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Colletotrichum species are fungal pathogens that devastate crop 
plants worldwide. Host infection involves the differentiation 
of specialized cell types that are associated with penetration, 
growth inside living host cells (biotrophy) and tissue destruction 
(necrotrophy). We report here genome and transcriptome 
analyses of Colletotrichum higginsianum infecting Arabidopsis 
thaliana and Colletotrichum graminicola infecting maize. 
Comparative genomics showed that both fungi have large sets 
of pathogenicity-related genes, but families of genes encoding 
secreted effectors, pectin-degrading enzymes, secondary 
metabolism enzymes, transporters and peptidases are expanded 
in C. higginsianum. Genome-wide expression profiling revealed 
that these genes are transcribed in successive waves that are 
linked to pathogenic transitions: effectors and secondary 
metabolism enzymes are induced before penetration and 
during biotrophy, whereas most hydrolases and transporters are 
upregulated later, at the switch to necrotrophy. Our findings 
show that preinvasion perception of plant-derived signals 
substantially reprograms fungal gene expression and indicate 
previously unknown functions for particular fungal cell types.

The genus Colletotrichum (Sordariomycetes, Ascomycota; Fig. 1a) 
comprises ~600 species1 attacking over 3,200 species of monocot and 
dicot plants (ARS Fungal Databases, see URLs). These pathogens 
use a multistage hemibiotrophic infection strategy2: dome-shaped  
appressoria first puncture host surfaces using a combination of mechanical  

force and enzymatic degradation, bulbous biotrophic hyphae enveloped 
by an intact host plasma membrane then develop inside living epidermal 
cells, and finally, the fungus switches to necrotrophy and differentiates 
thin, fast-growing hyphae that kill and destroy host tissues (Fig. 1b,c). 
We sequenced two Colletotrichum species with different host specifici-
ties and infection strategies: C. higginsianum attacks several members 
of Brassicaceae, including Arabidopsis, and has emerged as a tractable 
model for studying fungal pathogenicity and plant immune responses3–5.  
Biotrophy in this fungus is confined to the first invaded host cell and 
is followed by a complete switch to necrotrophy5 (Supplementary 
Fig. 1). In contrast, C. graminicola primarily infects maize (Zea mays), 
causing annual losses of approximately 1 billion dollars in the United 
States alone6. In this species, biotrophy extends into many host cells and 
persists at the advancing colony margin while the center of the colony 
becomes necrotrophic7 (Supplementary Fig. 2).

Optical mapping showed that the genomes of the two species are 
similar in size and structure. C. graminicola has a 57.4-Mb genome that 
is distributed among 13 chromosomes, including three minichromo-
somes less than 1 Mb in size, whereas C. higginsianum has a 53.4-Mb 
genome comprising 12 chromosomes, including two minichromosomes 
(Supplementary Table 1). We sequenced the C. graminicola genome 
using Sanger and 454 platforms, which provided a high-quality refer-
ence assembly of 50.9 Mb. We sequenced the C. higginsianum genome 
using 454 and Illumina platforms, yielding an assembly of 49.3 Mb  
(Supplementary Table 2). Repetitive DNA comprises 12.2% of the  
C. graminicola genome assembly and 1.2% of the C. higginsianum  
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assembly (Supplementary Tables 2 and 3). The repeats clustered in 
genomic regions with low GC content in C. graminicola (Supplementary 
Fig. 3), similar to the AT-rich isochores found in Leptosphaeria  
maculans8. Including unassembled genomic regions (mostly repeats, 
such as ribosomal DNA, telomeres, centromeres and transposons), repet-
itive DNA was estimated to total 22.3% of the C. graminicola genome 
and 9.1% of the C. higginsianum genome. The two Colletotrichum species 
diverged relatively recently (~47 million years ago), after the separation 
of monocots and dicots 140–150 million years ago9 (Supplementary  
Fig. 4). Although C. graminicola and C. higginsianum belong to sis-
ter clades within the genus (Supplementary Fig. 5), only 35% of the 
two genomes are syntenic (Supplementary Table 4), which is less than 
the synteny between Botrytis cinerea and Sclerotinia sclerotiorum10. 
Nevertheless, an analysis of synteny between the two Colletotrichum 
genomes identified homologous chromosomes and revealed that major 
intrachromosomal rearrangements have occurred in one or both spe-
cies (Fig. 2a and Supplementary Table 5). The minichromosomes 
do not contain homologous sequences (Fig. 2b and Supplementary 
Table 4), suggesting that they are lineage-specific innovations, and in 
C. graminicola, the minichromosomes are enriched with repetitive DNA 
(averaging 23%) compared to the core genome (averaging 5.5%).

We predicted the existence of 12,006 protein-coding genes in  
C. graminicola compared to 16,172 in C. higginsianum (Supplementary 
Table 2). Having been compiled from short-read data only, the  
C. higginsianum assembly is more fragmented than that of C. graminicola,  
resulting in some genes (5.2%) being split into two or more gene models,  
whereas others (4%) are truncated versions of the complete gene 
(Supplementary Note). After correcting for this fragmentation, the 
estimated gene content of C. higginsianum (15,331) is still markedly 
larger than that of C. graminicola. The two species share 9,795 ortholo-
gous genes. Using Markov clustering (MCL)11 to analyze the proteomes, 
we found that 10,077 C. higginsianum genes belong to multicopy gene 
clusters, compared to 5,342 genes in C. graminicola, suggesting that the 
greater gene content of C. higginsianum results partly from gene duplica-
tion (Supplementary Table 6). The MCL analysis also revealed that gene 
clusters encoding serine proteases, methyl transferases, polyketide syn-
thases, cytochrome P450 enzymes and small-molecule efflux pumps are 
expanded in C. higginsianum compared to C. graminicola (Supplementary 
Fig. 6), which we verified by manual inspection (Supplementary Tables 
7 and 8 and Supplementary Fig. 7). Clusters that are expanded in  
C. graminicola relative to C. higginsianum include a family of genes encod-
ing atypical cellulases (glycoside hydrolase GH61, described below) and 
another encoding secreted histidine acid phosphatases, which probably 
mobilize phytic acid, the main form of stored phosphorus in plants12.

C. higginsianum and C. graminicola are particularly well equipped with 
genes encoding carbohydrate-active enzymes (CAZymes)13 that poten-
tially degrade the plant cell wall14 (Fig. 3a and Supplementary Table 9) 
and modify the fungal cell wall (Supplementary Tables 10 and 11). Both 
species encode more CAZymes than 13 other fungal genomes we exam-
ined. These expanded CAZyme arsenals are more similar to those of other 
hemibiotrophic and necrotrophic pathogens than to the highly reduced 
set found in biotrophs such as Melampsora and Blumeria (Fig. 3a). The 
exceptionally large and diverse inventory of CAZymes encoded by both 
Colletotrichum genomes provides a rich source of enzymes for potential 
commercial exploitation15. C. higginsianum encodes over twice as many 
pectin-degrading enzymes as does C. graminicola (Fig. 3b), the major-
ity (62%) of which are activated during necrotrophy (Supplementary 
Fig. 8 and Supplementary Note). Conversely, although both species 
encode similar numbers of cellulases and hemicellulases, C. graminicola 
activates many more of these genes during necrotrophy (48%) than does 
C. higginsianum (26%), including 22 GH61 copper-dependent oxyge-
nases, which act in concert with classical cellulases to enhance ligno-
cellulose hydrolysis16,17. Thus, C. graminicola and C. higginsianum use 
very different strategies to deconstruct plant cell walls, reflecting their 
host preferences: dicot cell walls are enriched with pectin (35% in dicots 
compared to 10% in maize), whereas the cell walls of grasses contain 
more hemicellulose (60% in grasses compared to 30% in dicots) and 
phenolics (up to 5%)18.

Many phytopathogens secrete proteins known as effectors that facilitate 
infection by reprogramming host cells and modulating plant immunity19. 
By defining candidate secreted effectors (CSEPs) as predicted extracellular 
proteins without any homology to proteins outside the genus Colletotrichum, 
we found 177 CSEP-encoding genes in C. graminicola, 85 (48%) of which 
were species specific. In contrast, C. higginsianum encodes twice as many 
CSEPs (365), including more species-specific proteins (264, or 72%) 
(Supplementary Fig. 9a). The CSEPs are mostly small proteins (averag-
ing 110 residues and 175 residues in C. higginsianum and C. graminicola,  
respectively) and are more cysteine rich than the total proteome 
(Supplementary Fig. 9b). CSEP-encoding genes are randomly distributed 
across the chromosomes of C. graminicola, with no evidence for cluster-
ing, enrichment on particular chromosomes or localization near trans-
posable elements or telomeres, as has been reported for some other plant 
pathogens8,20–22 (Supplementary Note). An MCL analysis revealed that 
relatively few Colletotrichum CSEPs (14% in both species) belong to small 
multigenic families with two to five members (Supplementary Fig. 9c).  
The larger, more diversified CSEP repertoire of C. higginsianum might be 
an adaptation to invade a broader range of host plants than C. graminicola, 
which is restricted to infection of Zea under field conditions23.
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Figure 1  Phylogeny and infection of the two  
Colletotrichum species analyzed in this study.  
(a) Cladogram showing the phylogenetic 
relationship of Colletotrichum to other sequenced 
fungi, including 13 species used for comparative 
analyses (see Fig. 3). The unscaled tree was 
constructed using CVTree34 with Rhizopus 
oryzae as the outgroup. (b) Infection process 
of C. higginsianum (Ch) and leaf anthracnose 
symptoms on Brassica and Arabidopsis. The 
Brassica image is reproduced with permission  
of University of Georgia Plant Pathology  
Archive (bugwood.org/). (c) Infection process of 
C. graminicola (Cg), and leaf-blight, top die-back 
and stalk-rot symptoms on maize. SP, spore; AP, 
appressorium; PH, biotrophic primary hyphae; 
SH, necrotrophic secondary hyphae.
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Both Colletotrichum species encode markedly more secondary 
metabolism enzymes (103 in C. higginsianum and 74 in C. graminicola) 
than other sequenced fungi (2–58 in ascomycetes24,25) (Supplementary 
Fig. 10a and Supplementary Table 8). In fungi, secondary metabolism 
genes are typically located in clusters26; we found 42 of these clusters 
in C. graminicola and 39 in C. higginsianum, surpassing the numbers 
found in most other sequenced ascomycetes (Supplementary Fig. 10b).  
Only 11 secondary metabolism gene clusters are shared between the 
two Colletotrichum species (Supplementary Table 12), and only 6  
of these clusters show limited synteny (Fig. 4). This cluster diver-
sity seems to result from gene duplication or loss and chromosomal 
rearrangements and may be related to the association of secondary 
metabolism gene clusters (71% in C. graminicola) with repetitive DNA 
(Supplementary Note). Because each secondary metabolism gene clus-
ter is probably involved in the biosynthesis of a specific metabolite24, 
each Colletotrichum species can be expected to produce unusually large 
and divergent spectra of secondary metabolites, some of which may be 
previously unknown bioactive molecules.

To investigate how the fungal genetic program is deployed during  
host infection, we applied Illumina RNA sequencing to both 
pathosystems (Supplementary Tables 13 and 14). We collected 

samples from infected Arabidopsis or maize leaves at intervals cor-
responding to pre-penetration appressoria, the early biotrophic 
phase and the transition to necrotrophy and from C. higginsianum  
appressoria formed in vitro (Fig. 5a). Almost all the gene models 
were transcribed in planta (14,972 C. higginsianum genes, or 92%, 
and 10,812 C. graminicola genes, or 90%). However, this transcrip-
tion was highly dynamic, particularly in C. higginsianum, where 
7,162 genes (44%) were differentially regulated (log2 fold change >2,  
P < 0.05) between one or more of the infection stages (Supplementary 
Tables 15a and 16). Fewer genes (2,619, or 22%) were differentially 
regulated in C. graminicola, which may reflect the contrasting bio
logy of this species, where biotrophic and necrotrophic growth 
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occur simultaneously (Supplementary Tables 15b and 17). The 
more clearly defined infection stages of C. higginsianum provided  
better temporal and spatial resolution of expression changes, and we  
therefore highlight our results for this species.

Five gene categories relevant to pathogenicity (encoding transcrip-
tion factors, secondary metabolism enzymes, CSEPs, CAZymes and 
transporters) had markedly different expression patterns during infec-
tion (Fig. 5b and Supplementary Fig. 11). We distinguished three waves 
of gene activation corresponding to pathogenic transitions (Fig. 5c).  
Among the genes upregulated at the appressorial phase were those 
encoding CAZymes that are predicted to degrade cutin, cellulose, 

hemicellulose and pectin, which may contribute to initial host penetra-
tion, together with a larger set of enzymes that potentially remodel the 
fungal cell wall (Fig. 5b and Supplementary Fig. 8a). However, early 
during infection, the transcriptome of C. higginsianum was dominated 
by secondary metabolism genes, with 12 different secondary metabo-
lism gene clusters being induced before penetration and during biotro-
phy (Fig. 5b,c and Supplementary Table 13). This indicates previously 
unsuspected roles for appressoria and biotrophic hyphae in synthesiz-
ing an array of small molecules for delivery to the first infected plant 
cells. Because these cells initially remain alive, such molecules are prob-
ably not toxins and may instead function in host manipulation, similar  
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significantly induced genes for a specific 
category during a transition given the  
total number of significantly induced genes 
during that transition (log2 fold change >2,  
P < 0.05) and the total number of genes in 
the category. (d) Transcriptional regulation of the effector gene ChEC6 by plant-derived signals. Confocal micrographs showing C. higginsianum 
expressing the mCherry reporter gene under the native ChEC6 promoter (overlays of bright-field and fluorescence channels). Appressoria (A) 
formed on polystyrene are unlabeled (top left), whereas those on the leaf surface (top right) have fluorescent cytoplasm. After host penetration, 
labeling is visible in young biotrophic hyphae (YH) but not older biotrophic hyphae (OH) (bottom). Scale bars, 10 µm. C, conidium.
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to protein effectors27. Remarkably, the C. higginsianum secondary 
metabolism gene cluster with the strongest activation at this stage was 
silent in C. graminicola at all the infection stages we examined (Fig. 4  
and Supplementary Fig. 12), suggesting that additional metabolite 
diversity is generated through transcriptional regulation.

Different sets of CSEP-encoding genes were expressed at each 
infection stage, but the majority of these genes were strongly induced  
during biotrophy (Fig. 5b,c and Supplementary Table 16). This 
suggests Colletotrichum requires a maximum capacity for host 
manipulation during intracellular colonization and that biotrophic 
hyphae provide a major interface for effector delivery to host cells. 
These specialized hyphae morphologically resemble the haustoria 
of obligate biotrophs, which function both as platforms for effector 
secretion and feeding structures for the uptake of sugars and amino 
acids28,29. However, we found no evidence for specific transcriptional 
reprogramming of nutrient transporters in C. higginsianum during 
biotrophy (Fig. 5b,c and Supplementary Table 16), suggesting that 
the biotrophic hyphae of this pathogen function primarily to deliver 
protein effectors and secondary metabolites to the plant cell.

Transcripts encoding a vast array of lytic enzymes are induced at the 
transition to necrotrophy, when the pathogen uses dead and dying host 
cells as a nutrient source to support rapid colonization and sporula-
tion (Fig. 5b,c and Supplementary Fig. 8). These enzymes include 44 
putative secreted proteases and 146 CAZymes that potentially cleave all 
major polysaccharides in the host wall (Supplementary Figs. 8 and 11).  
Concomitantly, numerous genes encoding plasma membrane transport-
ers that may be required for assimilating the products of this degra-
dative activity, for example, oligopeptides, amino acids and sugars, are 
also induced (Fig. 5b,c). In fungi, genes encoding secreted proteases, 
CAZymes and permeases are often subject to pH regulation30. Consistent 
with this, we found evidence that necrotrophy in C. higginsianum is 
associated with local alkalinization of Arabidopsis tissue, probably 
resulting from fungal ammonia secretion31, but tissue alkalinization 
was less pronounced in maize colonized by C. graminicola at this stage 
(Supplementary Fig. 13).

Notably, although appressoria in vitro are morphologically indis-
tinguishable from those in planta, their transcriptomes are substan-
tially different, with 1,515 genes significantly induced by host contact 
(Supplementary Table 15). One of these, the CSEP-encoding gene called 
ChEC6 (CH063_01084)32, is the most highly and significantly induced 
of all C. higginsianum genes (>50,000-fold) compared to appressoria 
in vitro. To experimentally verify this expression pattern at the cellu-
lar level, we generated transgenic C. higginsianum strains expressing a 
reporter gene under the control of the ChEC6 promoter (Fig. 5d). Using 
this method, we confirmed that the transcription of ChEC6 was plant 
specific, starting in the appressorium before penetration and continuing 
in young biotrophic hyphae, but it was switched off before the hyphae 
were fully expanded, indicating that its expression is transient and tightly 
regulated. The large-scale reprogramming of appressorial gene expres-
sion in planta shows that these specialized cells are highly responsive to 
host-derived cues that are perceived before penetration. Long regarded 
as organs of attachment and penetration33, our findings assign a previ-
ously unsuspected sensory function to fungal appressoria, enabling the 
pathogen to prepare for the subsequent invasion of living host cells.

Major hemibiotrophic plant pathogens such as Colletotrichum and the 
rice blast fungus Magnaporthe oryzae undergo major transformations 
in cell morphology and infection mode when switching from growth 
on the plant surface to intracellular biotrophy and from biotrophy to 
necrotrophy. Genome sequencing combined with high-throughput 
transcriptome sequencing revealed the transcriptional dynamics under-
lying these transitions and led us to redefine the functions of appressoria 

and intracellular hyphae. Despite their similar morphologies, a genomic 
comparison of C. higginsianum and C. graminicola uncovered major 
differences in their gene content. We propose that the diversification of 
functions required for host interaction, notably, the secretion of small-
molecule and protein effectors and the degradation of plant polymers, 
allows C. higginsianum to colonize a wider range of plant species. In 
contrast, C. graminicola, a pathogen that is adapted to a narrow range of 
hosts, has maintained a more targeted arsenal of virulence factors.

URLs. Broad Institute Colletotrichum Genome Database, http://
www.broadinstitute.org/annotation/genome/colletotrichum_group; 
Max Planck Institute for Plant Breeding Research Fungal Genomes 
Database, http://www.mpipz.mpg.de/14157/fungal_genomes; Fungal 
Transcription Factor Database, http://ftfd.snu.ac.kr/; Fungal Cytochrome 
P450 Database, http://p450.riceblast.snu.ac.kr/species.php; Transporter 
Classification Database, http://www.tcdb.org/; Saccharomyces Genome 
Database, http://www.yeastgenome.org/; NCBI Conserved Domains 
Database, http://www.ncbi.nlm.nih.gov/cdd; SAMtools, http://samtools.
sourceforge.net/; Broad Institute Integrative Genomics Viewer (IGV) 
browser, http://www.broadinstitute.org/igv/; Geneious v5.5., http://www.
geneious.com/; RepeatMasker Open-3.0, http://www.repeatmasker.org/; 
InterProScan, http://www.ebi.ac.uk/Tools/pfa/iprscan/; ARS Fungal 
Databases, http://nt.ars-grin.gov/fungaldatabases/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The C. graminicola and C. higginsianum genome assem-
blies have been deposited in NCBI’s Whole-Genome Shotgun Project 
with accession numbers ACOD0100000000 and CACQ0200000000, 
respectively. The RNA-Seq data for C. graminicola and C. higginsianum 
have been deposited in the NCBI Gene Expression Omnibus under GEO 
Series accession numbers GSE34632 and GSE33683, respectively.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Sequencing and assembly. C. graminicola strain M1.001 (M2) was collected in 
Missouri from infected maize (Fungal Genetics Stock Center culture 10212). 
C. higginsianum strain IMI349063 was isolated from Brassica campestris 
in Trinidad and Tobago (CABI culture collection, Wallingford, UK). The 
genome assemblies of C. graminicola were generated at the Broad Institute 
by combining data from Sanger and 454 pyrosequencing using a Newbler 
hybrid approach. Paired-end reads from 468,734 plasmids and 67,151 fos-
mids improved the continuity of the assembly (Supplementary Table 2). In 
the assembled genome, more than 98.5% of the sequence bases had quality 
scores >40. The C. higginsianum genome assembly was generated by GATC 
Biotech AG (Konstanz, Germany) by combining 454 GS-FLX shotgun reads 
and Illumina GAII mate-pair reads. Additionally, 864 fosmids were end-
sequenced with Sanger technology. After removing dinucleotide repeats, the 
454 reads and the fosmid end sequences were coassembled using the SeqMan 
NGen assembler (DNAStar Inc., USA). Contigs were then sorted into scaf-
folds using the paired-end information derived from an Illumina 3-kb–insert 
mate-pair library (2 × 36 bp reads). Scaffolds were manually edited to correct 
falsely joined contigs and falsely arranged scaffolds. To correct homopolymer 
sequencing errors in the 454 data, the Illumina GA data (76-fold coverage) 
were mapped to the scaffolded contigs, and the depth of coverage was used to 
create a final corrected consensus sequence (Supplementary Table 2).

Gene annotation. A total of 28,424 expressed sequence tags (ESTs) from two  
C. graminicola complementary DNA libraries and 828,592 ESTs from six  
C. higginsianum libraries were used to provide a training set for the gene-calling 
pipeline and for validating the gene models (Supplementary Note). Protein-coding  
genes were annotated in C. graminicola using multiple lines of evidence from 
BLAST, PFAM searches and EST alignments, as described previously20. Gene struc-
tures were predicted using the Broad Institute automated gene-calling pipeline35 
based on a combination of gene models predicted by the programs FGENESH 
(Softberry Inc., USA), GENEID36, GeneMark37, SNAP38 and Augustus39 together 
with EST-based and manually curated gene models. GENEID, FGENESH, SNAP 
and Augustus were trained using a set of high-confidence EST-based gene models 
generated by clustering Blat-aligned species-specific ESTs. By combining BLAST, 
EST and ab initio predictions, annotators manually built additional gene models 
that were otherwise missed by the automated annotation. C. graminicola was pre-
dicted to have 12,006 gene models, 39% of which were verified by the alignment of 
13,600 Sanger EST reads. The C. higginsianum gene set was created similarly and 
was filtered using TBLASTN alignments from 10,661 of the C. graminicola gene 
models (<1 × 10−10). Another 1,564 gene models were based on evidence from 
C. higginsianum ESTs, and 600 were based on EVidenceModeler (EVM) models 
having BLAST hits to proteins in the UniRef90 database. C. higginsianum was 
predicted to have 16,172 protein-coding genes, 89% of which were validated by 
the alignment of 135,923 ESTs from 454 sequencing.

Optical mapping. C. graminicola and C. higginsianum protoplasts40 were lysed 
and prepared for optical mapping41 using MluI (with an average fragment size 
for both genomes of 9.2 kb). Raw datasets comprising single DNA molecule 
maps (Rmaps; 300× coverage per genome) were assembled into genome-
wide contig maps spanning each chromosome using divide-and-conquer41 
and iterative assembly strategies42. PROmer from the MUMmer package43 
was used to conduct pairwise comparisons between the C. graminicola and 
C. higginsianum genomes (Fig. 2a and Supplementary Table 4). The synteny 
map (Fig. 2b) was generated using the Argo browser44.

Transposable element analysis. Repetitive DNA elements were identified by 
performing a self BLASTN of each genome and processing the output with a 
custom Perl script (available on request), which identified multicopy sequences 
and organized them into nonredundant families. Consensus sequences of 
these families were then used to generate a custom library for RepeatMasker  
(see URLs) to scan both genome assemblies. The distributions of the genes, 
the transposable elements and the GC content were examined within a 100-kb 
window, sliding 10 kb across each chromosome.

Orthology and multigene families. To identify differences in gene family size 
between C. graminicola and C. higginsianum, we clustered their proteomes 

using the Markov clustering program MCL11. An all-versus-all BLASTP search 
was performed using default parameters, followed by clustering with MCL 
using an inflation value of 2.0. We also included the proteomes of 13 addi-
tional fungal species (Fig. 3). Sequences were aligned using MAFFT45, and  
phylogenetic trees were constructed using the neighbor-joining method,  
followed by a bootstrap test with 100 replications. Sequence editing and  
alignment and phylogenetic analyses were performed using Geneious Pro 
(version 5.5; see URLs).

Annotation of specific gene categories. Secretomes of both Colletotrichum 
species were predicted using WoLF-PSORT46. CSEPs were defined as extracel-
lular proteins with no significant BLAST homology (expect value <1 × 10−3)  
to sequences in the UniProt database (SwissProt and TrEMBL components). 
Homologs of proteins from outside the genus Colletotrichum were excluded. 
Genes encoding putative carbohydrate-active enzymes were identified 
using the CAZy annotation pipeline13. To identify secreted peptidase genes, 
sequences of predicted extracellular proteins were subjected to a MEROPS 
Batch BLAST analysis47. Membrane transporters were identified from 
BLAST searches against the Transporter Collection Database (see URLs) 
and Saccharomyces Genome Database (see URLs). Secondary metabolism 
genes were initially identified using MCL and gene family searches using the 
Broad Institute Colletotrichum database, BLAST searches against GenBank 
and InterproScan analysis (see URLs). The Secondary Metabolite Unknown 
Region Finder (SMURF)26 was used to predict secondary metabolism gene 
clusters. SMURF was applied to the Velvet assembly of C. higginsianum 
(Supplementary Note). Candidate genes identified using automated searches 
were inspected manually, including protein sequence alignments to known 
enzymes and searches against the NCBI Conserved Domain Database (see 
URLs). Further details of the secondary metabolism gene annotation are pre-
sented in the Supplementary Note. The Fungal Cytochrome P450 Database 
(see URLs) and Fungal Transcription Factor Database (see URLs) were used to 
annotate cytochrome P450 enzymes and transcription factors, respectively.

Whole-genome transcriptome profiling. Arabidopsis leaves infected by  
C. higginsianum were obtained as described previously48. Sampling and RNA 
isolation of the pre-penetration stage (22 h hpi), the early biotrophic stage 
(40 hpi), the switch between biotrophy and necrotrophy (60 hpi) and in vitro 
appressoria (22 hpi) have been described previously32,49. Each experimental 
repetition of the in planta stages was based on RNA extracted from ~300 
leaves. Maize leaf sheaths infected by C. graminicola were obtained as described 
previously50. Sheaths from the maize inbred line Mo940 at the V3 stage were 
cut into 5-cm–long segments and inoculated with two 10-µl drops of spore 
suspension (5 × 105 spores per ml). Sheaths containing mature pre-penetration 
appressoria (24 hpi), intracellular biotrophic hyphae (36 hpi) and necrotrophic 
hyphae with water-soaked lesions (60 hpi) were sampled. Each leaf sheath was 
trimmed to include only the inoculated area, and total RNA was extracted as 
described previously51 (15 maize sheaths per experimental repetition). The 
RNA integrity of all samples was verified on an Agilent 2100 Bioanalyzer.

Twelve C. higginsianum libraries (four developmental stages and three bio-
logical replicates) and nine C. graminicola libraries (three developmental stages 
and three biological replicates) were prepared with the Illumina TruSeq RNA 
Sample Preparation Kit and sequenced using the Illumina Genome Analyzer IIx  
(single reads, 100 bp for C. higginsianum and 76 bp for C. graminicola). Further 
details are provided in the Supplementary Note. The RNA-Seq reads were 
mapped to the annotated genomes with TopHat (a = 10, g = 5)52 and trans-
formed into counts per annotated gene per sample with the ‘coverageBed’ func-
tion from the BEDtools suite53 and custom R scripts. Differentially expressed 
genes between two developmental stages were detected using the ‘exactTest’ 
function from the R package EdgeR54. To calculate fold changes, the number 
of reads for each gene in each library was normalized by the total number of 
mapped reads for the library, and direct ratios (log2) were calculated between 
the different developmental stages. Transcripts with a significant P value 
(<0.05) and more than a twofold change (log2) in transcript level were con-
sidered to be differentially expressed. All P values were corrected for false 
discoveries resulting from multiple hypothesis testing using the Benjamini-
Hochberg procedure. Heatmaps of gene expression profiles were generated 
with the Genesis expression analysis package55. All codes for the RNA-Seq 
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processing are available upon request. The C. higginsianum RNA-Seq data were 
also mapped onto the unannotated Velvet genome assembly (Supplementary 
Note) using bowtie56 and visualized with SAMtools (see URLs) and the IGV 
browser (see URLs). RNA-Seq expression profiles were validated by quantita-
tive RT-PCR (Supplementary Note).

Molecular phylogeny and evolutionary divergence date estimation. A whole-
genome cladogram showing the phylogenetic relationships of C. gramini-
cola and C. higginsianum to 17 other sequenced fungi was constructed with 
CVTree34 (Fig. 1). A phylogeny was generated for the genus Colletotrichum 
based on sequencing five genes in 28 selected isolates (Supplementary Fig. 5),  
as described in the Supplementary Note. To estimate the evolutionary diver-
gence date for C. graminicola and C. higginsianum, a phylogenetic analysis 
was performed using the 13 species shown in Supplementary Figure 4. The 
proteomes were clustered using MCL, and proteins in each cluster were aligned 
using MUSCLE. Sixty-four clusters containing only one protein from each 
species and having at least 80% average pairwise nucleotide identity were 
used for further analyses. Sequence alignments were concatenated, and a phy-
logenetic tree was constructed with MrBayes57 using the WAG amino acid 
substitution model. Date estimates were computed using the program r8s58 
with the nonparametric rate smoothing (NPRS) method using date estimates 
by Lücking et al.59.

Fluorescent reporter gene assay. The promoter of the CSEP-encoding  
gene ChEC6 (CH063_01084) was fused to mCherry60 and a transcrip-
tional terminator by overlap fusion PCR61 using the primer pairs shown 
in Supplementary Table 18. The genomic region between the ChEC6 start 
codon and the stop codon of its upstream gene (1,198 bp) was amplified with  
primer pair 1. The mCherry gene was amplified with primer pair 2. The 
transcriptional terminator of Aspergillus nidulans trpC was amplified from the 
plasmid pBin-GFP-hph5 with primer pair 3. After fusion, the insert was subcloned  
into the plasmid pENTR/D-TOPO (Invitrogen) and verified by sequencing. The 
insert was cut out with BamHI and EcoRI and ligated into the plasmid pBIGDR1, 
providing direct repeat recombination-mediated gene targeting62. A ku70 mutant of  
C. higginsianum strain IMI349063 (ref. 62) was used for Agrobacterium-mediated 
transformation3. Confocal images of transformants were obtained using a Leica 
TCS SP2 confocal laser scanning microscope. Excitation for imaging mCherry 
fluorescence was at 563 nm, and emission was detected at 566–620 nm.

Host tissue alkalinization. The pH of the host cells during infection was mea
sured using the cell-permeant pH-sensitive dye 2′,7′-bis(carboxyethyl)-5(6)-
carboxyfluorescein (BCECF) for analysis by epifluorescence microscopy31. 
Fluorescence intensity values were correlated with direct pH determinations 
obtained with a piercing-tip pH electrode (Eutech, Singapore). Ammonia con-
centrations in infected maize and Arabidopsis leaf tissues were measured using 
a photometric ammonium assay kit (Merck, Germany).
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