char header = "") → __init__(self) -> PopulationFusion __init__(self, double date, unsigned int mother, unsigned int daughter) value(self, double value) unsigned int -> PopulationFusion regression(self, char infname, char outfname, TransformMode mode) -> unsigned int class egglib.egglib_binding.SingleMigrationRateChange(*args) apply(self, ParamSet paramSet, Controller controller) Proxy of C++ egglib::SingleMigrationRateChange class rejection(self, char outfname, bool exportlabels = False) → unsigned int
	pop_Pi(self, unsigned int popIndex) → double reserve(self, unsigned int numberOfSites) reset(self) singleton_positions(self) → vectorui thetaH(self) → double date(self) → double date(self, double value) value(self) → double value(self, double value) apply(self, ParamSet paramSet, Controller controller) date(self) → double date(self, double value) segment(self, unsigned int segmentIndex) → bool set_terminal(self, unsigned int leaf_index) son1 Edge_son2_get(Edge self) -> Edge mother(self) -> unsigned int son2 dateOfLastChange(self, unsigned int populationIndex) → double mother(self, unsigned int arg0) apply(self, ParamSet paramSet, Controller controller) Edge_son1_get(Edge self) -> Edge __init__(self) -> ParamSet __init__(self, ParamSet arg0) -> ParamSet date(self) → double rejection(self, char outfname) -> unsigned int __init__(self) -> SingleMigrationRateChange __init__(self, double date, unsigned int source, unsigned int date(self, double value) dest, sd(self, unsigned int index) → double addChange(self, Change change) addPopulation(self, double migr) daughter(self, unsigned int arg0) daughter(self) -> unsigned int double migr) -> SingleMigrationRateChange threshold(self) → double

uniform(self) → double 4.6.2 Top-level Egglib components Top

 -level Egglib utilities consist mostly in data storage classes: Container and Align for sequence data, SSR for microsatellite data, GenBank for annotated sequences and Tree for trees.

	Class Container
	class egglib.Container(fname=None, string=None, groups=False)
	Bases: egglib.data.BaseContainer
	Holds sequences, without requiring that they have the same length. This class is a C++-implemented class
	providing performant storage and access utilies, wrapped within at Python layer that interfaces several
	operations. In particular it allows direct instanciation from a fasta-formatted file or from a string stored in a
	Python str instance (see constructor's signature below).
	Container also allow subscript indexing (as in container[0]) and iteration (as in for i in
	container). Returned items are SequenceItem instances that can be either converted in (name,
	sequence, group) tuples or modified to modify the underlying instance. For example, the following
	code resets all group indices of the Container instance container:
	>>> for i in container:
	...	i.group = 0

 Adds a sequence to the object. name is the sequence name, sequence the sequence string and group is the population label. Note that the length of sequence must match the length of the alignment, if self is of type Align. Returns the number of sequences after the operation.

	If both fname
	and string are specified, an error is thrown. Changed in version 2.0.1: Doesn't accept simultaneous values
	for fname and string.
	Methods
	addSequences(seqs)
	Appends repetitively (name, sequence, group) tuples to the end of the object (passed the last sequence.
	seqs must be an iterable returning (name, sequence, group) tuples (such as a Container or Align
	instance). (the group item is optional and tuples can be of length 2.) Returns the number of sequences
	after the operation. New in version 2.0.1.
	append(name, sequence, group=0)

 If strict is False, then the comparison ignores names that are longest than string. In other words, the name Alphacaga_tada1 will be recognized if find() is called with string Alphacaga and strict = False. If the name is not found, returns None. Sets/gets the group label of the sequence at index pos. If group is None, returns the current group label. Otherwise changes the group label and returns nothing. If not None, group must be a positive integer. Returns the group label corresponding to the first match of name. If the name is not found, raises a KeyError. If strict is True, seeks an exact match. If False, compares only until the end of the requested name (for example: 'ATCFF' will match 'ATCFF_01' if strict is false).

	Changed in version 2.1.0: Returns None instead of
	-1 if the name is not found.
	get(s, p)
	Gets the character value of the sequence s at position p.
	group(pos, group=None)
	groupByName(name, strict=True)
	New in
	version 2.0.1.

 If no sequence has this name, a KeyError is raised. A workaround is easy to implement: Rename all sequences of the instance using the passed mapping. If liberal is False and a name does not appear in mapping, a ValueError is raised. If liberal is True, names that don't appear in mapping are left unchanged. New in version 2.0.1. Returns the sequence string corresponding to the first match of name. If the name is not found, raises a KeyError. If strict is True, seeks an exact match. If False, compares only until the end of the requested name (for example: 'ATCFF' will match 'ATCFF_01' if strict is False). Extracts a selection of sequences. Sequences with indices a to b-1 are extracted and returned as a new instance. If a is smaller than 0, 0 is used instead. If b is larger than the number of sequences, the latter is used instead. If b is not larger than a, the returned instance is empty.

	Changed in version 2.0.1: New meaning.
	rename(mapping, liberal=False)
	sequence(pos, sequence=None)
	Sets/gets the sequence string at index pos. If sequence is None, returns the current sequence. Other-
	wise changes the sequence and returns nothing. If the object is an Align, the sequence length must
	match the alignment length.
	sequenceByName(name, strict=True)
		New in
	version 2.0.1.
	set(sequence, position, ch)
	Sets the character value at string position position of the sequence at index sequence to value ch.
	shuffle(maintain_outgroup=True)
	Randomly reassigns group labels. Modifies the current object and returns nothing. If main-
	tain_outgroup is True, doesn't reassign the outgroup (group label 999).
	slice(a, b)	
	str(exportGroupLabels=False, lineLength=50)
	Formats the instance as a fasta string. exportGroupLabels: if True, exports group/population mem-
	bership as @x tags placed at the end of sequence names (where x is any positive integer). lineLength
	gives the number of characters to place on a single line in the fasta output. If 0, no newlines are
	inserted within sequences.
	write(fname, exportGroupLabels=False, lineLength=50)
	Writes the sequences to a fasta-formatted file. fname is the name of the file to create. Other arguments
	are as for str(). New in version 2.0.1.
	Class Align	
	class egglib.Align(fname=None, string=None, groups=False)
	Bases: egglib.data.BaseContainer
	>>> index = align.find(name)
	>>> if index!=None:
	>>>	del align[index]

 Sets/gets the sequence string at index pos. If sequence is None, returns the current sequence. Otherwise changes the sequence and returns nothing. If the object is an Align, the sequence length must match the alignment length. Returns the sequence string corresponding to the first match of name. If the name is not found, raises a KeyError. If strict is True, seeks an exact match. If False, compares only until the end of the requested name (for example: 'ATCFF' will match 'ATCFF_01' if strict is False). New in version 2.0.1. Randomly reassigns group labels. Modifies the current object and returns nothing. If main-tain_outgroup is True, doesn't reassign the outgroup (group label 999). Randomly introduces missing data. rate is the desired proportion of missing data. Replaces random valid positions by N. There should be not missing data in the original object. Note that the module numpy is required, and that this method might be inefficient for large error rates. Changes the current object and returns nothing. Changed in version 2.1.0: Restricted to :class:'~egglib.Align instances. Item managing the name, sequence and group values of a given index of a Container or Align instance. Any change applied to the SequenceItem instance are immediately propagated to the Container or Align instance (generating the corresponding exception in case of misuse). It is important to note that some of errors might be generated when attempting to access data and not upon object creation. The print item statement (where item is a SequenceItem instance) returns a specially formatted string "name",sequence,group where name, sequence and group are name string, sequence string and group index for the index corresponding to the instance (note the double quotes around

	group
	Group label
	name
	Name string
	sequence
	Sequence string
	SSR class
	class egglib.SSR
	Bases: object
	SSR data container. This class is essentially a wrapper for the lower-level class DataMatrix with
	parser/formatter methods.
	simErrors(rate) The user doesn'nt normally need to manipulate directly the class attributes described below.
	Class SequenceItem
	class egglib.SequenceItem(parent, index)

If liberal is False and a name does not appear in mapping, a ValueError is raised. If liberal is True, names that don't appear in mapping are left unchanged. New in version 2.0.1. sequence(pos, sequence=None) sequenceByName(name, strict=True) set(sequence, position, ch) Sets the character value at string position position of the sequence at index sequence to value ch. shuffle(maintain_outgroup=True) slice(a, b) Extracts a selection of sequences. Sequences with indices a to b-1 are extracted and returned as an Align instance. If a is smaller than 0, 0 is used instead. If b is larger than the number of sequences, the latter is used instead. If b is not larger than a, the returned instance is emptry.

slider(wwidth, wstep)

Provides a means to perform sliding-windows analysis over the alignment. This method returns a generator that can be used as in for window in align.slider

(wwidth,wstep)

, where each step window of the iteration will be a Align instance of length wwidth (or less if not enough sequence is available near the end of the alignment). Each step moves forward following the value of wstep.

str(exportGroupLabels=False, lineLength=50)

Formats the instance as a fasta string. exportGroupLabels: if True, exports group/population membership as @x tags placed at the end of sequence names (where x is any positive integer). lineLength gives the number of characters to place on a single line in the fasta output. If 0, no newlines are inserted within sequences.

write(fname, exportGroupLabels=False, lineLength=50)

Writes the sequences to a fasta-formatted file. fname is the name of the file to create. Other arguments are as for str(). New in version 2.0.1. the name and the commas separating the three items). The instance also supports iteration and index-based accessing, but note that SequenceItem instance contain always three items: the name, the sequence and the group (in that order). SequenceItem also supports indexing (item 0 is the name, item 1 the sequence and item 2 the group index). New in version 2.0.1. parent must be a Container or Align instance and index an index lying in the range of len(parent).

The class attribute dataMatrix holds the DataMatrix instance contained by this instance. loci contains the list (in the correct order) of locus names. individuals stores the names of individuals (or automatically-generated names if they were not available) and maps them to 1 or 2 (for diploid data) indices of dataMatrix. individuals maps individuals to populations names. populations stores the population names. The labels used in the DataMatrix instance are the indices of this list. missing stores the value used to identify missing data (None if missing data are not allowed). New in version 2.0.1.Changed in version 2.1.0: Individual to population mapping and string formatting added. The constructor initializes an empty instance.

 GenBank(fname=None, string=None). Only one of the two arguments fname and string can be non-None. If both are None, the constructor generates an empty instance with sequence of length 0. If fname is non-None, a GenBank record is read from the file with this name. If string is non-None, a GenBank record is read directly from this string. The following variables are read from the parsed input if present: accession, definition, title, version, GI, keywords, source, references (which is a list), locus and others. Their default value is None except for references and others for which it is an empty list.

	class
	class egglib.GenBank(fname=None, string=None)
	Bases: object
	GenBank represents a GenBank-formatted DNA sequence record.
	Constructor signature:

source is a (description, species, taxonomy) tuple. Each of references is a (header, raw reference) tuple and each of others is a (key, raw) tuple.

 egglib.tools.LD(align1, align2, shuffle) Computes linkage disequilibrium statistics between two Align instances align1 and align2. If shuffle is True, randomly shuffles sequences of align2 (without altering the original instance), emulating the hypothesis of linkage equilibrium. Returns a (n1,n2, S1,S2,K1,K2,D,Dp) tuple, where n1 is the number of used sequences of the first alignment, S1 is the number of polymorphic sites of the first alignment, K1 is the number of unique haplotypes of the first alignment, D is the standard estimator of linkage disequilibrium and Dp is Lewontin's estimator (bound by 0 and 1). Alignement of coding sequences based on aligned predicted products. Conceptual translations of DNA sequences must match exactly passed protein sequences (except for gaps). Stop codons are not supported. nucseq is a Container instance containing raw coding sequence. protseq is a Align instance containing align amino acid sequences. code specifies the genetic code; refer to the documentation of translate(). Returns a Align instance containing aligned coding sequences. egglib.tools.concat(aligns, spacer=0, ch='?', strict=True, groupCheck=True) Concatenates sequence alignments. A unique Align is returned. All different sequences from all passed alignments are represented in the final alignment. Sequences whose name match are matching are concatenated.

	Sequence manipulation tools
	egglib.tools.backalign(nucseq, protseq, code=1)

 Reverse-complements a DNA sequence. Upper and lower-cases characters can be passed, the output is always upper-case. IUPAC characters (ACGTMRWSYKBDHV) are reverted. The characters N-? are returned as is. Other characters raise a ValueError. Changed in version 2.0.1: Characters N, -and ? are correctly processed.Changed in version 2.0.2: Reimplemented (will be faster for large sequences). Translates all sequences from nucleotide to proteins. Accepts sequence container instances and the return type matches the passed type. If strip is True, all stop codon(s) present at the end of any sequence will be automatically stripped off. Setting this option to True will raise a ValueError in case a Align is passed and sequences don't have all the same number of trailing stop codons. See the documentation of GeneticCodes.translate() for documentation of the argument code. Ambiguous codons are translated if the implied possibilities translate all to the same codon. The IUPAC nomenclature is used.

	egglib.tools.translate(input, code=1, strip=False)

0.1: The arguments allowing to customize function's behaviour. egglib.tools.longest_orf(sequence, clean=False, full=False, all=False, code=1, mini=1) Finds the longest open reading frame in the sequence. By default, the longest sequence without stop codon (except for the trailing stop codon) is returned, therefore the returned ORF doesn't necessarily start by ATG and stops by a stop codon. If clean is True, returns the longest sequence encoding a valid protein sequence (without stop, without missing data, without gap). If full is True, returns only genuine ORFs (starting by ATG and ending by a stop codon). If all is True, returns a list of all ORFs (at least 3 of length), sorted by decreasing length. code specifies the genetic code; refer to the documentation of GeneticCodes.translate(). mini specifies the minimum number of codons (or amino acids) of the returned ORF or ORFs (stop codons are not taken into account). Changed in version 2.0.1: Added options; return the trailing stop codon when appropriate.Changed in version 2.1.0: Added option mini. The behaviour of previous versions is reproduced by setting mini to 0. egglib.tools.rc(seq)

Tools not (directly) related to sequence data egglib

 .tools.chisquare(ddl) Returns the 5% critical value of the chi-square distribution with ddl degrees of liberty (maximum: 100). Computes correlation coefficients. x is a sequence giving the values of the explanatory variable. y is a sequence giving the values of the response variable. Returns a tuple (r, r ** 2, a) where r is the correlation coefficient and a the regression coefficient.egglib.tools.ranges(values)Identifies continuous ranges among the iterable values. values must be iterable but needs not to be sorted and can contain duplicates. The function returns a list of (start,stop) tuples, where start and stop defines a continuous range.

	egglib.tools.correl(x, y)

class egglib.tools.ReadingFrame(frame)

Handles reading frame positions.

 Handles a local BLAST database saved as temporary files. This class is most useful when a database is needed only temporarily. The database will be available for BLAST applications as long as the instance lives.The constructor expects two (mandatory) arguments: container must be a Container or Align instance and type must be either 'nucl' (for nucleotides) or 'prot' (for proteins) and specify the appropriate data type. For protein sequences, trailing stop codons are automatically trimmed. Performs multiple alignment using CLUSTALW. container might be a Container or Align instance. If quiet is True, the standard output (but not standard error) of the wrapped program will be intercepted and discarded. Returns a Align instance. By default, the function preserves group labels. However, if the container contains duplicates (even if they belong to the same group), this operation will fail (with a ValueError). To process containers containing duplicates and for which group label information is not important, set the flag nogroups to True.

	path()
	Returns the full path name of the local database, as required by BLAST programs. It is usually not
	required to use this method directly.
	Sequence alignment
	egglib.wrappers.clustal(container, quiet=True, nogroups=False)
	tblastn(query, subject, evalue=None, **params)
	Align a translated nucleotide query to a protein subject. Arguments are as for BLAST.tblastn()
	except that query and subject must both be sequence strings.

, target, evalue=None, **params) Searches a translate nucleotide database using translated nucleotide queries. Arguments are as for blastp(). class egglib.wrappers.BL2SEQ Provides NCBI Basic Local Alignment Search Tools for aligning two sequences by local alignment. The proposed methods return all a list of dictionaries representing all HSPs. The items of the dictionaries corresponding to the following variables: qstart, qend, sstart, send, evalue, bitscore, score, length, nident, qframe, sframe, gaps, qseq, sseq and midline. The latest is given only as identity/mismatch marks. Parameters are defined as for BLAST except that query and subject must both be sequence strings. blastn(query, subject, evalue=None, penalty=None, **params) Align a nucleotide query to a nucleotide subject. Arguments are as for BLAST.blastn() except that query and subject must both be sequence strings. blastp(query, subject, evalue=None, **params) Align a protein query to a protein subject. Arguments are as for BLAST.blastp() except that query and subject must both be sequence strings. blastx(query, subject, evalue=None, **params) Align a protein query to a translated nucleotide subject. Arguments are as for BLAST.blastx() except that query and subject must both be sequence strings. tblastx(query, subject, evalue=None, **params) Align a translated nucleotide query to a translated nucleotide subject. Arguments are as for BLAST.tblastx() except that query and subject must both be sequence strings. class egglib.wrappers.BLASTdb(container, type) Bases: object egglib.wrappers.muscle(container, quiet=True, nogroups=False) Performs multiple alignment using MUSCLE. container might be a Container or Align instance. If quiet is True, progress information will not be shown If quiet is False, progress information will be shown but the function might not be able to detect automatically errors reported by the wrapped program. Returns a Align instance. By default, the function preserves group labels. However, if the container contains duplicates (even if they belong to the same group), this operation will fail (with a ValueError).

 At time date, change all populations sizes to value changePairwiseMigrationRate(date, source, dest, migr) At time date, change all the migration rate from population source to the population dest to the value migr. It is illegal to change a value of the diagonal. At time date, change growth rate of population population to value.

	changeSelfingRate(date, value)
	At time date, change all selfing rate to value.
	changeSinglePopulationGrowthRate(date, population, value)
	changeSinglePopulationSize(date, population, value)
	At time date, change size of population population to value
	populationFusion(date, mother, daughter)

changeAllMigrationRates(date, value)

At time date, change all pairwise migration rates to value changeAllPopulationSizes(date, value)

 the needed parameter values in the appropriate order, separated by commas or semi-colons. The brackets can be replaced by square brackets and the model specification is case-independent. The function raises a PriorParseError in case of invalid format. .fitmodel.priors = [<class 'egglib.fitmodel.PriorDumb'>, <class 'egglib.fitmodel.PriorDiscrete'>, <class 'eggli This list contains the class objects (different from class instances, they are the classes themselves) corresponding to priors. They must define parse(), draw() and str() methods, and class-level string name and an informative docstring but this is not (yet) enforced. This list is designed to help interactive commands to detect automatically available priors.Composite-parameter bottleneck, after the formalization of Galtier, Depaulis and Barton bottleneck model, with optional recombination. The bottleneck is implemented as a number of coalescent events occurring precisely at the time given by the DATE parameter. The STRENGTH is expressed as an amount of time of the normal coalescent process during which only coalescent occur (no migraton, not mutation) and during which the global time counter doesn't change. Ref:Galtier et al. Genetics 155:981-987, 2000. Generalized Galtier, Depaulis and Barton with optional recombination. See GDB model. ANCSIZE gives the ancestral population size. Parameters: THETA, DATE, STRENGTH, ANCSIZE, RHO (optional). Generates a simulated dataset based on the passed sample configuration and the parameter sample.Island Model with Independent exponential Growth in each population, different population sizes and with optional recombination (the size of the first population is fixed to 1). The growth rate of each population must be provided, and the size of all populations save for the first one as well. Parameters: THETA, MIGR, growth rates, population sizes, RHO (optional).Split Model (thinking forward), with optional recombination. The DATE parameter sets the split date and MIGR the migration rate after the split. Parameters: THETA, MIGR, DATE, RHO (optional).

	class egglib.fitmodel.IMiGn(recombination)
	Bases: object
	Parameters: THETA, DATE, STRENGTH, RHO (optional).
	str() The constructor expects a boolean to indicate whether recombination must be implemented . The constructor expects a boolean to indicate whether recombination must be implemented.
	Generates a string representation of the instance. generate(cfg, ps, random) generate(cfg, ps, random)
	Generates a simulated dataset based on the passed sample configuration and the parameter sample. Generates a simulated dataset based on the passed sample configuration and the parameter sample.
	class egglib.fitmodel.GGDB(recombination) class egglib.fitmodel.SM(recombination)
	Bases: object Bases: object
	Demographic model implementations The constructor expects a boolean to indicate whether recombination must be implemented,. The constructor expects a boolean to indicate whether recombination must be implemented.
	class egglib.fitmodel.SNM(recombination)
	Bases: object
	Standard Neutral Model: constant-sized single population. Allows optional recombination. Parameters:
	THETA, RHO (optional).
	class egglib.fitmodel.BNM(recombination)
	Bases: object
	Bottleneck Model, with optional recombination. Parameters:
	•THETA
	•DATE (date of the end of the bottleneck)
	•DUR (bottleneck duration)
	•BOTZISE (size of the population during the bottleneck)
	•ANCSIZE (size of the ancestral population) class egglib.fitmodel.IMiG(recombination)
	•RHO (optional) Bases: object
	Note that if botsize is >1, the model can be generalized to a double instant change model. Island Model with Independent exponential Growth in each population, with optional recombination. The
	growth rate of each population must be provided. Parameters: THETA, MIGR, ALPHA for all populations, The constructor expects a boolean to indicate whether recombination must be implemented. RHO (optional).

egglib

The constructor expects a boolean to indicate whether recombination must be implemented.

generate(cfg, ps, random)

Generates a simulated dataset based on the passed sample configuration and the parameter sample. class egglib.fitmodel.PEM(recombination) Bases: object Population Expansion Model (exponential growth), with optional recombination. Parameters: THETA, ALPHA, RHO (optional).

The constructor expects a boolean to indicate whether recombination must be implemented. generate(cfg, ps, random) Generates a simulated dataset based on the passed sample configuration and the parameter sample. generate(cfg, ps, random) Generates a simulated dataset based on the passed sample configuration and the parameter sample. class egglib.fitmodel.GDB(recombination) Bases: object generate(cfg, ps, random) Generates a simulated dataset based on the passed sample configuration and the parameter sample. class egglib.fitmodel.IM(recombination) Bases: object Island Model, with optional recombination. The number of populations is automatically detected from the observed dataset. Parameters: THETA, MIGR, RHO (optional). The constructor expects a boolean to indicate whether recombination must be implemented. generate(cfg, ps, random) Generates a simulated dataset based on the passed sample configuration and the parameter sample. class egglib.fitmodel.IMn(recombination) Bases: object Island Model with different population sizes, with optional recombination. The size of the first population is fixed to 1, therefore the size of all populations with index >1 must be specified as parameter. Parameters: THETA, MIGR, population sizes, RHO (optional). The constructor expects a boolean to indicate whether recombination must be implemented . generate(cfg, ps, random) Generates a simulated dataset based on the passed sample configuration and the parameter sample. class egglib.fitmodel.IMG(recombination) Bases: object Island Model with exponential Growth, with optional recombination. Parameters: THETA, MIGR, ALPHA, The constructor expects a boolean to indicate whether recombination must be implemented. generate(cfg, ps, random) The constructor expects a boolean to indicate whether recombination must be implemented. generate(cfg, ps, random) Generates a simulated dataset based on the passed sample configuration and the parameter sample. generate(cfg, ps, random) Generates a simulated dataset based on the passed sample configuration and the parameter sample. class egglib.fitmodel.AM(npop, recombination) Bases: object Admixture Model, with optional recombination. The DATE argument sets the time when ancestral populations joined and MIGR the migration rate that occurred between these populations. Note that the migration rate must not be 0 because coalescent time might be infinite. Present-day samples are not structured. Parameters: THETA, DATE, MIGR, RHO (optional). In abc_sample, specify this model as AM:k where k is the number of ancestral populations. The constructor expects a boolean to indicate whether recombination must be implemented, and an integer giving the number of ancestral populations. generate(cfg, ps, random) Generates a simulated dataset based on the passed sample configuration and the parameter sample. class egglib.fitmodel.MRC(recombination) Bases: object Migration Rate Change, with optional recombination. MIGR0 is the current migration rate and MIGR1 the ancestral migration rate. Parameters, THETA, DATE, MIGR0, MIGR1, RHO (optional).

 Specifies the prior ranges for one or more parameters. The argument must be a list of ranges separated by commas (such as 'min:max,min:max,min:max,min:max') giving minimum and maximum value for all parameters (if values lie outside of ranges, and error will be generated) (default: '') output Name of the output file (default: 'abc_bin.out')

	ranges Flags (inactive by default):
	quiet . Runs without console output
	debug . Show complete error messages
	abc_compare
	abc_compare: Compares several models.
	abc_bin
	abc_bin: Binarizes a posterior distribution
	Uses the output file of the 'abc_fit' command to binarize the posterior
	and generate a "PriorDiscrete"-compatible file. The 'quiet' argument is
	ignored.
	General usage:
	egglib abc_bin OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ...
	Options:
	input Name of data file to analyze. The file must be the
	output file generated by 'abc_fit' (by default:
	'abc_fit.out') (required)
	bins Number of categories for all parameters. If specified,
	the argument 'parambins' overwrites this argument
	(default: '12')
	parambins . Specifies specific number of categories for one or more
	parameters. The argument must be a list of integers
	(separated by commas) giving the number of categories
	for all parameters (default: '[]')

 Show instructions for specifying priors model? Show the list of available demographic models stats? Show the list of available sets of summary stats force_positive . Forces all values drawn from priors to be >=0 quiet Runs without console output debug Show complete error messages

	The maximum number of threads is the
	number of CPUs available. By default (max_threads=0),
	all CPUs are used (default: '0')
	Flags (inactive by default):
	prior? .

 This command accepts codings (nucleotide) sequences and perform alignment at the protein level (or accept the corresponding protein alignment) and generates a coding sequence alignment guaranteed to fit the reading frame (gaps are multiple of three and don't split codons apart). Note that errors can be generated by the presence of stop codons in sequences. By default, this command crops the final stop codon of coding sequences. Use the 'keepstop' flag to prevent this. Character to use for spacer stretches and for missing input Nucleotide sequence alignment file (required) output File name for results (required) separator Character used to separate the common prefix from variable part of sequence names (default: '_') missing Character intepreted as missing data (always

	quiet Runs without console output
	debug Show complete error messages
	General usage:
	clean_seq egglib codalign OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ...
	Refer to the documentation of EggLib's 'Align.polymorphism' method for details about the statistics. By default, a pre-defined list of statistics is used (default: '[]') Flags (inactive by default): quiet . Runs without console output debug . Show complete error messages blastgb blastgb: Blasts all coding sequences from a GenBank file. Imports a GenBank record and performs a BLAST search of all 'CDS' features against a given (local) database. Generates another GenBank record with the name of the best hit(s) (separated by the // string when more than one) appended to the 'note' field. General usage: egglib blastgb OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input Name of a GenBank file (required) output ... Name of the output file (required) db Path of the target database. By default, the database should be a fasta-formatted file of nucleotide sequences but flags 'prot' and 'formatted' can control this (required) evalue ... Expectaction value: expected number of random hits by chance alone, depending on the database size. The default value is e^-6 (therefore much less -and more stringent -than 'blastn''s default value which is 10) (default: '0.00247875217667') nresults . Maximum number of hits to output (default: '1') Flags (inactive by default): prot Performs protein-against-protein BLAST searches. With this flag activated, the database passed through 'db' must contain protein sequences formatted . Pass this flag is the file named by the 'db' option is a pre-formatted BLAST database (using the 'formatdb' command) rather than a fasta file. In this case, the base name of the database should be passed clean_seq: Removes ambiguity characters from nucleotide sequences. The 'quiet' option is ignored. General usage: egglib clean_seq OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input .. Name of a the input fasta file (required) output . Name of the output file (required) chars .. A string listing all valid characters. Note that the comparisons are case-insensitive. (default: 'ACGTN-') Flags (inactive by default): quiet . Runs without console output debug . Show complete error messages clean_tree clean_tree: Cleans a newick tree. This command removes internal branch labels and/or branch lengths from a newick tree. The 'quiet' option is ignored. General usage: egglib clean_tree OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input .. Name of an input newick file (required) output . Name of the output file (required) Flags (inactive by default): keep_labels . Don't remove internal branch labels keep_brlens . Don't remove branch lengths quiet Runs without console output debug Show complete error messages codalign codalign: Protein-based alignment of coding sequences. Options: input .. Name of an input fasta file (required) output . Name of the output file (required) prot ... Name of a fasta file containing aligned proteins. The proteins sequences should match exactly the conceptual traduction of coding sequences. If an empty string is passed (the default), the option is ignored and the alignment is performed automatically on conceptual translations (default: '') Flags (inactive by default): muscle ... Uses the program 'muscle' (default is 'clustalw') keepstop . Don't crop final stop codon of coding sequences quiet Runs without console output debug Show complete error messages concat concat: Concatenation of sequence alignments. Combines sequence information from fasta-formatted sequence alignments. Sequences are concatenated when their names match (either exact or partial matches), regardless of the order of sequences. When sequences are missing in one of the alignment, they are replaced by a stretch of missing data of appropriate length. Spacers of missing data can be placed between concatenated alignments, depending on option values. The 'quiet' option is ignored. By default, the full name of sequences is used for comparison. It is possible to restrict the comparison to the beginning of the sequence (at a fixed length) or using a specified separator character, but not both. General usage: egglib concat OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Options: input A list of fasta file names. The names must be separated by commands, as in 'file1,file2,file3'. It is possible to use UNIX wild cards (* , ~). File names might be duplicated (required) output Name of the output file (required) spacer Gives the length of stretches of missing data to be introduced between concatenated alignments. If the argument is an integer, the same spacer in introduced between all pairs of consecutive alignments. To introduce variable-length spacers, a list of comma-separated integers must be passed, and the number of values must be equal to the number of alignments minus 1. By default, no spacers are inserted. This argument should be changed to 'X' when dealing with protein sequences (default: '0') inconsistency . Character used to identify inconsistencies in the 'conservative' mode (default: 'Z') Flags (inactive by default): conservative . Conservative mode of consensus: all differences between two sequences are considered as inconsistencies and are marked by the 'Z' character (by default) quiet Runs without console output character . ignored) (default: '?') debug Show complete error messages

 , nothing is done. If both actions are requested, they are always performed in the order: first 'separator', then 'length'. If present, group labels are preserved and are not considered. Kst/Gst/Hst/Snn statistics might be computed incorrectly if outgroup sequence were not placed at the end of the file (thanks to Emmanuel Reclus).

	quiet . Runs without console output debug . Show complete error messages sprimers **2.1.5 ** 20/09/12 This version makes the following minor changes: • [backalign] tools.backalign() does not crop stop codons out of coding sequences any more. specified)General usage: • [codalign] the codalign command takes a flag to prevent cropping stop codons out of coding
	egglib truncate OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... sequences.
	sprimers: Design copy-specific PCR primers from an alignment.
	This command designs PCR primers that a specific to genes from a • [fitmodel] the demographic models all accept a random object in order to control the random Options: number chain (in the generate function)
	sequence alignment (and are as unlikely as possible to amplify other output Name of output file (required) genes from the alignment). Primers are generated using PRIMER3. Next, input Name of fasta-formatted sequence file (required) This version also corrects the following bugs or errors:
	they are filtered according to several criteria. The preferred primers separator . The separator can be a single character or a string. • [fitmodel] the documentation of the ABC model SM had incorrect parameter order THETA,
	must be close to the end of sequences (by default), with low homology Whenever it occurs in a sequence name, everything right DATE, MIGR, [RHO] (correct is THETA, MIGR, DATE, RHO)
	to other sequences of the alignment. A BLAST search is performed and primers whose 3' end matches any other sequence and excluded. Finally, a pair check is performed using PRIMER3. The corresponding programs of its first occurrence (as well as the separator • [utils] the seeds argument of ABC simulation commands did not control the random generator itself) will be removed. The default (an empty string) means that this criterion is not applied (default: '') objects used by demographic models
	must be available. length Maximum length of names. The default (an empty string) 2.1.4. 04/09/12
	means that this criterion is not applied (default: '0')
	General usage: This version fixes the following serious bug:
	egglib sprimers OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ... Flags (inactive by default): • [diversity] the Fst/
	quiet . Runs without console output
	debug . Show complete error messages
	ungap
	ungap: Removes gaps from a sequence alignment.
	62') This command either removes all gaps from an alignment (break the
	minGc Minimal GC content percentage (default: '30') alignment) or removes alignment positions (column) where the frequency
	optGc Optimal GC content percentage (default: '50') of gaps is larger than a given threshold.
	maxGc Maximal GC content percentage (default: '80')
	numAmb Maximal number of degenerate bases in primers General usage:
	(default: '0')
	filter1 Pre-selection filter (before BLAST) as a maximal egglib ungap OPTION1=VALUE OPTION2=VALUE ... FLAG1 FLAG2 ...
	number of pairs to process (default: '5000')
	filter2 Pre-selection filter (after BLAST) as a maximal number Options:
	of pairs to process (default: '100')
	threshold1 . Maximum homology score to other genes (a real number input Input fasta file (required)
	between 0. and 1.) (default: '0.75') output Output fasta file (required)
	threshold2 . Maximum homology score to other regions of the same threshold . Proportion giving the threshold frequency for removing
	gene (a real number between 0. and 1.) (default: gaps. All sites for which the frequency of gaps is
	'0.5') equal to or larger than the specified values will be
	show How many pairs to export in the output file (default: removed. A value of 0 will remove all sites and a value
	'10') of 1 will remove only columns consisting of gaps only.
	If the flag 'all' is used, the value of this option is
	Flags (inactive by default): ignored (default: '1')
	selection .. Restrict the primer search to one or more sequences of Flags (inactive by default):
	the alignment. The user should tag the names of
	selected sequences with labels such as @1 (any number all Removes all gaps of the alignment -regardless of the
	larger to or equal to 1 is allowed) value of the 'threshold' argument. The output sequences
	prefer_end . Prefer pairs closer the end of genes will not be aligned anymore (save for special cases)
	quiet Runs without console output triplets . Removes only complete triplets (the alignment length
	debug Show complete error messages must be a multiple of 3)
	quiet Runs without console output
	debug Show complete error messages
	Flags (inactive by default):

Options: input Name of the input fasta alignment (required) output Name of the output file (default: 'sprimers.csv') sizemin Mininal product size (default: '70') sizemax Maximal product size (default: '150') minTm Minimal annealing temperature (default: '58') optTm Optimal annealing temperature (default: '60') maxTm Maximal annealing temperature (default: '

Chapter 4. Detailed contents

4.6. Python module

4.7. Directly executable commands

Chapter 4. Detailed contents EggLib Documentation, Release 2.1.5

----------------requested at node [7], the outcome will be as depicted below, the edge lengths being ignored: /-------------------------/--------------------------------

Chapter 4. Detailed contents EggLib Documentation, Release 2.1.5 staden2fasta staden2fasta: Converts a STADEN GAP4 dump file to fasta.

The file must have been generated using the command 'dump contig to file' of the GAP4 contig editor. This command will generate a fasta alignment file, padding sequences with '?' whenever necessary.

Download source code

Download the following two archives (replace <version> by the actual version number), from the download site:

• egglib-cpp-<version>.tar.gz for the C++ library • egglib-py-<version>.tar.gz for the Python module

Installation procedure

Unpack the C++ library archive and move to the created directory (replace <version> by the actual version number): /--->

And the outcome will be as depicted below, with the introduction of a new node (which would be [12] here) at the root:

| \--------------------- [11] If the length of the branch on which the root is placed (L0) is not None, the length of the edge [E1] will be branshsplit * L0 and the length of [E2] will be (1 -branshsplit) * L0 .

Note that the label of outgroup node is copied to the node at the other side of the root where the root is placed. The rationale is that information attached to the root edge might have to be applied to both basal edges. In case the original root (or basal node) had a specified label, it will be retained and the outgroup label will not be copied.

root_node()

Returns the root node as a TreeNode instance.

smallest_group(taxa, threshold=None, minimum=1)

Returns the smallest clade containing a set of leaves, as a TreeNode instance, without regard to the orientation of the tree. The node returned corresponds to the smallest clade fulfilling the criteria. taxa must be a list of leaf labels. All labels must be found either within the clade, or in the rest of the tree (all tree leaves not in this clade). Duplicates are included whenever appropriate. threshold is the minimum numerical label the node must exhibit to be returned. If threshold is None, this criterion is not applied. Otherwise, nodes that have a label not convertible to float or whose label is inferior than threshold are not returned. minimum is the smallest number of descending leaf a clade must have to be returned. The root is never returned. Returns None if no valid node can be found. Changed in version 2.0.1: The root is never returned; duplicates are supported; the minimum argument is not checked; and nodes that don't have a numeric label are supported when threshold is not None (but they are excluded).

is_descendant(node)

True if the TreeNode instance node is one of this node's descendants.

leaves_down()

Recursively gets all leaf labels descending from that node. This method supports closed paths (networks) and nodes are never processed more than once.

leaves_up()

Recursively gets all leaf labels contained on the other side of the tree. In case of a network, the results of this method and leaves_down() might overlap. However, there can be no redundancy within the results returned by one of the methods

numberOfAscendants()

Gets the number of nodes descending to this one.

numberOfDescendants()

Gets the number of nodes descending from this one.

numberOfRelatives()

Gets the number of nodes connected to this one.

remove_ascendant(node)

Removes the edges between this node and the node represented by the TreeNode instance node. node must be one of this node's ascendants. Note that this method removes also this node from node's descendants.

remove_descendant(node)

Removes the edges between this node and the node represented by the TreeNode instance node. node must be one of this node's descendants. Note that this method removes also this node from node's ascendants.

reverse(node, exchange_labels)

Reverse an edge's orientation between this node and the node given by node, as a TreeNode instance.

The two nodes must be connected by exactly one edge. If exchange_labels is True, the node labels are exchanged.

set_branch_from(node, value)

Sets the length of the branch connecting node to this node. node but be a TreeNode instance present amongst this node's ascendants. value might be a float or None.

set_branch_to(node, value)

Sets the length of the branch connecting this node to node. node but be a TreeNode instance present amongst this node's descendants. value might be a float or None. Note that this methods affects both nodes.

set_label(value)

Change the label value.

sort()

Sorts the descendants based on their number of leaves.

str(labels=True, brlens=True)

Formats the node and the subtree descending from is as a newick string. If labels is False, omits the internal branch labels. If brlens is False, omits the branch lengths. Doesn't support closed path.

unlink()

Clears all references to other TreeNode instances contained in this instance.

tools

This module contains tools used in some other parts of EggLib but that might be of use for the package's users. From a nucleotide sequence alignment, the consensus of all pairs of sequences that share the same prefix is computed, and only unique names are exported. By default, names 'spam_a001', 'spam_b145', as well as 'spam' are considered as unique and merged. The resulting sequence will be named 'spam'. More information is available in the documentation of the C++ class 'Consensus'. assuming an island model where 'd' is the number of populations in the system. Coalescent simulations are performed assuming the number of populations, the actual set of samples and assuming a single mutation per locus.

Input file:

The input file is a string of one or more loci. Each locus is represented by populations (demes in Weir and Cockerham). There must be at least two populations. The number of populations must be consistent over loci. Note that white lines are ignored throughout the file and can be used as separators but are not required and need not to be homogeneously used. Spaces and tabs can also be used to align the file and are ignored when they occur at the beginning and end of lines.

Comments:

Comments are lines starting with with a hash ('#') symbol. White spaces before the hash are ignored. Comments cannot be placed at the end of lines containing data.

Loci:

Loci take a single line each. The type of the locus is given by reserved symbols. '$' denotes reference loci (they will be used for computing genome-wide parameters and tested) and '%' denotes candidate loci (which will be skipped for estimating genome-wide parameters). Type symbol must appear before data. An optional label can be placed before the symbol. Labels are used to name the locus (by default, an automatic label based on its rank is be applied). The same label might be used several times and labelled and unlabelled loci might be mixed. Labels cannot start by a hash ('#') symbol, otherwise the line is taken as a comment. Labels cannot contain the dollar ('$') and percent ('%') symbols. The general structure is therefore: '[label]$ data' for reference loci and '[label]% data' for test loci. See definition of data and example below.

Locus data:

Locus data is given by pairs of allele counts, one for each population. The number of populations must be the same across loci. The alleles are provided in an arbitrary order. Counts for both alleles must be provided as two integer values separated by a comma (','). Population The command takes a phylogenetic tree and a fasta file containing the corresponding sequences (aligned or not). The smallest clade containing all specified names will be extracted as another fasta file. By default, clades encompassing the root (which would be paraphyletic groups under the assumption that the tree is rooted) are exported as well; use the flag 'monophyletic' to prevent this behaviour. Note that the root (or base of the tree) is never returned. This command runs a sliding window along a sequence alignment. For each window, it computes the likelihood of the maximum-likelihood tree along as well as the likelihood of a given set of trees. It can detect regions of a sequence that support a given tree rather than an other. The command expects nucleotide sequences. savetrees . Saves the maximum-likelihood tree for each windows.

Each window tree will be saved as a file named '<base>_<start>_<end>.tre' when 'base' is the name of the main output file minus the extension if there is one, and 'start' and 'end' are the limits of the window. With default values, the trees will be saved as 'winphyml_1_200', 'winphyml_21_220', etc. quiet Runs without console output debug Show complete error messages

Authors

Stéphane De Mita and Mathieu Siol are both evolutionary biologists and population geneticists working at INRA institute in Nancy and Dijon (France), respectively. They partly developped EggLib as part of the arcad project.

Acknowledgments

• Thomas Bataillon and Joëlle Ronfort, as PhD supervisors of the authors, helped initiation of the project.

• Nathalie Chantret, Jérôme Gouzy, Martin Lascoux, Xavier Bailly, Thomas Källman, Thibaut Hourlier, Rik op den Camp, Kate St-Onge, Sonja Kujala, Tanja Pyhäjärvi, Paivio Pollari, Alexis Dereeper and others tested early versions of the package and provided valuable input.

• Tuomas Toivainen and Outi Savolainen hosted a course which included a practical demonstration of the package.

• The sprimers command was developed in collaboration with Gerben Bijl.

• Antoine Gaillard designed the EggLib logo and banner.

History

Here is a complete history of EggLib tracing back to initial pure C++ version.

Authors

-'identity', the identity rate (4.)0.2 -05.08.08

• Polymorphism: Possible bug: count of segregating sites when MULTIPLE is true (sites may be missed).

• the names of some private members (such as _A) in Changes, Coalesce and Polymorphism have been changed to make Xcode compiler happy.

• two memory leaks have been fixed in Sequence and one in Site (causing problems to Polymorphism and Coalesce).

(4.)0.1 -04.08.08

• Coalesce: a significant memory leak was fixed (in the top-level class Coalesce).

• The version includes all changes of alpha versions of 4.0.0 (and possible bugs).

(4.)0.0.4

• change in setup.py: now uses the sipconfig module to finds Python installation paths (4.)0 -28.July.08 (alpha4)

• utils::rs::rs finished (not tested) (4.)0 -24.July.2008 (alpha3)

• SeqLib is released publicly and numbering is reset to 0.

• bugs fixed in setup.py:

option BPP not processed correctly.

inclusion not system independent.

flush output during compilation (not a bug).

determines itself python installation details.

• incorportation of utils (preliminary)

codalign

rs (on-going)

• misc.:

gb parser temporarilly failed if >1 '=' sign in feature (bug fixed)

in seqtools, locate() used amb_compare instead of compare (bug fixed)

addition of lfimport function in fasta compilation in optimization mode 3 (hopefully faster)

missing imports in dataset and tools dataset's select method extended and modified (4.)0 -08.July.208 (alpha2)

• formatting the release (license, readme, setup script).

• Bio++ is made optional

• toolkit is completely incorporated

• doxygen documentation (4.)0 -23. May.2008 (alpha1) KNOWN ISSUES

• IO/MS:

mingw support is removed (has to be added in skip_line and next_line functions!) • Changes in GetMS() (public functions added)

• void close():

destroy the input stream good() will return false calls to import(bool) will generate errors

• SequenceAlignment simul(bool binary = false):

wraps import(bool) (useful for Python where import is reserved)

its adviced to use import(bool) in C++ 3.2.0 -27/10/07

• Each class has its own header file

• The library is compiled as a static archive

• All output goes through Seqlib::error() and generates a SeqlibException

• typedef uint removed

• Several bug fixes and changes (including in the interface)

Polymorphism changes:

• site(int) returns the position of the site (no longer the Site object itself)

• getsite(int) returns the Site object

• sites() is removed

INDICES AND TABLES

• genindex

• modindex

• search