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Fonctionnelle et Environnement (EcoLab), EN

astanet Tolosan Cedex, France. Fax: þ33 5 34

ail address: pinelli@ensat.fr (E. Pinelli).
a b s t r a c t

The genotoxicity of quinolone and fluroquinolones was assessed using the micronucleus (MN) test on

Vicia faba roots by direct contact exposure to a solid matrix. Plants were exposed to quinolones

(nalidixic acid) and fluoroquinolones (ciprofloxacin and enrofloxacin) alone or mixed with artificially

contaminated soils. Four different concentrations of each of these antibiotics were tested (0.01, 0.1,

1 and 10 mg/Kg) for nalidixic acid and (0.005, 0.05, 0.5 and 5 mg/Kg) for ciprofloxacin and enrofloxacin.

These antibiotics were also used in mixture. Exposure of Vicia faba plants to each antibiotic at the

highest two concentrations showed significant MN induction. The lowest two concentrations had no

significant genotoxic effect. The mixture of the three compounds induced a significant MN induction

whatever the mixture tested, from 0.02 to 20 mg/Kg. The results indicated that a similar genotoxic

effect was obtained with the mixture at 0.2 mg/Kg in comparison with each molecule alone at 5–10 mg/Kg.

Data revealed a clear synergism of these molecules on Vicia faba genotoxicity.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, public and scientific concern about the
relevance of trace amounts of pharmaceuticals that occur in the
environment has been continuously increasing (Pico and Andreu,
2007). Numerous pharmaceuticals have been detected in waste
and natural water resources, sediments, soil and aquatic biota.
While the pharmaceuticals are found at relatively low concentra-
tions (Terns, 1998; Korpin et al., 2002), elevated concentrations of
antibiotics (several mg/Kg levels) have been reported in manure
(Hamscher et al., 2002), sewage sludge and sewage-treated soil
(Golet et al., 2003). Indeed after administration to humans, fifty to
ninety percent of these pharmaceuticals or their primary meta-
bolites are rapidly excreted into wastewater. In previous works
(Golet et al., 2002, 2003), Fluoroquinolones (FQs) in raw sludge,
wastewater effluents and river water samples were analyzed in
Switzerland. They found out that a large proportion of FQs
entering wastewater plants (89–92% of the FQs mass flow) was
ll rights reserved.
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removed during the treatment processes. They also suggested
that sewage sludge was the main source and reservoir of FQs
residues (Golet et al., 2003). Sewage sludge is dispersed on the
fields and the antibiotics may contaminate the soil and eventually
the ground water (Hamscher et al., 2005).

Many drugs used in hospitals (antibiotics, cytostatic drugs) are
designed to exhibit DNA damage toward bacteria or eukaryotic
cells, raising concern about the human and ecological hazard of
hospital wastewater (Giuliani et al., 1996). Ciprofloxacin was
found in concentration ranging from 0.7 to 124.5 mg/L in hospital
effluents and was assumed to be the main source of genotoxic
effects measured with the UmuC test in these effluents
(Hartmann et al., 1999). Fluoroquinolones have been reported to
induce unscheduled DNA synthesis, DNA strand breakage, chro-
mosome damage and micronuclei formation (Mc Queen et al.,
1991; Holden et al., 1989; Bredberg et al., 1991; Ciaravinco et al.,
1993; Curry et al., 1996; Gibson et al., 1998). In addition, FQs
exert other toxic and genotoxic effects on animal and human
cells. For example, exposure of Chinese hamster ovary cells or
Syrian hamster embryo cells to nalidixic acid (NA) and ciproflox-
acin (CIP) induced cytotoxic effects and micronucleus induction
(Gibson et al., 1998). In vitro studies with human lymphocytes
exposed to enrofloxacin (ENR) and ciprofloxacin revealed an
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Fig. 1. Chemical structures and molecular weights of the antibiotics studied.

Table 1
Key properties of the LUFA standard soil.

Organic carbon (%) 2.33

pH (soil:water, 1:2.5) 5.7

Cation exchange capacity (mval/100 g) 11

Particle size (mm) distribution according to USDA (%)

o0.002 7.9

0.002–0.05 14.2

0.05–2.0 77.9

Soil type Loamy sand

Table 2A
Chromatographic, UV detection and MRM parameters used for quinolone quanti-

fication in preparation solution and in mixture.

UV detection MS detection

tr7SD

(n¼6) (min)
labs

(nm)

tr7SD

(n¼6) (min)

MRM

transitions

Ecoll (%)

Nalidixic acid 9.6370.008 254 9.8770.014 233o233 38

233o215

Enrofloxacin 4.8970.030 295 5.1270.034 360o342 36

360o316
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increase in the chromosomal aberrations, detected as chromatid
and chromosome breaks and gaps (Gorla et al., 1999). FQs have
been reported to cause neonatal alterations in articulation carti-
lages, bone growth and tendons, both in humans and animals
(Patterson, 1991; Gough et al., 1992; Hildebrand et al., 1993;
Forster et al., 1996; Simonin et al., 1999; Stahlmann, 2003; Lemus
et al., 2009).

The Vicia faba micronucleus test has been shown to be
sensitive in evaluating chromosomal aberrations and assessing
genotoxicity from both organic and inorganic soil contaminants
(Cotelle et al., 1999), sediment (Chen and White, 2004), organic
material such as sewage sludge or composts (De Simone et al.,
2000) and water (Miao et al., 1999; Monarca et al., 2004). No
study has been conducted to test the genotoxic potential of
quinolones and fluoroquinolones on Vicia faba plant roots.
Because these molecules are significantly present in septic tank
effluents pumped (STEP) wastewater and sludge, and because
some countries use these products in plant cultivation, these
antibiotics and more particularly quinolones and fluoroquino-
lones became a real environmental concern. In this work, the
genotoxicity of quinolones (nalidixic acid) and fluoroquinolones
(ciprofloxacin and enrofloxacin) (Fig. 1), alone or in mixture, were
evaluated using the Vicia faba micronucleus test by direct contact
with artificially contaminated soils.
Ciprofloxacin 3.3770.031 295 3.6070.029 332o314 38

332o288

2. Materials and methods

2.1. Chemicals and reagents

Ciprofloxacin (CIP), enrofloxacin (ENR), nalidixic acid (NA) and maleic hydra-

zide (MH) were purchased from Sigma-Aldrich. The purity of the chemicals used

in this study was 495% for all of the antibiotics. All the other chemicals used were

of analytical grade. Stock solutions of ciprofloxacin, enrofloxacin, nalidixic acid

and mixture were prepared in deionised water.

2.2. Antibiotic analysis

Antibiotic concentrations were checked by LC/UV/MS/MS. Chromatographic

analyses were performed on a Thermofinnigan Surveyors HPLC system with diode

array detector (DAD) and a LCQ Deca XP Max
s

ion trap mass spectrometer

(Thermo Electron Corporation, Waltham, Mass, USA). Separation was carried out

with a Luna C18 column (100�2.0 mm; 3 mm, Phenomenex, Torrance, CA, USA) at

40 1C. A gradient elution was used at a flow rate of 200 mL/min with a mobile

phase of acetonitrile 0.1% formic acid (A) and water 0.1% formic acid (B) in

the following conditions: 0–1 min, 90% A; 1–8 min, 40% A; 8–10 min, 40% A;

10–11 min, 90% A and 11–15 min, 90% A. The DAD wavelengths were set at

254 nm and 295 nm and molecules were ionized with an electrospray ionization

source in positive mode (ESIþ). The spray needle was set at a potential of 5 kV.

Capillary voltage and temperature were 10 V and 350 1C, respectively. Sheath gas

and auxiliary gas flow rate of nitrogen were set at 45 and 10 (arbitrary units),

respectively. Helium was used in the trap as damping and collision gas. Collision

energies (Ecoll) were optimized for each antibiotic (Table 2A). CIP, ENR and NA

were assayed by HPLC with UV detection and mass spectrometry (MS) using the

selection reaction monitoring mode (SRM). The detection parameters are reported

in Table 2A.

In mass spectrometry, the parent ion of CIP, ENR and NA was the protonated

molecular ions [MþH]þ and their fragment ions were [MþH-18]þ and/or
[MþH-44]þ corresponding to the loss of H2O and CO2, respectively, in accordance

with the fragmentations reported in the literature (Yang et al., 2008). Antibiotic

preparation solution and mixture were directly quantified before soil contamina-

tion with either UV detection for the higher nominal concentrations of 1 or 2 and

10 or 20 mg/L (calibration range: 0.5–50 mg/L) or mass spectrometry for the lower

concentrations of 0.1 or 0.2 and 1 or 2 mg/L (calibration range: 0.1–10 mg/L).
2.3. Vicia faba micronucleus test

LUFA standard soil was used in all direct contact experiments (Song et al.,

2007). Some key characteristics of the LUFA standard soil are presented in Table 1.

The Vicia faba seeds were prepared according to Ma et al. (1995), El Hajjouji et al.

(2007) and Marcato-Romain et al. (2009). Dry Vicia faba seeds were soaked for

24 h in deionised water, the seed coats were removed and the seeds left to

germinate between two layers of moist cotton. After 5 day, the primary roots,

about 2–3 cm in length, were selected for the MN assay and their tips were cut off

to promote the growth of the secondary roots. For each experiment, five plants

were used as five independent replicates per treatment.

After the germination period, the direct contact method developed by

Marcato-Romain et al. (2009) was used by placing germinated roots in the LUFA

standard soil for the assessment of the effect of the three antibiotics. Four different

concentration levels of each of these molecules were tested (0.01, 0.1, 1 and

10 mg/Kg) for NA and (0.005, 0.05, 0.5 and 5 mg/Kg) for CIP and ENR. A two-fold

higher concentration range was used for NA because its potency against suscep-

tible bacteria is at least two-fold lower than that of CIP and ENR. For each

concentration, five replicates were processed. These antibiotics were also applied

in mixture. In these cases, the mixture 0.02 mg/Kg corresponds to the mixture of

NA at 0.01 mg/Kg, CIP and ENR at 0.005 mg/Kg. The same mixtures were realized

with final concentrations of 0.2, 2 and 20 mg/Kg of each of these compounds.



Table 3
Evaluation of genotoxic effect of quinolones using the micronucleus test. Vicia faba

roots were exposed by direct contact to soil contaminated by antibiotics at four

different concentrations.

% Mitotic cells % MN % Effect

Negative control 7.470.4 1.671.21 0

Positive control (MH) 5.970.9 24.671.42nn 100

Nalidixic acid

0.01 mg/Kg 7.170.6 2.370.5 3.04

0.1 mg/Kg 7.670.8 3.371.5 7.39

1 mg/Kg 7.271.1 6.570.5nn 21.3

10 mg/Kg 7.571.2 12.872.8nn 48.7

Ciprofloxacin

0.005 mg/Kg 7.070.3 1.671.1 0.01

0.05 mg/Kg 6.570.6 2.170.8 2.17

0.5 mg/Kg 6.870.4 6.270.6nn 20.0

5 mg/Kg 6.770.8 11.971.2nn 44.8

Enrofloxacin

0.005 mg/Kg 6.770.2 1.270.9 0.01

0.05 mg/Kg 7.170.4 2.370.5 3.04
nn
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The maximal concentration corresponded to the fluoroquinolones analyzed in

the sewage sludge and sewage-treated soil (Golet et al., 2003). For each condition

tested, moisture at 2/3 of water holding was maintained by introducing solutions

prepared of antibiotics at the bottom of the pots to avoid possible anoxia. Positive

controls were made of LUFA standard soil whose moisture was maintained using a

solution of maleic hydrazide (10�5 M). LUFA standard soil wetted with distilled

water was used as negative control. The total duration of the experimentation was

3 days.

In all experiments, at least five root tips were collected per plant that is to say

at least 25 tips per treatment. Root tips were rinsed with distilled water, fixed in

aceto-ethanol (1:3, v/v) at 4 1C overnight, rinsed again with deionized water for

10 min and transferred to ethanol before storage. Then, root tips were hydrolyzed

with 1 N HCl for 6 min at 60 1C and squash preparations were stained with 1%

aceto-orcein for 3 min at 60 1C. Five slides were prepared for each of the five seeds

(one slide per root tip) and at least 1500 cells were counted per seedling, i.e. MN

frequency was obtained from at least six thousand cells per treatment. The

interphase cells as defined by Ma et al. (1995) were scored for MN frequencies

at 400� magnification. Mitotic index (MI) was expressed in % while MN

frequencies were expressed in per 1000 cells. In order to avoid underestimation

of MN frequency due to impaired cell proliferation rate, the MN test was

performed only in the roots tips with a mitotic index greater than 2% (Ma et al.,

1995). Statistical analysis was performed on the data: the Mann–Whitney U-test

was used to determine the significance level against the negative control in each

experimental MN test series (Béraud et al., 2007).

0.5 mg/Kg 6.070.9 5.270.4 15.7

5 mg/Kg 6.670.6 8.571.3nn 30.0

Each value represents mean7SD of 5 independent experiments. n and nn represent

statistically significant value at po0.05 and po0.01, respectively.

Table 4
Mitotic index and MN frequency values in Vicia faba root exposed by direct contact

to the mixture of the three antibiotics at different concentrations.

Treatments % Mitotic cells % MN % Effect

Negative control 6.970.4 2.071.25 0

Positive control (MH) 6.470.5 2271.75nn 100

Mixtures

Mixture 0.02 mg/Kg 7.1570.3 6.770.76nn 23.5

Mixture 0.2 mg/Kg 6.670.3 1170.48nn 45.0

Mixture 2 mg/Kg 6.070.5 1671.62nn 70.0

Mixture 20 mg/Kg 6.870.28 20.471.85nn 92.0

Each value represents mean7SD of 5 independent experiments. n and nn represent

statistically significant value at po0.05 and po0.01, respectively.
3. Results

3.1. Quinolone and fluoroquinolones analysis

NA, ENR and CIP measured concentrations of preparation
solutions and mixtures are reported in Table 2B. Results of the
intermediate concentrations (1 or 2 mg/L) assayed by both LC/UV
and LC/MS showed a very high correspondence between the two
methods (not shown). These results also showed good correspon-
dence between nominal and measured concentrations.

3.2. Genotoxicity evaluation of antibiotic

The genotoxic activities of quinolones (NA) and fluoroquino-
lones (CIP and ENR) evaluated by the Vicia faba Micronucleus test
are shown in Table 3. For all the antibiotics tested, the mitotic
index was greater than 2%, and not significantly different from the
two controls. At the two lowest concentrations, the three anti-
biotics had no significant effect on MN frequency compared to the
negative control. At the two highest concentrations MN frequen-
cies increased dose dependency. The most marked effect was
observed in Vicia faba roots exposed to the highest concentrations
(5 or 10 mg/Kg), reaching 30–49% of the effect obtained in the
positive control (Table 3). The 10-fold increase of concentrations
(from 1 to 10 mg/Kg for NA and from 1 to 5 mg/Kg for CIP) was
associated with a 2 fold increase of the number of micronucleus:
from 6.5 to 12.8% and 6.2 to 11.9%, respectively. In the same
Table 2B
Nominal concentrations of 10 and 20 mg/L: LC/UV assay. Nominal concentration

of 1 and 2 mg/L: mean values of both LC/UV and LC/MS assays. Nominal

concentration of 0.1 and 0.2 mg/L: LC/MS assay.

Mean concentration (mg/L) and SD (n¼3)

Nalidixic acid Enrofloxacin Ciprofloxacin

Nominal Measured

mean (SD)

Nominal Measured

mean (SD)

Nominal Measured

mean (SD)

0.2 0.20870.001 0.1 0.12170.006 0.1 0.10670.007

2 2.0970.078 1 0.95770.031 1 0.94570.107

20 22.8 70.208 10 10.4 70.184 10 11.470.311

Mixture

0.2 0.27570.055 0.1 0.11870.001 0.1 0.10170.002

2 2.1270.214 1 1.170.124 1 0.92470.144
conditions, micronucleus induced by enrofloxacin increased by
only 60% (5.2 to 8.5).

3.3. Genotoxicity evaluation of antibiotic mixtures

The results of the genotoxicity assessment of quinolone
mixtures are presented in Table 4. For all the experiments, the %
of mitosis was always higher than 2% and not significantly
different from the negative control. Results revealed a significant
and concentration dependent MN induction whatever the mix-
ture tested, from 0.02 to 20 mg/Kg. In these experimental condi-
tions, MN induction increased dose dependency. The maximal
genotoxic effect obtained with the mixture at 20 mg/Kg repre-
sented 92% of the effect obtained with the positive control.
Interestingly, the range of maximal effects obtained with each
molecule alone at 5–10 mg/Kg (30–49%) was obtained with the
mixture at 0.2 mg/Kg (45%).
4. Discussion

The compounds studied in this work were described to be
‘‘readily biodegradable’’, with a low biodegradation rate
(Kümmerer et al., 2000). These physico-chemical properties
coupled to these antibiotic effects explain their high concentra-
tions in sewage sludge and sewage-treated soil (Golet et al.,
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2003). In view of the genotoxic character of quinolones and
fluoroquinolones, it was important to evaluate their effect in soil,
by direct contact with whole plant roots. For this purpose, the
Vicia faba micronucleus (MN) test has been used with a method
developed by Marcato-Romain et al. (2009). The Vicia faba

micronucleus test is a very sensitive and useful method that
allows detection of both clastogenic and aneugenic effects (El
Hajjouji et al., 2007). Micronuclei are the result of chromosome
breaks or mitotic anomalies that require a passage through
mitosis to be recognizable.

The substances investigated represent a clinically important
type of antibiotic drugs that are structurally related to nalidixic
acid. These compounds target the A subunit of DNA gyrase and
are effective inhibitors of this enzyme (Curry et al., 1996). The
most active compounds with the broad antibacterial spectrum are
the C-6 fluorinated quinolones and 1-8-naphthyridines that have
a cyclic amino group at position 7 (Radl, 1990) as ENR and its
principal metabolite CIP (Gorla et al., 1999). However, quinolones
have exhibited varying degrees of cross-reactivity with mamma-
lian topoisomerase II, which is a gyrase-like enzyme, and certainly
with other replication enzymes (Bredberg et al., 1991). These
compounds stabilize DNA–gyrase complex and stimulate topoi-
somerase II cleavage of DNA (Robinson et al., 1991). Fluoroqui-
nolones also showed cross reactivity with other enzymes involved
in the process of DNA replication (Bredberg et al., 1991). In
addition, these compounds induced a variety of genotoxic effect
due to their ability to inhibit topoisomerase II activities, including
induction of transient DNA strand breaks during replication,
chromosome condensation and disjunction during meiosis
(Ferguson and Baguley, 1994; Heisig, 2009). In plants, topoisome-
rase II exists, and exerts the same role in DNA replication and cell
proliferation (Fukata et al., 1986; Reddy et al., 1999).

The results presented in Table 3 revealed the genotoxicity of
these compounds on Vicia faba root tips. MN induction appears
significant for concentrations of 1 mg/Kg of NA, and 0.5 mg/Kg of
CIP or ENR. For a higher concentration of antibiotics, the number
of MN increased about 5.5 to 7 fold with ciprofloxacin. Results
obtained for NA are not in agreement with the negative in vitro
MN results reported by Albertini et al. (1995) and Gibson et al.
(1998) in hamster CHO-K cells exposed to this compound. In a
review by Forte (1992), NA was reported to be negative in an
in vitro chromosome aberration assay. In contrast, NA was
reported to stimulate unscheduled DNA synthesis in rat splenic
cells and thymic cells in culture, but not in primary rat hepato-
cyte. ENR and CIP have been described to induce chromosomal
aberrations in cultures of human lymphocytes at concentrations
varying between 5 and 50 mg/L for ENR and 5 and 25 mg/L for CIP
(Gorla et al., 1999). A reduction in the mitotic index and fuzzy
metaphases were observed at 50 mg/L of ciprofloxacin, indicating
a cytotoxic effect of this compound. In previous studies, Albertini
et al. (1995) and Curry et al. (1996) reported significant increases
in both chromosome aberration and in MN induction in the same
range of ciprofloxacin concentration (0.3–1.8 mM) than those
observed by Gibson et al. (1998) in CHO-K1 cells. These results
indicated the higher genotoxicity of ENR and CIP in comparison
with NA. This is in agreement with our experimental conditions
where CIP appears to be the most genotoxic compound.

The results of the literature also showed the low sensitivity of
the mammalian MN test in comparison to the SOS chromotest or
the UmuC test, which revealed the positive effect of ciprofloxacin
at 0.7 mg/L (Hartmann et al., 1999). Topoisomerases-II inhibitors
like CIP and ofloxacin are very strong genotoxicants in Escherichia

coli PQ 37 (SOS chromotest) and highly mutagenic in Salmonella

typhimurium TA 102 (Ames test) in absence of exogenous meta-
bolizing system (Mersch-Sundermann et al., 1994). DNA dama-
ging effect could be observed in concentration of approximately
0.2–0.4 mg/L for CIP. It is important to emphasize that all these
compounds are designed to inhibit the development of micro-
organisms and the high sensitivity observed remains normal.
For CIP, the concentrations were 1000 to 10,000 fold lower than
those inducing chromosomic aberrations in human lymphocytes
(5–25 mg/L) or in V79 Chinese hamster lung cells (200 mg/L). The
significant induction of MN obtained in our experimental condi-
tions with concentration of quinolones ranging between 0.5 and
1 mg/Kg corresponding to 1 and 2 mg/L, respectively, revealed the
high sensitivity of this test, which is 10 to 100 fold more sensitive
than the mammalian cell assay. The higher sensitivity observed
with the Vicia faba MN test compared to the mammalian cell
assay reveals firstly the rapid cross-reactivity of quinolones and
more particularly fluoroquinolones for the enzymes of the plants
replication system and secondly the role of these two antibiotics
in the MN induction. These results also suggested (i) the mobility
of these compounds from soil to roots to promote MN induction,
even if CIP and ENR have been described to be absorbed into the
solid phase (Pico and Andreu, 2007), and (ii) the exposure
conditions with contaminated soil do not represent a limiting
factor for the genotoxicity assessment.

The results in Table 4 highlight a strong synergism in MN
induction when the three molecules were added altogether. In
this condition, MN induction was significant at the lowest con-
centration tested. The number of MN induction observed at the
nominal concentration of 0.02 mg/Kg was more than 3 fold higher
than the negative control, whereas each compound tested sepa-
rately presented negative effects at concentrations of 0.1 mg/Kg
(NA) and 0.05 mg/Kg (ENR, CIP). It is noteworthy that the level of
genotoxicity reached by the 0.02 mg/Kg mixture (23.5% of the
positive control) was achieved with each molecule alone at 0.5 or
1 mg/Kg (Tables 3 and 4). Such a result demonstrates a clear
synergism of the mixture for genotoxic effects.

In these experimentations, no sign of toxicity appears on the
root tips. In the same way, the number of mitoses remained
constant whatever the concentration of quinolones (NA) and
fluoroquinolones (ENR and CIP) tested. In the last decades, several
studies suggested the concept of thresholds in genotoxicity
(Lynch et al., 2003; Elhajouji et al., 2010). The MN test contributed
to a large extent in understanding the dose–response relationship
for aneugens and clastogens. For topoisomerase inhibitor-induced
clastogenicity, this concept was also developed using MN induc-
tion in L5178Y mouse lymphoma cells as a genetic end-point
(Lynch et al., 2003). On the basis of this test, Lynch et al. (2003)
estimated the threshold for clastogenicity at 50 mg/mL for cipro-
floxacin. This threshold depends on the time duration of exposure
and on the cell type. In Vicia faba root tips, the significant
induction of MN appeared at the lower concentration when the
compounds were used simultaneously. These results suggest that
if a threshold exists for each molecule, the presence of the other
ones, which are known to inhibit the topoisomerase II, could act
synergistically to promote MN induction: 0.5/1 mg/Kg for the
molecules alone vs. 0.005/0.01 mg/Kg for the mixture (Tables 3
and 4). Two hypotheses could be proposed: (i) the mixture of the
three molecules reduced the threshold values of the other ones on
the topoisomerase II inhibition; (ii) the combination of the three
molecules induced other phenomena, not directly related to
topoisomerase II inhibition. It is today difficult to clearly explain
this synergism, but many of these compounds exert various
effects as mentioned above, that can interact at different levels
in the replication system. Fluoroquinolones have been described
to induce oxidative stress in bacteria (Becerra and Albesa, 2002)
and in eukaryote cell lines (Pouzaud et al., 2004). The oxidative
stress was described to play an important role in DNA-damage
induction (Halliwel, 1990). So, the combination of different
adverse effects such as inhibition of topoisomerase II activities
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and oxidative stress, which also leads to DNA break-down, could
promote synergistic effect on MN induction.

So plant genotoxicity assays as the MN test on Vicia Faba roots
are sensitive tests and provide reliable and quantitative muta-
genic data, that allow to detect new mutagens or combination of
mutagens (Kristen, 1997). They can be used to develop new
techniques for advancing mutagenic knowledge and alternative
first-tear assays in the evaluation of possible genetic damage of a
contamination by environmental pollutants such as heavy metals,
pesticides and more recently body or health-care products.
They can also contribute to an in situ monitoring, which can be
carried out on a global scale in media as aqueous biota or soils in
relation to human activities (Grant, 1994). These tests represent a
primary line bio-assay for a general human health genotoxic risk
assessment.
5. Conclusions

In summary, this work demonstrated for the first time the
genotoxicity of quinolones and more particularly fluoroquino-
lones in artificially contaminated soil. The results revealed the
sensitivity of the Vicia faba MN test to evaluate genetic alterations
due to these chemicals. This study also highlights the genotoxicity
of the mixture of the three molecules tested at very low and
realistic concentrations, which can be found in soil treated with
contaminated wastewater or sludge. The synergism observed in
the present study demonstrates the necessity to investigate the
ecotoxicological effects of contaminants at low concentrations
and in mixture.
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