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Abstract. Proteins are chains of simple molecules called amino acids.
The three-dimensional shape of a protein and its amino acid composition
define its biological function. Over millions of years, living organisms have
evolved and produced a large catalog of proteins. By exploring the space
of possible amino-acid sequences, protein engineering aims at similarly
designing tailored proteins with specific desirable properties. In Com-
putational Protein Design (CPD), the challenge of identifying a protein
that performs a given task is defined as the combinatorial optimization
problem of a complex energy function over amino acid sequences.
In this paper, we introduce the CPD problem and some of the main
approaches that have been used to solve it. We then show how this
problem directly reduces to Cost Function Network (CFN) and 0/1LP
optimization problems. We construct different real CPD instances to
evaluate CFN and 0/1LP algorithms as implemented in the toulbar2

and cplex solvers. We observe that CFN algorithms bring important
speedups compared to the CPD platform osprey but also to cplex.

1 Introduction

A protein is a sequence of basic building blocks called amino acids. Proteins are
involved in nearly all structural, catalytic, sensory, and regulatory functions of
living systems [11]. Performance of these functions generally requires the assem-
bly of proteins into well-defined three-dimensional structures specified by their
amino acid sequence. Over millions of years, natural evolutionary processes have
shaped and created proteins with novel structures and functions by means of
sequence variations, including mutations, recombinations and duplications. Pro-
tein engineering techniques coupled with high-throughput automated procedures
offer today the possibility to mimic the evolutionary process on a greatly accel-
erated time-scale, and thus increase the odds to identify the proteins of interest
for technological uses [29]. This holds great interest for medicine, biotechnology,
synthetic biology and nanotechnologies [27, 32, 15].
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With a choice among 20 naturally occuring amino acids at every position, the
size of the combinatorial sequence space is however clearly out of reach of current
experimental methods, even for small proteins. Computational protein design
(CPD) methods therefore try to intelligently guide this process by producing
a collection of proteins, intended to be rich in functional proteins and whose
size is small enough to be experimentally evaluated. The challenge of choosing a
sequence of amino acids to perform a given task is formulated as an optimization
problem, solvable computationally. It is often described as the inverse problem
of protein folding [28]: the three-dimensional structure is known and we have to
find amino acid sequences that folds into it. It can also be considered as a highly
combinatorial variant of side-chain positioning [35] because of possible amino
acid changes.

Different computational methods have been proposed over the years to solve
this problem and several success stories have demonstrated the outstanding po-
tential of CPD methods to engineer proteins with improved or novel properties.
CPD has been successfully applied to increase protein thermostability and sol-
ubility; to alter specificity towards some other molecules; and to design various
binding sites and construct de novo enzymes (see for example [18]).

Despite these significant advances, CPD methods still have to mature in order
to better guide and accelerate the construction of tailored proteins. In particular,
more efficient computational optimization techniques are needed to explore the
vast protein sequence-conformation combinatorial space.

In this paper, we model CPD problems as either binary Cost Function Net-
work (CFN) or 0/1LP problems. We compare the performance of the CFN solver
toulbar2 and the 0/1LP solver cplex against that of well-established CPD
approaches on various protein design problems. On the various problems con-
sidered, the direct application of toulbar2, a Depth First Branch and Bound
algorithm maintaining soft local consistencies, resulted in an improvement of
several orders of magnitude compared to dedicated CPD methods and also out-
performed cplex. These preliminary results can probably be further improved
both by tuning our solver to the specific nature of the problem considered and
by incorporating dedicated CPD preprocessing methods.

2 The Computational Protein Design approach

In CPD, we are given an existing protein corresponding to a native sequence of
amino acids folded into a 3D structure, which has previously been determined
experimentally. The task consists in modifying a given property of the protein
(such as stability or functional efficiency) through the mutation of a specific
subset of amino acid residues in the sequence, i.e. by affecting their identity
and their 3D orientation (rotamers). The resulting designed protein retains the
overall folding of the original protein since we consider the protein backbone
as fixed and only alter the amino acid side chains (Fig. 1). The stability and
functional efficiency of a protein is correlated to its energy [1]. Therefore, we aim
at finding the conformation possessing the minimum total energy, called GMEC



(Global Minimum Energy Conformation). The energy of a conformation can be
directly computed from the amino acid sequence and rotamers by introducing
substitutions within the native structure.

Fig. 1. A local view of combinatorial sequence exploration considering a common back-
bone. Changes can be caused by amino acid identity substitutions (for example D/L
or R/Q) or by amino acid side-chain reorientations (rotamers) for a given amino acid.
A typical rotamer library for one amino acid is shown on the right (ARG=Arginine).

Rotamers. The distribution of accessible conformations available to each amino
acid side chain is approximated using a set of discrete conformations defined by
the value of their inner dihedral angles. These conformations, or rotamers, are
derived from the most frequent conformations in the experimental repository of
known protein structures PDB (Protein Data Bank, www.wwpdb.org).

Energy function. Typical energy function approximations [3] use the assump-
tion that the amino acid identity substitutions and rotamers do not modify the
folding of the protein. They include non-bonded terms such as van der Waals
and electrostatics, often in conjunction with empirical contributions describing
hydrogen bond. The surrounding solvent effect is generally treated implicitly
as a continuum. In addition, statistical terms may be added in order to ap-
proximate the effect of mutations on the unfolded state or the contribution of
conformational entropy.

These energy functions can be reformulated in such a way that the terms are
locally decomposable. Then, the energy of a given protein defined by a choice
of one specific amino acid with an associated conformation (rotamer) for each
residue, can be written as:

E = Ec +
∑
i

E(ir) +
∑
i

∑
j>i

E(ir, js) (1)



where E is the potential energy of the protein, Ec is a constant energy con-
tribution capturing interactions between fixed parts of the model, E(ir) is the
self energy of rotamer r at position i capturing internal interactions or with fixed
regions, and E(ir, js) is the pairwise interaction energy between rotamer r at
position i and rotamer s at position j [9]. All terms are measured in kcal/mol
and can be pre-computed and cached.

3 Existing approaches for the CPD

The protein design problem as defined above, with a rigid backbone, a discrete set
of rotamers, and pairwise energy functions has been proved to be NP-hard [31].
Hence, a variety of meta-heuristics have been applied to it, including Monte Carlo
simulated annealing [21], genetic algorithms [33], and other algorithms [10]. The
main weakness of these approaches is that they may remain stuck in local minima
and miss the GMEC without notice.

However, there are several reasons motivating the exact solving of the prob-
lem. First, because they know when an optimum is reached, exact methods may
stop before metaheuristics. Voigt et al. [36] reported that the accuracy of meta-
heuristics also degrades as problem size increases. More importantly, the use of
exact search algorithms becomes crucial in the usual experimental design cycle
that goes through CPD modeling, solving, protein synthesis and experimental
evaluation: when unexpected experimental results are obtained, the only possible
culprit lies in the CPD model and not in the algorithm.

Current exact methods for CPD mainly rely on the dead-end-elimination
(DEE) theorem [9, 8] and the A∗ algorithm [24, 13]. From a constraint satisfac-
tion perspective, the DEE theorem can be seen as an extension of neighbor-
hood substitutability [7, 20, 2]. DEE is used as a pre-processing technique and
removes rotamers that are locally dominated by other rotamers, until a fixpoint
is reached. The rotamer r at position i is removed if there exists another rotamer
u at the same position such that [9]:

E(ir)− E(iu) +
∑
j 6=i

min
s

E(ir, js)−
∑
j 6=i

max
s

E(iu, js) > 0

That is, r is removed if for any conformation with this r, we get a conforma-
tion with lower energy if we substitute u for r.

Extensions to higher orders have been considered [14, 30, 25, 12]. These DEE
criteria preserve the optimum but may remove suboptimal solutions.

This DEE preprocessing is usually followed by an A∗ search method. After
DEE pruning, the A∗ algorithm allows to expand a sequence-conformation tree,
so that sequence-conformations are extracted and sorted on the basis of their
energy values. At depth d of the tree, the lower bound used by A∗ [13] is exactly
the PFC-DAC lower bound [37, 23] used in WCSP and later obsoleted by soft
arc consistencies [34, 22, 5]:



d∑
i=1

E(ir) +

d∑
j=i+1

E(ir, js)︸ ︷︷ ︸
Assigned

+

n∑
j=d+1

[
min
s

(E(js) +

d∑
i=1

E(ir, js)︸ ︷︷ ︸
Forward checking

+

n∑
k=j+1

min
u

E(js, ku)︸ ︷︷ ︸
DAC counts

)
]

If the DEE algorithm does not significantly reduce the search space, the A∗

search tree is too memory demanding and the problem cannot be solved. There-
fore, to circumvent these limitations and increase the ability of CPD to tackle
problems with larger sequence-conformation space, novel alternative methods are
needed. Here, we show that state-of-the-art methods for solving Cost Function
Networks offer an attractive alternative to this combined DEE/A∗ approach, to
solve highly complex case studies of protein design.

4 Cost Function Network model

A Cost Function Network (CFN) is a pair (X,W ) where X = {1, . . . , n} is
a set of n variables and W a set of cost functions. Each variable i ∈ X has
a finite domain Di of values than can be assigned to it. A value a ∈ Di is
denoted ia. For a set of variables S ⊆ X, DS denotes the Cartesian product
of the domain of the variables in S. For a given tuple of values t, t[S] denotes
the projection of t over S. A cost function wS ∈ W , with scope S ⊆ X, is a
function wS : DS 7→ [0, k] where k is a maximum integer cost used for forbidden
assignments. The Weighted Constraint Satisfaction Problem (WCSP) is to find a
complete assignment t minimizing the combined cost function

∑
wS∈W wS(t[S]).

This optimization problem has an associated NP-complete decision problem.
Modeling the CPD problem as a CFN is straightforward. The set of vari-

ables X has one variable i per residue i. The domain of each variable is the set
of (amino acid,conformation) pairs in the rotamer library used. The energy func-
tion can be represented by 0-ary, unary and binary cost functions respectively
capturing the constant energy term Ec, the unary energy terms E(ir) and the
binary energy terms E(ir, js). There is just one discrepancy between the original
formulation and the CFN model: energies are represented as arbitrary floating
point numbers while CFN use positive integer costs. This can simply be fixed
by first subtracting the minimum energy to all energies and then by multiplying
energies by a large integer constant M .

5 Integer Linear programming model

The resulting CFN can also be represented as a 0/1 linear programming problem
using the encoding proposed in [20]. For every value ir, there is a boolean variable
di,r which is equal to 1 iff i = r. Additional constraints enforce that exactly one
value is selected for each variable. For every pair of values of different variables
(ir, js) involved in a binary energy term, there is a boolean variable pi,r,j,s which



is equal to 1 iff the pair (ir, js) is used. Constraints enforce that a pair is used
iff the corresponding values are used. Then, finding a GMEC reduces to the
following ILP:

min
∑

i,r E(ir).di,r +
∑

i,r,j,s E(ir, js).pi,r,j,s

s.t.
∑

r di,r = 1 (∀i)∑
s pi,r,j,s = di,r (∀i, r, j)

This model is also the ILP model IP1 proposed in [19] for side-chain po-
sitioning. The continuous relaxation of this 0/1 linear programming model is
known do be the dual of the LP problem encoded by Optimal Soft Arc Consis-
tency [6, 5]. When the upper bound k is infinite, OSAC is known to be stronger
than any other soft “arc level” arc consistency and especially stronger than the
default Existential Directional Arc Consistency (EDAC) [22] used in toulbar2.
However, as soon as the upper bound k decreases to a finite value, soft local
consistencies may prune values and EDAC becomes incomparable with OSAC.

6 Experimental Results

We used a set of 12 protein design cases to evaluate the performance of toulbar2,
cplex and compare them with the DEE/A* approach implemented in osprey

(open source dedicated Java CPD software). This set comprises 9 protein struc-
tures derived from the PDB which were chosen for the high resolution of their
3D-structures and their distribution of sizes and types. Diverse sizes of sequence-
conformation combinatorial spaces were considered, varying by the number of
mutable residues, the number of alternative amino acid types at each position
and the number of conformations for each amino acid (Table 1). The Penultimate
rotamer library was used [26].

Preparation of CPD instances. Missing heavy atoms in crystal structures and
hydrogen atoms were added with the tleap module of the AMBER9 software
package [4]. Each molecular system was then minimized in implicit solvent (Gen-
eralized Born model [17]) using the Sander program and the all-atom ff99 force
field of AMBER9. All Ec, E(ir), and E(ir, js) energies of rotamers (see Equa-
tion 1) were pre-computed using osprey. The energy function consisted of the
Amber electrostatic, van der Waals, and dihedral terms. These calculations were
performed on an Altix ICE 8200 supercomputer with 2,816 Intel Nehalem EX
2.8 GHz cores. We used 32 cores and 128GB of RAM. The sequential CPU
time needed to compute the set of all energy cost functions is given in Table 1.
Although these computation times can be very large, they are also highly paral-
lelizable. For n residues to optimize with d possible (amino acid,conformation)

pairs, there are n unary and n.(n−1)
2 binary cost functions which can be computed

independently.



DEE/A* optimization. To solve the different protein design cases, we used
osprey version 1.0 (cs.duke.edu/donaldlab/osprey.php) which first filters ro-
tamers ir such that E(ir) > 30kcal/mol and pairs (ir, js) such that E(ir, js) >
100kcal/mol (pruningE and stericE parameters). This step is followed by ex-
tensive DEE pre-processing (algOption = 3, includes simple Goldstein, Magic
bullet pairs, 1 and 2-split positions, Bounds and pairs pruning) and A∗ search.
Only the GMEC conformation is generated by A∗ (initEw=0). Computations
were performed on a single core of an AMD Operon 6176 at 2.3 GHz, 4 GB of
RAM, and a 100-hour time-out. There were no memory-out errors.

CFN and ILP optimization. The same problems (before DEE preprocessing and
using M = 108) have been tackled by cplex version 12.2 (parameters EPAGAP,
EPGAP and EPINT set to zero to avoid premature stop) and toulbar2 ver-
sion 0.9.5 (mulcyber.toulouse.inra.fr/projects/toulbar2/) using binary
branching with an initial limited discrepancy search phase [16] with a maximum
discrepancy of 2 (options -d: -l=2, and other default options including EDAC
and no initial upper bound) and domains sorted with increasing unary costs
E(ir). These computations were performed on a single core of an Intel Xeon
E5430 core at 2.66 GHz with 64GB of RAM with a 100-hour time-out.

With the exception of one instance (1CM1), cplex significantly outperforms
osprey. On the other hand, toulbar2 is always faster than both cplex and
osprey by at least one order of magnitude and often many more, even accounting
for the performance discrepancy arising from the difference in the hardware we
used. We have also verified that the minimum energy reported by all 3 solvers
is identical.

Table 1. For each instance: protein (PDB id.), amino acid sequence length, number
of mutable residues, maximum number of (amino acid, conformation) pairs, sequential
time for computing E(·) energy functions, and CPU-time for solving using osprey,
cplex, and toulbar2. A ’-’ indicates that the 100-hour limit has been reached.

System name Size n d E(·) osprey cplex toulbar2

Thioredoxin (2TRX) 108 11 44 304 min. 27.1 sec. 2.6 sec. 0.1 sec.
Protein G (1PGB) 56 11 45 76 min. 49.3 sec. 14.7 sec. 0.1 sec.
Protein L (1HZ5) 64 12 45 114 min. 1,450 sec. 17.7 sec. 0.1 sec.
Ubiquitin (1UBI) 76 13 45 270 min. - 405.0 sec. 0.6 sec.
Protein G (1PGB) 56 11 148 1,096 min. - 2,245 min. 13.9 sec.
Protein L (1HZ5) 64 12 148 831 min. - 1,750 min. 14.6 sec.
Ubiquitin (1UBI) 76 13 148 1,967 min. - - 378 min.
Plastocyanin (2PCY) 99 18 44 484 min. - 89.5 sec. 0.5 sec.
Haloalkane Dehaloge-
nase (2DHC)

310 14 148 45,310 min. - - 77.4 sec.

Calmodulin (1CM1) 161 17 148 11,326 min. 121.9 sec. 1,707 sec. 2.0 sec.
Peptidyl-prolyl cis-trans
Isomerase (1PIN)

153 28 148 40,491 min. - - -

Cold-Shock (1C9O) 132 55 148 84,089 min. - - -



6.1 Explaining the differences

The ILP solver CPLEX is a totally closed-source black box. More generally,
solvers are complex systems involving various mechanisms. The effect of their in-
teractions during solving is hard to predict. Therefore, explaining the differences
in efficiency observed between the different approaches is not really obvious.

If we consider osprey first, it uses an obsolete lower bound instead of the more
recent incremental and stronger lower bounds offered by soft local consistencies
such as EDAC [22]. This, together with the associated informed value ordering
provided by these local consistencies, may explain why toulbar2 outperforms
osprey. Similarly, the LP relaxation lower bound used in ILP is known (by
duality) to be the same as the Optimal Soft AC lower bound (when no upper
bounding occurs, i.e. when k = +∞). Since OSAC dominates all other local
consistencies at the arc level, this provides an explanation for the efficiency
of cplex compared to osprey. Finally, the problem is deeply non linear. It
can be concisely formulated as a CFN but the ILP formulation is much more
verbose. This probably contributes, together with the upper bounding (provided
by node consistency) and value ordering heuristics of toulbar2, to the efficiency
of toulbar2 compared to cplex.

7 Conclusion

The simplest formal optimization problem underlying CPD looks for a Global
Minimum Energy Conformation (GMEC) over a rigid backbone and altered side-
chains (identity and conformation). It can easily be reduced to a binary Cost
Function Network, with a very dense graph and relatively large domains or to
0/1LP with a large number of variables.

On a variety of real instances, we have shown that state-of-the-art CFN
algorithms but also 0/1LP algorithms give important speedups compared to
usual CPD algorithms combining Dead End Elimination with A∗ as implemented
in the osprey package. CFN algorithms are the most efficient by far and have
the advantage of requiring reasonable space.

Although existing CFN algorithms still need to be extended and adapted to
tackle such problems, the rigid backbone method reported herein may contribute
to the development of more sophisticated flexible methods.
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