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Abstract

Plants have to coordinate eukaryotic ribosomes (cytoribosomes) and prokaryotic ribosomes (plastoribosomes and
mitoribosomes) production to balance cellular protein synthesis in response to environmental variations. We identified 429
genes encoding potential ribosomal proteins (RP) in Arabidopsis thaliana. Because cytoribosome proteins are encoded by
small nuclear gene families, plastid RP by nuclear and plastid genes and mitochondrial RP by nuclear and mitochondrial
genes, several transcriptional pathways were attempted to control ribosome amounts. Examining two independent
genomic expression datasets, we found two groups of RP genes showing very different and specific expression patterns in
response to environmental stress. The first group represents the nuclear genes coding for plastid RP whereas the second
group is composed of a subset of cytoribosome genes coding for RP isoforms. By contrast, the other cytoribosome genes
and mitochondrial RP genes show less constraint in their response to stress conditions. The two subsets of cytoribosome
genes code for different RP isoforms. During stress, the response of the intensively regulated subset leads to dramatic
variation in ribosome diversity. Most of RP genes have same promoter structure with two motifs at conserved positions. The
stress-response of the nuclear genes coding plastid RP is related with the absence of an interstitial telomere motif known as
telo box in their promoters. We proposed a model for the ‘‘ribosome code’’ that influences the ribosome biogenesis by
three main transcriptional pathways. The first pathway controls the basal program of cytoribosome and mitoribosome
biogenesis. The second pathway involves a subset of cytoRP genes that are co-regulated under stress condition. The third
independent pathway is devoted to the control of plastoribosome biosynthesis by regulating both nuclear and plastid
genes.
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Introduction

For their survival, cells need to safeguard energy and to adapt

their growth and differentiation to the local environmental

fluctuations. Ribosomes are integral to the translation of mRNA

into proteins and, as such, are considered as housekeeping com-

ponents of the cells. However, ribosomal biogenesis, as all protein

synthesis, is energy-consuming. In yeast, it has been reported that

at least 75% of the transcriptional activity is dedicated to ribosome

biogenesis [1]. In response to stress such as nutritional limitation,

repression of ribosomal protein synthesis has been observed in all

kingdoms: bacteria, yeast, animal and plants [2]. Although ribo-

some proteins are among the most highly conserved proteins

across evolution in all kingdoms, the regulatory pathways con-

trolling the genes encoding these proteins remain unclear.

In eukaryotic cells, ribosomes are millions of KDa ribonu-

cleoprotein complexes comprising two subunits, a large and a

small subunit, composed of four rRNA together with 48 and 32

ribosomal proteins (RP) respectively. In the model plant Arabidopsis

thaliana, each cytoplasmic RP (cytoRP) can be encoded by different

members of small families including 2 to 7 family members [3,4].

In the same family, the RP isoforms share between 65% and 100%

amino acid sequence identities [3]. To explain the sense of this

conserved redundancy, several explanations have been developed,

such as a specialization of the role of each member or the need to

rapidly regulate the amount of RPs in the cell. There is no

evidence for any of these hypotheses in plants [5,6]. Moreover,

mutant analysis of genes encoding cytoRP often shows that several

of these genes have specific developmental roles [7].

In plants, growth and development need a fine-tuning in the

activity of cytosol, mitochondria and chloroplasts, requiring

distinct and accurate regulation of ribosome biogenesis in each

compartment. Molecular data and phylogenetic analyses support

the cyanobacteria and a-proteobacterial origins of chloroplast and

mitochondria, respectively [8]. The prokaryotic gene families

encoding the mitochondrial (mitoRP) and plastid RP (plastoRP)

are not yet fully listed in Arabidopsis. In a typical prokaryotic

organism, such as Escherichia coli, 54 RP make up the ribosome [9].

Thus, in chloroplast and mitochondria, 54 RP are expected as in

Escherichia coli. However, these RP are not encoded only by genes

located within the organelle genome. Indeed, many organelle

genes including RP ones have been transferred to the nucleus

during plants evolution [8]. From genome sequence analyses,

Bonen and Calixte [10] identified recently 46 mitochondrial-type
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RP genes in the nuclear genome and only 7 mitoRP genes in the

mitochondria genome of Arabidopsis. Spinach proteomic and

genomic analyses showed that the plastoribosome contains 58

plastoRP among which only 22 are encoded by the chloroplast

genome [11,12]. In addition, seven of the nuclear-encoded

plastoRP have been categorized as ‘‘plant plastid specific’’

[13,14]. Experimental evidences also revealed that more complex

exchanges exist such as transfer of RP genes from chloroplast to

mitochondrion [15].

Ribosome biogenesis is complex and its control depends on both

internal and external signaling in all three compartments:

cytoplasm, plastid and mitochondrion. Up to now, there is little

information on the transcriptional regulation of members within

each RP gene family. Recently, Whittle and Krochko [16]

analyzed the expression of RP genes in Brassica napus, based on

RP EST abundances reported in databases. Their results suggest

that the differential regulation of the expression level of RP genes

within a family is a transcriptional way to adapt ribosome

composition in plants. In this study, we first recorded the entire list

of genes coding for RPs in Arabidopsis, and the predicted

localization for each RP from the literature and sequence genome

analysis. By analyzing the corresponding expression pattern of

these genes in the CATMA microarray experiment database [17],

we revealed that only five different classes of genes exist. These

classes of genes defined by their response to environmental stress

are related to the predicted localization of the corresponding RP.

These results were then validated with a second analysis of another

microarray experiment database using the genevestigator tool

[18]. We then analyzed the nucleotide motifs in the promoters of

each class of RP gene and revealed that telo-box motif is absent in

the class of nuclear genes encoding plastoRP. Finally, we discussed

the global transcriptional regulation of RP genes in plants.

Results

The Arabidopsis genome contains 429 RP genes
The first step in this study was to obtain a complete list of RP

genes in Arabidopsis thaliana. For cytoribosome, we used the gene list

of cytoRP provided by Barakat et al. [3] and data from proteomics

studies [4,19] to perform TBlastN and TBlastX with all the entries

available on TAIR 7 Arabidopsis genomics data [20] and to

retrieve the missing AGI accession set. In similar manner, for

plastoribosome and mitoribosome, the 54 E. coli RP [9], available

gene list of Arabidopsis mitoRP [10] and proteomic studies of

plastoRP in spinach [11,12], were used to retrieve ribosomal

entries in the Arabidopsis genome. In order to discriminate

between prokaryotic or eukaryotic origins of each sequence, we

performed phylogenic analysis using the Phylogeny.fr pipeline [21].

Localizations of the RP were predicted using SUBA software [22],

and the predictions were validated when it was possible with

available proteomic studies [23,24,25,26,27,28,29]. All these in

silico analyses provided a list containing 429 references for RP

genes with their sub-cellular localization, depicted in Fig. 1 (see

Table S1). Among these RP genes, 48% are implicated in cytoRP

synthesis. Some new AGI have been identified for cytoRP

predicted previously by Barakat et al [3] and additional new

cytoRP genes have been found (Table 1). Validation of protein

localization for these two gene lists was based on proteomic studies

on cytoribosome [4,19]. For around 3% of the RP genes, RP

localization is predicted in the nucleus, reminding us that early

steps of cytoribosome biogenesis are nuclear events [30]. MitoRP

are encoded by 17% of the RP genes, corresponding to 71 genes

distributed in 44 families (see Table S6). Around 18% of the genes

have a plastoRP prediction. They correspond to 77 genes

distributed in 55 families (see Table S7). 80% of their prediction

has been validated by proteomic analyses. The localization

remains unclear for 14% of the RP gene list. Among the 429

RP genes, only 19 were annotated as pseudogenes on TAIR 10,

with no clear RP localization. Finally, the 429 RP genes are then

organized into (i) 221 genes encoding cytoRP (ii) 71 genes

encoding mitoRP and (iii) 77 genes encoding plastoRP.

Transcriptional analysis and clustering of RP genes with
CATMA database

To analyze transcriptional regulation of RP genes, dataset from

the public CATMA library [17] has been used. From the

annotation of nuclear, mitochondrial and plastid genomes, 293

gene-specific probes were retrieved for the 429 RP genes providing

expression information on nearly 70% of the RP genes. A set of 49

experiments has been selected for further analysis (list provided in

Table S5). These 49 experiments compare WT plant grown in

control condition vs. treated condition and in the same time show a

significant variation in expression for at least one RP gene. Before

any computer analysis, all data were homogenized and a code

(21), (+1) and (0) was introduced to indicate that gene was

respectively repressed, induced or did not show any variation with

significant p-value (as defined in [17]). Two clustering, one for the

experiments and another for the genes, have been carried out

successively (Fig. 2). Interestingly, CATMA experiments dealing

with stress have been clustered into four groups. Groups 1 and 2

include experiments inducing gene expression in response to biotic

and abiotic stress, respectively. Group 3 assembles experiments in

which stress effect on gene expression was weak. Group 4 includes

experiments where plant Carbon/Nitrogen status is affected.

Gene clustering was performed in order to reveal similarities in

RP gene expression patterns in response to stress. In the set of

CATMA experiments, a list of 47 genes was first identified,

showing no significant variation in signal intensity whatever the

experiment tested. In this class 0, the different corresponding RP

are located within the cytosol, nucleus, mitochondria and plastids

with however an over representation of mitoRP (34% of class 0

compared to 17% of the full gene list). Most of the RP

pseudogenes belong to this class. From the 246 other genes, a

k-means clustering monitored by 4 classes has been used to identify

correlations in the regulation of these RP genes. The four classes

Figure 1. Predicted subcellular localization of RP in Arabidop-
sis. Subcellular localization of the RP gene product is the result of
prediction with SUBA software in accordance to phylogenetic analyses,
and with proteomics data when data are available. Full gene list is
provided in Table S1. The three numbers in brackets correspond to the
gene distribution among the genome localization: nuclear, mitochon-
drial or plastidial, respectively.
doi:10.1371/journal.pone.0028070.g001
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obtained depict specific transcription patterns in response to

environment (Fig. 2A and see Table S2). The most striking result is

that these four classes are correlated with the final location of RP.

Class 1 represents 132 genes with rare and erratic variations

(Fig. 2A). In this group the majority of genes code for cytoRP and

mitoRP. MitoRP are over represented, 30% versus 17% of the full

RP gene list (Fig. 2B). Class 2 is composed of 68 genes among

which 94% are coding for cytoRP. Class 2 is down-regulated by

nitrogen starvation and up-regulated by an Erwinia amylovora

inoculation (Fig. 2A). Classes 3 and 4 are composed of 32 and 14

genes respectively, all of them coding for plastoRP (Fig. 2B).

However, in class 3, RP genes are exclusively nuclear whereas in

class 4 all genes are plastidial, except two that are nuclear. The two

last classes are highly down-regulated by nitrogen starvation and

by all the stress affecting the plant Carbon/Nitrogen status (Group

4 of experiment). The partitioning between classes 3 and 4 is based

on contrasted responses of RP genes to group 2 experiments, UV

stress and nitrogen re-supply (Fig. 2A).

Validation of the CATMA transcriptional analysis using
Affymetrix data available in Genevestigator

To see if our previous analyses resists to higher complexity, we

analyzed a second set of experiment. Results of experiments

using Affymetrix ATH1 arrays provide a second and indepen-

dent dataset that we used to validate our CATMA analysis.

Affymetrix results for 5747 experiments have been analyzed

using 357 Affymetrix probes available for the 429 RP genes

(listed in Table S1). Using Genevestigator [18], hierarchical

clustering of gene expression patterns was carried out with

Pearson’s correlation for the two series of experiments: organ

specificity (referred in Genevestigator as anatomy) and stress

(referred as conditions) (Fig. 3). Matrix of Pearson’s correlations

has been done to highlight co-regulated genes in these two

different series of experiments. In the two series, two blocks of

genes appear with the strongest correlations (r2$0.8) (Fig. 3A and

3E). Pattern of co-regulated genes have been underlined in

orange and green for the largest and he smallest respectively

(Fig. 3B and 3F).

In the stress series, the group of genes underlined in orange is

characterized by an important coordinated response to several

stimuli (Fig. 3B). Increases in gene expression are observed in light

study, circadian clock and shift of etiolated seedling to light

experiments. A decrease expression of these genes is observed

under osmotic stress, drought, and low light treatments. For the

green underlined RP genes, an increase in their expression is

observed in response to brassinolide treatment and dramatic

Table 1. List of new cytoRP genes coding for cytoRP.

Name sub-unit
Evolutionary
Group AGI

Identified but remaining
undetermined in Barakat et al. [3]

proteomic
identifications

[19] [4]

RPL19A 60S II AT1G02780 X X X

RPL21B 60S II AT1G09486 X

RPL21D 60S II AT1G31355 X

RPL27aC 60S I AT1G70600 X X X

RPL37aC 60S III AT3G60245 X X

RPL41C 60S III AT2G40205 X

RPL4C 60S II AT2G24730 X

RPS27C 40S II AT3G61111 X

RPS2B 40S I AT1G59359 X X

RPS4C 40S II AT5G15750 X X named RPL9D

RPS7A 40S III AT1G48830 X X X

RPL10a related 60S I AT3G58660

RPL10aD 60S I AT2G27535 X

RPL18aA 60S II AT1G29965 X

RPL24C 60S II AT2G44860 X

RPL3C 60S I AT5G42445

RPP0D 60S I AT1G25260 X

RPP1D 60S I AT5G24510 X

RPP1D 60S I AT3G49460 X

RPS11D 40S I AT2G24110

RPS15G 40S I AT1G33850 X

RPS25F 40S III AT4G34555 X

RPS29C 40S I AT4G33865

RPS2E 40S I AT1G58684 X

RPS2F 40S I AT1G58983 X

Are provided the protein name, its sub-unit localization, its evolutionary group, its corresponding gene reference number (AGI), if gene has been identified but
remaining undetermined in Barakat et al. [3], and proteomic identification from Caroll et al. [19] and Chang et al. [4] when occurring.
doi:10.1371/journal.pone.0028070.t001
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reductions are observed during infection with Pseudomonas syringae,

nitrogen starvation and hypoxia. In the anatomy series of

experiments, the RP genes underlined in green are expressed in

all green tissue, and their expression is totally excluded from root

tissues (Fig. 3F). There is no specific expression pattern among

organs for RP genes underlined in orange. In the two series of

experiments, most of the RP genes underlined in orange are

coding for cytoRP (Fig. 3D and H) with nuclear genome

localization (Fig. 3C and G). The RP genes underlined in green

are coding for plastoRP (Fig. 3D and H) but are located in the

nucleus (Fig. 3C and 3G). Results suggest the hypothesis that RP

genes underlined in orange and green are the same in the two

Affymetrix series.

Correspondence between CATMA and Affymetrix co-
regulated RP genes

In the Affymetrix analysis, RP genes co-regulated and

underlined in orange in Fig. 3 set up two groups of 138 and 145

genes for the stress and organ series, respectively. Comparison in a

Venn diagram demonstrated that the two groups are predomi-

nantly composed of the same genes: among them, 123 (72+51) are

common in the two series of experiments (Fig. 4A). All these genes

are coding for cytoRP. Comparison of these 123 RP genes to the

66 cytoRP genes belonging to class 2 in CATMA analysis reveals

that 51 of them are common between the three lists. Of the 15

remaining CATMA class 2 genes, only two have never been

included in any Affymetrix co-regulated groups (underlined in

orange in Fig. 3). In contrast, from the 123 RP genes co-regulated

in the two Affymetrix series, 72 have not been found in CATMA

class 2. However, only half of them have corresponding probes in

CATMA arrays.

The lists of RP genes underlined in green in Affymetrix

analysis (Fig. 3) have been compared in a same way using Venn

diagram. The figure 4B shows that the 41 RP genes selected in

the two Affymetrix series are identical, with nuclear genome

localization and coding only for plastoRP. Comparison with RP

genes in CATMA class 3 shows that 30 of them are common in

the three series (Fig. 4B). The two RP genes specific of CATMA

class 3 have no Affymetrix corresponding probes. Similarly,

among the 11 RP genes specific to the Affymetix series, only two

have corresponding CATMA probes and have been found into

class 1 (Fig. 2A).

Figure 2. Transcriptional regulation of RP genes is correlated with final localization of the protein. A. Simplified heat map resulting from
clustering of 293 probes deriving from RP genes and 49 experiments from CATMA data base (Su(+) for sugar treatment, Er for Erwinia attack, Ni(2)
and Ni(+) for nitrogen stress and reapplication of nitrogen source after a nitrogen starvation, Uv for UV treatment, Wa for Water stress, Pt for Potyvirus
attack, Rd for Rhodococcus attack, Ps for other biotic stress). Scale: blue corresponds to a decreasing ratio of signal between control and treated
plants. Red corresponds to an increasing ratio of signal between control and treated plants. Each square represents the average ratio for RP genes
with the same location in one class. Individual ratios are provided in Table S2. B. Distributions of predicted localization of RP among the 5 classes
depicted above.
doi:10.1371/journal.pone.0028070.g002
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Two transcriptional pathways regulate cytoRP genes
Each cytoRP can be encoded by different members of small

gene families composed of 2 to 7 genes. As shown in two

independent data sets (CATMA and Affymetrix), we are able

to distinguish a class of cytoRP genes showing highly

correlated expression patterns compared to the other cytoRP

genes. We then record the number of RP gene families

containing members in each transcriptional classes (Table 2).

In the CATMA analysis, the 66 class 2 cytoRP genes belong to

44 RP families. Among them, 37 RP gene families have also a

member belonging to another transcriptional class, suggesting

that 84% of the cytoRP gene families are transcribed following

two transcriptional pathways. In the Affymetrix series, the 123

cytoRP genes which are co-regulated belong to 69 families. In

these experiments, 70% of the cytoRP gene families are

transcribed in two transcriptional pathways. All together, the

51 genes in the intersection of these groups belong to 37

families. Only three of these families exhibit a common

transcriptional regulation of their members, suggesting that

92% of these RP families produce cytoRP following two

transcriptional pathways.

Finally, despite there is no differential pattern of expression

among organs between the co-regulated cytoRP genes and the

other cytoRP genes (Fig. 3F), there is a dramatic difference in their

level of expression. During all the plant life cycle, the co-regulated

cytoRP genes seem to be twice more expressed than the other

cytoRP genes (Fig. 5). That could explain why the responses to

stress of co-regulated RP genes are so marked.

Figure 3. Transcriptional responses of RP genes to abiotic stress in Affymetrix experiments. Transcriptional responses of RP genes to
abiotic stresses and their anatomical expressions highlight two correlated group of RP genes in Affymetrix (ATH1 chips) experiments. A. Pearson’s
correlation matrix of 357 genes in 5747 microarray experiments using data expression results of the conditions series in genevestigator website [18].
Pearson’s correlation $0.8 are in red. B. Expression profiles used for A results. X and Y axes represent genes and experiments, respectively. C. Protein
localization of the gene product from above. D. Gene localization of the RP gene. ABCD are at the same x axis scale. E. Pearson’s correlation matrix of
357 genes using data expression results of the Anatomy series of genevestigator, Pearson’s correlation $0.8 are in red. F. Expression profiles used for
E results. X and Y axes represent genes and experiments, respectively. G. Protein localization of gene product from above. H. Localization of RP genes.
EFGH are at the same X axis scale. Results of two subgroups of RP genes are highlighted in green and orange in the different panels.
doi:10.1371/journal.pone.0028070.g003
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Nuclear genes coding for plastoRP have an original
pattern of transcriptional regulation

Gene clustering shows that plastoRP genes have a highly

specific pattern of expression compared to cytoRP and mitoRP

genes (Fig. 2). In particular, the 32 class 3 nuclear genes coding for

plastoRP are similarly regulated in response to different stress.

Two reasons were investigated to explain such pattern of

expression: (i) it was specific to nuclear genes coding for plastoRP

or (ii) it was related to the plastid developmental program and then

was similar to all the nuclear genes coding for plastidial proteins.

To discriminate between these possibilities, 46 nuclear genes

coding for other plastidial proteins without any link with ribosome

activity have been used for clustering in the same run as RP genes

(see Table S3). In the 4-class clustering assay performed on the

CATMA dataset, 65% of those genes were grouped within the

class 1, 22% in class 3, and 13% in class 4 (Fig. 6A), indicating that

the nuclear plastoRP genes of class 3 have a pattern of expression

that is specific from any other nuclear encoded plastid compo-

Figure 4. Comparison between Affymetrix and CATMA results.
A. Venn diagram showing intersections between sets of genes
underlined in orange in the two genevestigator series (anatomy and
stimuli) and RP genes in CATMA class 2. B. Venn diagram showing
intersections between sets of genes underlined in green in the
genevestigator series (anatomy and conditions) and RP genes in
CATMA class 3.
doi:10.1371/journal.pone.0028070.g004

Table 2. Most of the cytoRP gene families were transcribed by two alternative ways.

Number of genes
in class 2

Number of RP gene
family containing a
class 2 gene

Number of these
family containing also
another studied gene

Percentage of family
having transcriptional
alternative to produce RP

CATMA dataset 66 44 37 84%

Affymetrix dataset 123 69 48 70%

Intersection between
the two datasets

51 37 34 92%

Results are given for the CATMA dataset, the affymetrix dataset and the intersection between these two sets. Number of genes in class 2 is in the first column. Number of
gene families containing class 2 genes is in the second column. The number of gene families containing both genes in class 2 and in other classes is in the third column. The
last column is the percentage of family having transcriptional alternative to produce RP obtained by calculating the ratio between third column divided by the second one.
doi:10.1371/journal.pone.0028070.t002

Figure 5. Expression levels of classes 2 and 1 cytoRP genes
differ all among the plant development. The class 2 genes have
been described as class 2 genes in CATMA and Affymetrix datasets.
CytoRP are coded by multigenic families. Each family containing at least
one class 2 gene has been considered. The class 1 genes are all the non
class 2 cytoRP genes from these families. Values depicted here are
means +/2 SE. Grey bards correspond to pattern expression of class 2
RP genes. White bards correspond to expression levels of class 1 RP
genes.
doi:10.1371/journal.pone.0028070.g005
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nents. Similarly, we then wanted to test, if the common expression

pattern of the 12 plastidial genes coding for plastoRP was

dependent of the plastid development. A list of 29 plastidial genes

coding for plastidial proteins without any link with ribosome

activity have been used for clustering in the same run as RP genes

(see Table S4). In the 4-classes clustering assay made on CATMA

dataset, 24% of plastidic genes were grouped within the class 1,

3% in class 2, 3% in class 3, and 70% in class 4 (Fig. 6B). We can

conclude that no specific plastidial transcriptional program is

dedicated to RP genes, the plastidial genome expression being

tightly coordinated through one major transcriptional regulatory

pathway.

Regarding the class 3 and class 4 responses to stress (Fig. 2), we

tested the correlation of their responses to stress in CATMA

dataset. Interestingly, using the open-source Cytoscape software

[31], our basic representation of the highest correlations (r2$0.75)

between gene expressions (Fig. 6C) shows two independent clouds

of genes, one for the class 3 and another for the class 4. The

nuclear (white) and plastidial (grey) genes from classes 3 and 4 are

connected together by two main genes which are RPS1 and

PSRP2.

The pattern of expression of nuclear plastoRP genes is
associated to the absence of a motif in their promoters

To understand the distribution of expression patterns among

RP genes, we analyzed RP promoter sequences of nuclear genes

using MEME software to identify specific or common motifs in the

classes and FIMO software to find motif occurrences between the

classes [32]. Only two interstitial telomere motifs have been found

(Fig. 7). The site II motif ARGCCCA (R = A or G) [33,34] is

located at 270+/225 nucleotides from the translation initiation site

in respectively 59%, 71%, 75% and 64% of the promoters of class

1 cytoRP, class 2 cytoRP, mitoRP and plastoRP genes (Fig. 7A).

The site-II motif was found in only 29% of random promoter. The

telo-box motif AAACCCWA (W = A or T) already described in

several promoters of RP genes in plants [35] was indeed found in

RP promoters but is less represented in promoters of plastoRP

genes than in others (Fig. 7B). The telo-box is located at 230+/225

nucleotides from the translation initiation site, in respectively 61%,

63% and 84% of promoters for class 1 cytoRP, class 2 cytoRP and

class 1 mitoRP (Fig. 7B). Although the telo-box motif was found in

32% of random promoter, Telo-boxes were never found at this

Figure 6. Expression patterns of nuclear and plastidial genes highlight the specificity of nuclear plastoRP gene regulation.
A. Distribution of the regulation pattern obtained in CATMA dataset for 46 nuclear genes coding for protein with plastidial location in the 4-means
clustering describing four classes of regulation for RP genes. List and heat map are provided in Table S3. B. Distribution of the regulation pattern
obtained in CATMA dataset for 30 plastidial genes in the 4-means clustering describing four classes of regulation for RP genes. List and heat map are
provided in Table S4. C. PlastoRP gene expressions network in stress conditions. Graphic representation of relationship between plastoRP gene
expressions during stress conditions. Genes are represented as nodes, and color and shapes have been assigned according to their localization in
nucleus (white) or plastid genome (grey). Edges connecting nodes represent significant correlation between gene expressions in CATMA experiment
analyzed. Only correlations upper than 0.75 were kept. Edge thickness is proportional to the correlation. We used the open-source Cytoscape
software to visualize the network. (*) and (**) highlight the key positions of RPS1 and PSRP-2 genes, respectively.
doi:10.1371/journal.pone.0028070.g006
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position in the rare plastoRP promoters containing one motif

(18%). Trémousaygue et al [36] suggested that the site-II motif

drives gene expression in actively dividing tissues as young leaves

and root primordia, and that the telo-box just enhances the

expression level. The lack of the telo-box enhancer in promoter of

nuclear genes encoding plastoRP could explain the difference of

expression of these genes in response to environment cues in green

tissue (Fig. 3B and 3F).

Discussion

Expression program for cytoRP and mitoRP biogenesis is
maintained under stressful conditions

This study deals with the regulation of RP encoding genes and

we analyzed their expression patterns under stress conditions using

two sets of transcriptomic data provided by the CATMAdb

resource [17] and genevestigator [18]. The corroborating results

reveal that stress does not change dramatically the basal expression

program for most of the cytoRP genes and for the nuclear genes

coding for mitoRP (Fig. 2 class 0 and 1 and Fig. 3). The existence

of such unchanged program for mitoRP is consistent with the fact

that this prokaryotic organelle drives energetic function in plant

cells. Nevertheless, some stress such as nitrogen starvation lead to a

coordinated response of the cytoRP genes (Fig. 2).

The correlated expression of mitoRP and cytoRP nuclear genes

certainly needs the action of key transcription factors. The two

elements, telo-box and site II motif, found in most of the promoters

of the nuclear genes coding for mitoRP and cytoRP (Fig. 7), could

be the cis-elements implied in this co-regulation. Trémousaygue

et al. [36] showed that site II motif is a target sequence for the

transcription factor AtTCP20. The authors revealed that this

protein interact with the AtPura protein, characterized by its

ability to interact with the telo-box in yeast two hybrids

experiments [36,37]. In addition, telo-boxes are also found in

genes associated to the cell cycle, such as CYCB1;1 [38]. Plants

down-regulated for AtTCP20 gene expression present a strong

developmental phenotype, similar to what RP mutants often

display [7]. However, only a few RP genes were deregulated in

these plants [39].

Class2 cytoRP genes are dispensable for growth under
Carbon/Nitrogen stress conditions

In the budding yeast Saccharomyces cerevisiae, two-thirds of cytoRP

are encoded by duplicated genes and these paralogous genes are

not functionally equivalent suggesting the existence of different

populations of ribosomes with diverse functions [40]. Several

proteomic analyses suggest that heterogeneity within cytoRP also

exists in plants [19,41].

Among the cytoRP genes we pointed out the class 2 that

presented a similar down-regulated expression in response to

nitrogen starvation (Fig. 2) and a common response to stress

affecting carbon status (Fig. 3B). The cytoRP genes of class 2

Figure 7. Promoter analyses of site II and telo box motif in RP gene promoters. Promoters of RP genes were scanned to identify two motifs,
the site-II motif (A) and the telo box (B). The occurancy of the two motifs are depicted in left panels in regard to the different classes of RP. In right
panels the repartition of the selected motifs among the 1000 nucleotides upstream sequence was examined using 50 nucleotides-sliding windows.
White line corresponds to the average distribution of random cluster. Grey surface represents the distribution of random cluster, as the 2.5 folds of
standard deviation around the mean.
doi:10.1371/journal.pone.0028070.g007
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belong to small RP gene families with another paralogous gene

differentially regulated for at least 70% of them (Table 2). This

transcriptional alternative is probably under-estimated by the lack

of probes for some RP genes. We hypothesize that there are

enough cytoRP family having at least one class 2 RP gene to build

up a cytoribosome in class 2 transcriptional ways. The expression

of class 2 cytoRP genes decreased dramatically when availability of

nitrogen falls whereas other cytoRP genes did not present high

variations (Fig. 2. and 3B). The heterogeneity among RP within

cytoribosome populations is thus certainly lower under stress

conditions. This suggests a specialization of ribosome complex

composition in response to stress. The hypothesis of specialization

of RP among a family is supported by the recent study of leaf

developmental process in Arabidopsis rp mutants [42].

Nuclear genes coding for plastoRP have a specific
program of transcription

Interestingly, genes coding for RP of plant organelles do not

respond to stress in the same manner if their proteins are targeted

to mitochondria or plastids. PlastoRP genes have a highly specific

pattern of expression compared to cytoRP and mitoRP genes

(Fig. 2, 3B and 3F). Two classes of plastoRP genes differing by

their nuclear or plastid genome localization were distinguished

based on their contrasted responses to UV stress and nitrogen-

resupply conditions (classes 3 and 4 respectively in Fig. 2).

Co-regulation of nuclear genes by the GUN pathway has been

clearly demonstrated for plastidial proteins involved in metabolic

status of chloroplast [43]. Although our analysis shows that the

plastoRP nuclear genes (class 3) are indeed responding to the

carbon/nitrogen status of the plant (Fig. 2 and 3B), their

expression program appeared RP specific and different from the

one of nuclear genes coding for other plastidial proteins (Fig. 6A),

suggesting a co-regulation mechanism independent of the GUN

pathway. However, the results that we obtained on plastidial genes

encoding plastoRP must be carefully analyzed since the polyad-

enylation of the corresponding mRNAs is a marker step for their

degradation in plastids [44]. Because the probes used for CATMA

and affymetrix hybridization experiments were synthesized from

mRNA using oligo dT primers, the differential expression of RP

plastidial genes might have been such biased (Fig. 2 and 3B). In

fact, our analysis shows that the down regulation of RP plastidial

gene expression under stress is not a specific program but is related

to a global plastid RNA steady state level (Fig. 6B), in contrast to

nuclear genes coding for plastoRP.

Cis and trans factors might control the expression of the
nuclear genes coding for plastoRP

Proteomic analysis of chloroplast ribosomes had identified in

addition to prokaryotic orthologs, seven plant plastid-specific RP

(PSRP1-7), encoded by nuclear genes [13,14]. Yamaguchi and

Subramanian [13] proposed that the PSRP form a plastid-specific

translation regulatory module and their working model involves

PSRP2 interacting with the plastidial encoded RPS1 protein.

Interestingly, we found that RPS1 and PSRP2 are the two RP

genes that connect the nuclear and plastidial classes 3 and 4 in our

representation of the highest correlations of gene expressions

(Fig. 6C). This finding reinforces the hypothesis of a fundamental

role of the PSRP in the regulation of translation in plastid.

In cytoRP promoters of class 1 and class 2 and in mitoRP

promoters of class 1, the site II motif is located at 270+/225

nucleotides from the transcription initiation site and the telo-box is

located at 230+/225 nucleotides from the transcription initiation

site. Presence of these two elements in RP promoter might allows

to a set of transcription factors to coordinate expression as observed

for the biogenesis of the plant mitochondrial respiratory chain [45].

Strikingly, the site II motif is present at the same localization in

the plastoRP promoters than in the other RP promoters, but the

structure of plastoRP promoter is not conserved for telo-boxes. The

absence of the telo-box enhancer in promoter of nuclear plastoRP

genes could be a part of the mechanism resulting in a more intense

response of class 3 genes to environment fluctuations (Fig. 3B). It

also might be an indication that the evolutionary processes of

plastoRP genes migrating to the nuclear genome did not recruit this

motif in contrast to mitoRP genes.

Conclusion
The regulation of RP protein synthesis could be required to save

energy and nutrient and to adapt in the same time to environment.

Conversely, phenotypic response to stress could be a consequence of

the lack of ribosome needed to translate specific mRNAs. Komili et

al. [40] proposed that there is a ‘‘ribosome code’’ that influences

translation similarly to the ‘‘histone code’’ that influences trans-

cription. From our results, we propose a model of the ribosome

biogenesis by three transcriptional pathways (Fig. 8).

The first pathway controls the housekeeping cytoribosome and

mitoribosome biogenesis using key transcriptional regulators as

AtTCP20 [36]. The second pathway involves class 2 cytoRP genes

that are up-regulated under non-limiting conditions but down-

regulated under stress. The translational response to stress might

be a general decrease in translation of all mRNAs, as observed in

response to dehydration stress or hypoxia [46,47], or a reduction

in translation of a subset of mRNAs, as observed in response to salt

or cadmium stress [48,49]. During plant development, specializa-

tion of mRNA translation has been observed in mutants belonging

to the same cytoRP family [50,51] and this evidence supports our

last hypothesis. The third independent pathway controls ribosome

biosynthesis in plastids by regulating both nuclear and plastid

genes. This last pathway is highly sensitive to environmental

features and could be convey by plant specific gene coding for

plastoRP like PSRP2.

Methods

Genes and probes
RP gene names, AGI, and corresponding probes in CATMA

and Affymetrix arrays are given in Table S1. From the SUBA

database [22], we selected non-RP nuclear genes with protein

localization inferred both in plastid by GFP fusions and MS/MS

determination. Genes coding for RP were removed from the list,

only nuclear genes with CATMA probes were kept. AGI and

corresponding probes of non-RP nuclear-genes with protein

targeted to plastidial compartment are listed in Table S3. From

the gene list available on the CATdb [17], we selected 29 non-RP

plastidial genes with specific probes. AGI and corresponding

probes of plastidial gene without link to ribosome are presented in

Table S4.

Clustering of CATMA experiments
CATdb (http://urgv.evry.inra.fr/CATdb) has been used to

obtained value for hybridization ratios of analyzed genes [17].

Clustering of RP genes have been made using k-means methods

monitored by 3 to 5 fixed classes, 50 times each. Class number of

each RP gene was determined following the modal value of the 50

clustering results, in the three cases. Evaluation of the distribution

of RP genes into 3 to 5 classes indicated that the most efficient

class number is four. Only the results of the 4-means clustering are

depicted here.
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Clustering of Affymetrix experiments
Hybridizations results using Affymetrix technology were

analyzed by using genevestigator software [18]. Clustering tree

of RP genes has been done using Pearson distance calculation.

Online software
Blast against A. thaliana genome have been proceed using TAIR

resource [20], (http://www.arabidopsis.org/). Phylogenic trees

have been reconstructed automatically by using Phylogeny.fr

pipeline with the ‘‘one click’’ mode [21], (http://www.phylogeny.

fr/). SUBA software has been used to give a prediction of cellular

targeting of the RP [22], (http://www.suba.bcs.uwa.edu.au). The

characterization of promoter motifs has been done using MEME

and FIMO softwares [32], (http://meme.sdsc.edu/meme4_4_0/

intro.html). Representation of correlation between gene expression

was generated using open-source Cytoscape software [31], (http://

www.cytoscape.org/).

Supporting Information

Table S1 Full list of RP genes in Arabidopsis thaliana. Description:

For each gene, the gene reference number (AGI), the common

name, the CATMA ID corresponding probe, the Affymetrix ID

corresponding probe, the predicted localization of the encoded

protein and the predicted eukaryote or prokaryote phylogenic

origin are indicated.

(PDF)

Table S2 Clustering of transcriptional response to biotic and

abiotic stress of genes coding for RP in the CATMA microarray

database.

(XLS)

Table S3 List of 46 nuclear genes coding for chloroplast

proteins. Description: Gene reference number (AGI), gene

description and CATMA ID corresponding probe are provided

for each gene.

(PDF)

Table S4 List of 29 plastidic genes coding for chloroplastic

proteins. Gene reference number (AGI), protein short name and

CATMA ID corresponding probe are provided for each gene.

(PDF)

Table S5 List of CATMA experiment.

(PDF)

Table S6 List of RP genes coding for mitoRP. Are provided

gene reference number (AGI), and common gene names,

alternative gene name are provided when it exist. Corresponding

ID in CATMA and Affymetrix dataset are listed. Bibliographic

Figure 8. Model of ribosome regulation by stress in plants. A. Ribosomal protein fluxes in cell of plant growing in normal condition. From the
nuclear RP genes, three fluxes lead to form ribosomes and to assure high protein synthesis into the cytoplasm, mitochondrions and plastids. The
diversity of cytoRP forms allows the cell to produce numerous complexes giving possibilities to produce specialized ribosomes with specialized
translational activies. B. In stress condition, cell keeps only class1 RP fluxes which decrease level of translation in cytoplasm and sustains translation in
mitochondrions. Cytoplasmic translational activity could be affected globally or only on a subset of mRNA. For stress affecting also plastids, cells
dramatically reduce plastoRP synthesis affecting their translational activity.
doi:10.1371/journal.pone.0028070.g008
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evidences have been reported in the two last columns (corre-

sponding citation number in Table S1).

(PDF)

Table S7 List of RP genes coding for plastoRP. Are provided

gene reference number (AGI), and common gene names,

alternative gene name are also provided when it exist. PSRP are

plastid-specific RP. Corresponding ID in CATMA and Affymetrix

dataset are also listed. Bibliographic localization evidences have

been also summarized in the two last columns (corresponding

citation number in Table S1).

(PDF)
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