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Abstract. Many studies from the last decades have shown
that airborne microorganisms can be intrinsically linked to
atmospheric processes. Certain bacteria may constitute the
most active ice nuclei found in the atmosphere and might
have some influence on the formation of ice crystals in
clouds. This study deals with the ice nucleation activity of
Pseudomonas syringaeinside of thunderstorms through nu-
merical simulations using BRAMS (Brazilian Regional At-
mospheric Model System). The numerical simulations were
developed in order to investigate the effect on the total
amount of rainwater as a function of ice nuclei (IN)P. sy-
ringae concentrations with different scenarios (classified as
S2 to S4 scenarios) corresponding to a maximum of 102 to
104 IN bacteria per liter of cloud water plus the BRAMS
default (classified as S5 scenario). Additionally, two other
scenarios were included without any IN (S1) and the sum of
RAMS default and S4 scenario (classified as S6). The cho-
sen radiosonde data is for 3 March 2003, typical summertime
in São Paulo City which presents a strong convective cell.
The objective of the simulations was to analyze the effect of
the IN concentrations on the BRAMS modeled cloud prop-
erties and precipitation. The simulated electrification of the
cloud permitted analysis of the total flashes estimated from
precipitable and non-precipitable ice mass fluxes in two dif-
ferent lightning frequencies. Among all scenarios, only S4
and S6 presented a tendency to decrease the total cloud wa-
ter, and all bacteria scenarios presented a tendency to de-
crease the total amount of rain (−8 %), corroborating other
reports in the literature. All bacteria scenarios also present
higher precipitable ice concentrations compared to S5 sce-

nario, the RAMS default. The main results present the total
flash number per simulation as well. From the results, the to-
tal flash numbers, from both lightning frequencies, in S4 and
S6 scenarios, are from 3.1 to 3.7 higher than the BRAMS de-
fault. Even the lower bacterial concentrations (scenarios S2
and S3) produced 3 time higher number of flashes, compared
to S5 scenario. This result is a function of the hydrometeors
in each simulation. In conclusion, IN bacteria could affect
directly the thunderstorm structure and lightning formation
with many other microphysical implications.

1 Introduction

Over the past several years there has been a surge in novel
research concerning the interaction of airborne microorgan-
isms with atmospheric processes, as a complement to the
existing well established and defined studies on inorganic
ice nuclei (Pruppacher and Klett, 1997; Morris et al., 2011).
There is growing evidence that bacteria and fungi, in par-
ticular, can influence atmospheric chemistry via the release
of carbon and ions into the atmosphere (Elbert et al., 2007)
and chemical transformation of atmospheric carbon sources
(Deguillaume et al., 2008). Certain bacteria are also the most
active ice nuclei found in the atmosphere and might have
some influence on the formation of ice crystals in clouds
(Möhler et al., 2007; Morris et al., 2004). Environmental
sampling revealed that ice nucleation-active (INA) strains of
the bacteriumPseudomonas syringaewere enriched in rain
and snowfall compared to other environmental sources where
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this bacterium is found (plants, water, epilithic biofilms)
(Morris et al., 2008). In an experimental cloud chamber, this
and other species of INA bacteria could induce condensa-
tion and subsequent freezing of cloud droplets (Möhler et al.,
2008). Efforts to model the impact of INA microorganisms
on the physical processes in clouds leading to precipitation
have yielded somewhat conflicting results. Recent work by
Hoose et al. (2010), in particular, suggests that primary bio-
logical aerosol particles in general have only a minor impact
on cloud glaciation on a global scale relative to other hetero-
geneous ice nuclei in the atmosphere.

Microbiological as well as atmospheric physics ap-
proaches have suggested that certain types of plant-
associated bacteria (such asP. syringae) and fungi (such as
ice nucleation activeFusarium spp.) (Pouler et al., 1992)
in the atmosphere could be important for rainfall formation
(Morris et al., 2004; Bauer et al., 2003; Szyrmer and Za-
wadzki, 1997). The authors came to this conclusion because
these bacteria produce a protein on their outer membrane that
is one of the most active of the naturally-occurring ice nu-
clei (compounds capable of catalyzing the freezing of water
– Jaenicke, 2005), and because freezing of cloud water is a
critical step for rainfall over major parts of the earth (Sat-
tler et al., 2001; Ariya and Amyot, 2004; Diehl et al., 2000
and, Hamilton and Lenton, 1998). These micro-organisms
are widely distributed across the planet, multiply readily, sur-
vive airborne dissemination up to the clouds and fall out with
precipitation and to act as ice nuclei (Pöschl et al., 2010 and
Diel and Wurzler, 2010). If they play a catalyzing role in the
formation of precipitation, they could have applications in
drought mitigation.

Phillips et al. (2009) also wrote that the abundance of bac-
terial ice nuclei in the environment, their capacity to induce
ice formation and their overall apparent link to the water cy-
cle lead to the open question of whether emissions of such
ice nucleating biogenic particles from their sources (plants in
particular) can be modified by their own effects on clouds and
atmospheric conditions, forming a weak feedback system,
which is consistent with the proposal of Sands et al. (1982).
If there is such a feedback system, there is also emerging ev-
idence that it might have an impact on bacterial evolution in
addition to an impact on atmospheric processes. In particu-
lar, results of a recent population genetics study suggest that
ice nucleation activity is a driver for the evolution of plant
pathogenicity inP. syringae(Morris et al., 2010). Elucidat-
ing the roles that ice nucleation can play in processes of the
physical environment is therefore stimulating new directions
of investigation on the subsequent impact of ice nucleation
activity on the biology and evolution of microorganisms with
this capacity.

According to Amato et al. (2005), the total bacterial den-
sity in clouds is about 3×104 cells m−3 of cloud volume (1×
105 cells ml−1 of cloud water) based on direct visual counts
of total cells. Most of the isolated micro-organisms, includ-
ing 12 fungal and 17 bacterial strains, were described for the

first time in atmospheric water by Amato and colleagues.
Amato et al. (2007) found bacteria mainly in the gen-
eraPseudomonas, Sphingomonas, Staphylococcus, Strepto-
myces, andArthrobacterand fungi such asCladosporiumor
Trametes. Additionally, Phillips et al. (2009) have shown in
preliminary simulations, performed for a case of deep con-
vection over Oklahoma, that certain concentrations of ice
nuclei with activities similar to bacterial ice nuclei could in-
fluence significantly: (1) the average number and size of ice
crystals in the clouds; (2) the horizontal cloud coverage in
the free troposphere; and (3) precipitation and incident solar
insolation at the surface, which influence rates of bacterial
growth. There is currently very little data on the atmospheric
concentration of biological ice nuclei. Approximations of the
concentration ofP. syringae, which seems to be the most fre-
quently encountered and most active of the biological ice nu-
clei, can be made from ecological studies of its abundance
in freshly fallen snow. The maximum concentration ofP. sy-
ringaeobserved in fresh snow fall is 105 bacteria l−1 and in
rain is 104 bacteria l−1 (Morris et al., 2008). All strains of
P. syringaeisolated from snow fall to date have measurable
ice nucleation activity (Morris et al., 2008). Based on the re-
ported ice nucleation activities in these samples (Morris et
al., 2008) and the cumulative frequency profile of the most
active ice nucleation active strain reported to date (Orser et
al., 1985), about 10 % of the cells ofP. syringaewould be
active at−8◦C and nearly all of the cells would be active
at −12◦C. Their data indicates how the number of ice nu-
clei per cell changes with changing temperature. Addition-
ally, Möhler et al. (2008) found maximum ice-active frac-
tions of 10−4 for P. syringaeand other bacterial species in
the temperature range between−7 and−11◦C. Direct ob-
servations of biological ice nuclei in freshly fallen snow fall
have revealed at most 120 ice nuclei l−1 of melt water ac-
tive at −7◦C (Christner et al., 2008) which also present a
number range of DNA-containing cells from 1.5× 104 to
5.4×106 cells per l. The snow analyzed in these studies might
have accumulated ice nuclei from the atmosphere as it fell.
Nevertheless, these values provide a realistic range of num-
bers of biological ice nuclei per volume of cloud water. Ad-
ditionally, most of the inorganic ice nuclei are active only be-
low −12◦C (Pruppacher and Klett, 1997, Table 9.6 p. 319).

On the other hand, Levin et al. (2005) show simula-
tions without ice-nucleating ability of the biological or min-
eral dust, but allowing the soluble component of the mixed
aerosols to act as efficient giant cloud condensation nuclei
(CCN), enhancing the development of warm rain. In their
simulations the rain amounts increased by as much as 37 %
compared to the case without giant CCN. On the other hand,
allowing the mineral dust particles to also act as efficient ice
nuclei (IN) reduces the amount of rain on the ground com-
pared to the case when they are inactive. Their simulations
reveal that when the dust particles are active as both giant
CCN and effective IN, the continental clouds become wider.
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One important role of ice formation in environmental pro-
cesses is in the production of lightning. The main mecha-
nism responsible for cloud electrification is the non-inductive
mechanism, which involves rebounding collisions between
graupel and ice crystals in the presence of supercooled liquid
water (MacGorman and Rust, 1998). According to Mansell
et al. (2005), the non-inductive charging schemes, which are
dependent on the graupel rime accretion rate, tended to pro-
duce an initially inverted polarity charge structure and cloud
to ground flashes. During the rebounding collisions, electric
potential charge is transferred between the particles with op-
posite signs. Concerning the non-inductive mechanism as the
main process responsible for cloud electrification, there are
many observational or modelling studies such as Reynolds et
al. (1957); Williams and Lhermitte (1983); Dye et al. (1989);
Rutledge et al. (1992); Latham et al. (2007), among oth-
ers. The amount of charge transferred depends on the par-
ticle sizes and their fall velocity, while the sign depends on
the cloud temperature and supercooled liquid water content
(e.g., Takahashi, 1978; Saunders et al., 1991, 2006; Pereyra
et al., 2000; Takahashi and Miyawaki, 2002). Due to the
equilibrium between vertical pressure gradient and gravita-
tional force, the smaller (less dense) particles are carried
aloft into higher regions of the cloud by its updrafts, while
larger (denser) particles like hail and graupel are carried
only to mid levels inside the cloud, creating major electric
charged centers inside the cloud of opposite signs. Several
charged centers can be produced according to the charac-
teristics of the storm dynamics, which controls cloud ver-
tical and horizontal motions, redistributing the charged ice
hydrometeors vertically and horizontally. When the electric
potential differences between these centers are strong enough
to break up the dielectric breakdown of air, lightning is ini-
tiated trough an avalanche of electrons that can occur from
cloud-to-ground (CG) or inside the clouds, i.e., intra-cloud
(IC). In the case of CG lightning, the lightning channel for-
mation is lead by stepped leaders (that creates a conducting
path between charge centers) and then followed by one or
multiple return strokes that traverse the channel moving elec-
tric charges and neutralizing the leaders (Rakov and Uman,
2003). As bacterial ice nuclei in the environment could lead
to an increased number of ice crystals, an increase in the
number of rebounding collisions between ice particles would
be observed, which may increase the total amount of electric
charge transferred and the charged centers, and which in turn
would increase lightning activity in the cloud.

The impact on cloud electricity is also extended beyond
the number of lightning discharges alone. Lightning is the
largest non-anthropogenic source of NO2 and NO (together
referred as NOx) in the free troposphere. According to Schu-
mann and Huntrieser (2007), the knowledge of the lightning-
induced nitrogen oxides (LNOx) source is important for un-
derstanding and predicting the nitrogen oxides and ozone dis-
tributions in the troposphere. This knowledge is further re-
quired for the assessment of other important NOx sources

for understanding the possible feedback between climate
changes and lightning. NOx is an important trace gas in
ozone chemistry and an increase in lightning frequency could
increase lightning-generated NOx in the middle and upper
troposphere, as well as the ozone concentrations. Ozone is
the third most important greenhouse gas, playing a big role
in radiative climate forcing that could be affected by changes
in lightning production.

In this investigation, we used a high-resolution configu-
ration of the Brazilian Regional Atmospheric Modeling Sys-
tem (BRAMS). The RAMS model utilizes the full set of non-
hydrostatic, Reynolds-averaged primitive equations (Tripoli
and Cotton, 1982). The Brazilian version of the RAMS is the
result of changes incorporated by Brazilian users in recent
years, which include a simple photochemical and a soil mois-
ture scheme. Validation of the BRAMS for use in the Ama-
zon region simulations is presented by Freitas et al. (2009).
The cloud microphysics in BRAMS is described by Martins
et al. (2009) based on Walko et al. (1995) and Meyers et
al. (1997). Therefore, the main goal of this work is to evalu-
ate the impact of the concentration of ice nucleation-active
bacteria on cloud electricity, particularly flash rates, using
BRAMS cloud modeling.

2 Methodology

2.1 BRAMS modeling

The numerical simulations were developed in order to inves-
tigate the effect of IN concentrations on the total amount
of rainwater in the integrated vertical column and on rain-
fall. Homogeneous initializations were performed and sim-
ulations carried out for a time interval of 3 h. Heating and
wetting at the center of the grid were introduced after 10 min
of simulation, mimicking a low levelforcing in order to de-
velop a convective cell. This low level forcing was applied
according to Gonçalves et al. (2008). The chosen tempera-
ture and humidity profiles to initiate the model were taken
from a radiosonde data sampled on 3 March 2003, which
is typical for summertime at S̃ao Paulo City (−23.59◦ S,
43.66◦ W) (Fig. 1a). Figure 1b shows the radiosonde pro-
file of the date 3 March. Figure 1c presents a weather radar
image at 18:00 GMT, emphasizing a strong convective event
exactly over S̃ao Paulo City. With the purpose of testing the
sensitivity of microphysical parameters, the low level forc-
ing was activated without topography, wind and surface. The
objective of the simulations is to analyze the effect of the
IN concentrations on the BRAMS modeled cloud properties,
precipitation and lightning activity. Lightning frequency was
inferred by the frozen ice mass fluxes and maximum updraft
as described in the next section (2.3).

The simulated low level forcing was based on Walko et
al. (1995) and produces complete development of both liquid
and ice phases. The simulated domain had 60 km by 60 km

www.atmos-chem-phys.net/12/5677/2012/ Atmos. Chem. Phys., 12, 5677–5689, 2012
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Figures 781 
 782 

 783 

Figure 1a. Study area where the radiosonde was launched. 784 Fig. 1a.Study area where the radiosonde was launched.

horizontally with 500 m resolution and 20 km vertically with
its resolution varying logarithmically, and the time step was
1 s. A Rayleigh friction absorbing layer was used in the top
of the model to prevent the reflection of gravity waves. The
configuration of additional microphysical parameters in the
numerical simulations was adjusted according to values sug-
gested in empirical studies. Additional microphysical param-
eters suggested by Meyers et al. (1997) to the ice-crystal for-
mation by primary nucleation processes (see Figs. 2, 3 and
4) and those suggested by Hallett and Mossop (1974) from
experiments that showed splintering of supercooled droplets
impacting the surface of riming ice particles. The other im-
portant parameter that directly impacts IN is the shape of the
frequency distribution of their sizes. Previous studies have
shown that the precipitation process is strongly affected by
CCN concentrations changes (Martins et al., 2009) and also
the shape parameter of the size distributions. In addition, the
two parameters (CCN and shape parameter) were related to
each other (Martins and Silva Dias, 2009). Higher shape pa-
rameter decreased the spectral width of hydrometeor cate-
gories, including pristine ice. Although the numerical sim-
ulations were sensitive to specified microphysical parame-
ters, the CCN concentration was assumed as 300 cm−3 and
the shape parameter was set to 2, which corresponds to rela-
tively clear atmospheric conditions (Gonçalves et al., 2008).
In these simulations, bacteria act only as IN as it follows
in the next section. There are no species differences among
CCN and IN concentrations.

Although the model has 1 s time step, we show the results
for every 2 min.

2.2 Ice nucleation modeling

Based on the model characteristics described above, six nu-
merical experiments were run in order to analyze the effects

30 
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Figure 1b. Radiosonde of March 3
rd

, 2003 at São Paulo airport (12 GMT), with temperature 786 
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Fig. 1b. Radiosonde of 3 March 2003 at São Paulo airport
(12:00 GMT), with temperature (◦C) and vapor ratio (g kg−1) ver-
tical profiles.
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 789 

Figure 1c. March 3
rd

, 2003 radar data at 18:00 GMT. Bluish and greenish colors mean 30 790 

dBz or less, or less than 5 mm h
-1

. Orange and reddish colors mean more than 40 dBz and  791 

more than 20 mm h
-1

. The circled area correspond to the study area 792 

 793 

 794 

  795 

Fig. 1c.3 March 2003 radar data at 18:00 GMT. Bluish and green-
ish colors mean 30 dBz or less, or less than 5 mm h−1. Orange and
reddish colors mean more than 40 dBz and more than 20 mm h−1.
The circled area correspond to the study area.

of IN concentrations on modeled cloud properties, precipi-
tation and electrification. These simulations considered a se-
ries of ice nucleation parameterizations as shown in Fig. 2.
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Figure 2 - Ice nuclei concentration profiles (m
-3

), for different numerical scenarios 798 

involving the bacterium P. syringae (S2, S3, S4) and BRAMS default parameterization 799 

(S5). Scenario S6 is performed summing up S4 and S5. 800 

801 

Fig. 2. Ice nuclei concentration profiles (m−3), for different numer-
ical scenarios involving the bacteriumP. syringae(S2, S3, S4) and
BRAMS default parameterization (S5). Scenario S6 is performed
summing up S4 and S5.

These simulations were also based on Orser et al. (1985)
work to create the scenarios S2, S3, S4, as explained be-
low, at temperatures warmer than−10◦C. In the first numer-
ical experiment (S1) the model was run in the homogeneous
nucleating mode only. In this case, a small group of water
molecules take on a crystal lattice structure due to random
motions. After the initial crystal structure was established, it
grew throughout the entire water droplet. The homogeneous
nucleation followed the parameterization proposed by De-
Mott et al. (1994) and was applied in the temperature range
from −50 to−30◦C (the value at−50◦C was then applied
to colder temperatures).

In the second numerical experiment (S2 scenario), homo-
geneous nucleation occurred and IN concentration was as-
sumed to be 100 000 times less than the total population of
bacteria observed by Amato et al. (2005) at a temperature
range of−12 to−2◦C, where we adjust a polynomial equa-
tion between these two extremes. Only a fraction of total bac-
teria can act as IN (Morris et al., 2008), therefore it was set
at 1 INA per m3 of cloud volume (see Fig. 2). As no ob-
servational data were available at temperatures colder than
−12◦C, the IN concentration for−10◦C was used. There-
fore, the number of nucleated ice crystals, at a certain time
(t), was also based on data for the abundance ofP. syringae
in precipitation (Morris et al., 2008). TheP. syringaeIN
concentrations were assumed homogeneous over the whole
model domain (vertical and horizontal) at the beginning of
the simulation (t = 0) with no changes after the simulation
started, there is no depletion of IN. The bacteria concentra-
tions, in these scenarios, induced ice formation, as indicated
in Fig. 2.

The third and fourth numerical experiments were the same
as S2, but the initial IN concentration profiles were 10 (S3)
and 100 (S4) times the value of S2. The last numerical sce-
nario (S5) is the one that represents RAMS’ default parame-
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Figures 3 – Mixing ratio of ice hydrometeors (hail - shadded, and graupel, aggregates, snow 803 

and ice crystals - contours) for each simulation in the center of the domain, where the 804 

maximum values occur. Contour lines are mixing ratios for every 2 g kg
-1

. 805 

Fig. 3. Mixing ratio of ice hydrometeors (hail – shadded, and grau-
pel, aggregates, snow and ice crystals – contours) for each simula-
tion in the center of the domain, where the maximum values occur.
Contour lines are mixing ratios for every 2 g kg−1.

terization, and it includes a variety of physical mechanisms:
homogeneous nucleation (as in scenario S1); deposition nu-
cleation and condensation-freezing nucleation (Meyers et al.,
1997); contact freezing nucleation (Cotton et al., 1986). The
sets of nucleation parameterization characteristics described
above for each simulation are summarized in Table 1. S6
presents IN concentration as a combination of the S5 (RAMS
default) and S4 scenario, with bacteria acting as IN. It must
be pointed out that S5 and S6 scenarios based on the RAMS
ice nucleation parameterization were used as reference cases.
Secondary ice production, based on the Hallett-Mossop the-
ory (Cotton et al., 1986), is included in all scenarios. It should
be noted that the BRAMS default ice nucleation parameter-
ization (S5) does not allow nucleation warmer than−8◦C.
The concentration of IN with bacteria follows exactly the IN
concentration for normal RAMS and BRAMS defaults, i.e.,
there is no change in time by other processes as it is normally
used for those models.

www.atmos-chem-phys.net/12/5677/2012/ Atmos. Chem. Phys., 12, 5677–5689, 2012
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 806 

Fig. 4. Precipitable ice mass flux (fP), non-precipitable ice mass
flux (fNP) and maximum cloud updraft (wmax) for every 1t =

2 min for each simulation (S1, S2, S3, S4, S5 and S6). Numbers at
the top of each panel correspond to the number of estimated light-
ning flashes at the respective simulation timet (F × 1t).

2.3 Cloud electrification: total flash estimated from
ice mass fluxes and maximum updraft

Simulation of cloud electric activity is a challenge. The non-
inductive charge transfer is well accepted as the main mech-
anism for cloud electrification and it is reasonably easy to
compute numerically, depending only on ice particle col-
lisions, a task already carried by cloud resolving models.
However, the amount of charge transferred during each colli-
sion is parameterized in a few laboratory studies (Takahashi,
1978; Saunders et al., 1991; Pereyra et al., 2000; Takahashi
and Miyawaki, 2002; Saunders et al., 2006) and it is pro-
portional to the size difference between the ice particles, the
temperature inside the cloud, and cloud updraft. These lab-
oratory studies show substantial differences in their method-
ology and results (Saunders et al., 2006) which can lead to
different electrical cloud structures and lightning flash rates
of simulated thunderstorms (Helsdon Jr. et al., 2001; Mansell

et al., 2005; Altaratz et al., 2005; Barthe and Pinty, 2007;
Albrecht, 2008; Albrecht et al., 2008). Also, the electrical
charge neutralization produced by the lightning channels is
poorly understood and has a high computational cost. Stud-
ies of electrical charge transfer and lightning propagation re-
main under investigation.

Several relationships between lighting flash rate and ob-
served cloud parameters have been reported in the literature.
For example, Williams (1985) showed a fifth power relation-
ship between storm cloud height and flash rate (F), and Price
and Rind (1992) modified this relationship using the max-
imum cloud updraft (wmax) to take into account the storm
dynamics:

F = 5× 10−6
× wk

max (1)

wherek was derived from satellite data and equals to 4.5 for
continental deep convection, forF in fl min−1 andwmax in
m s−1. The fluxesFP92 andFD08 will be defined later in the
text. Hereinafter, this relationship (Eq. 1) is called P92. This
relationship is based on scaling arguments previously de-
rived by Vonnegut (1963) and simplified by Williams (1985),
where the authors assume that the magnitude of the updraft
is positively correlated to the cloud top height. A fifth power
relationship to the storm cloud depth was also reported by
Yoshida et al. (2009), and Boccippio et al. (2002) showed that
the flash rate-updraft relationship suggests a higher power.
Petersen et al. (2005) found a linear relationship between to-
tal lightning flash rate and ice water path, independent of
the regime (land, ocean or coastal zones). Likewise, based
on the charging zone concept, several studies have shown
strong correlation between the total (intra-cloud and cloud-
to-ground lightning) flash rate and the precipitable and non-
precipitable ice masses (Blyth et al., 2001; Latham et al.,
2004, 2007; Deierling et al., 2008). The terms precipitable
and non-precipitable ice masses are associated with the hy-
drometeor types likely to precipitate or not, relative to the
convective core updraft, i.e., denser particles like hail and
graupel can precipitate over the convective core and are de-
fined as precipitable ice mass, while snowflakes and ice crys-
tals cannot and are therefore defined as non-precipitable ice
mass. Blyth et al. (2001) have shown simple calculations of
this correlation by yielding the prediction that the total light-
ning (intracloud and cloud-to-ground) frequencyF , flashes
per minute (fl min−1), was roughly linearly proportional to
the product of downward moving ice precipitation (precip-
itable ice mass – graupel and hail – flux,fP) and upward
moving crystals (non-precipitable ice mass –fNP) in the con-
vective core of thunderstorms:

F = C · fP · fNP (2)

whereC is constant. Latham et al. (2004, 2007) have ex-
tended the relationship on Eq. (2) to several studies in the
literature, and restate the correlation betweenF , fP andfNP.

Deierling et al. (2008) correlated total lightning fre-
quency (from the Northern Alabama Lightning Mapping

Atmos. Chem. Phys., 12, 5677–5689, 2012 www.atmos-chem-phys.net/12/5677/2012/
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Table 1.Type of nucleation considered in each simulation.

Type of ice Homogeneous Deposition Condensation Contact and Bacterial-concentrations
nucleation/ and Freezing Freezing per cloud volume
Simulation (m3)

S1 Yes No No No No
S2 Yes No No No Yes,w/1
S3 Yes No No No Yes,w/10
S4 Yes No No No Yes,w/102

S5 Yes Yes Yes Yes No
S6 Yes Yes Yes Yes Yes,w/102

Array (NALMA) and two field experiments) to ice mass
fluxes derived from dual-polarimetric Doppler radar data us-
ing Eq. (2). The thunderstorms analyzed by these authors
(11 storms in total) comprehended severe storms with mul-
ticellular characteristics, moderate intensity ordinary thun-
derstorms, single cell thunderstorms, and supercell thunder-
storms. Deierling et al. (2008) then found that the Eq. (2)
type relationship between total lightning frequencyF and
the product of ice mass fluxes (fP · fNP) for all 11 storms
investigated has the form:

F = 9.0× 10−15
· fP · fNP+ 13.4 (3)

whereF is in flashes per minute (fl min−1); fP in kg m s−1;
and fNP in kg s−1. Hereinafter, this relationship (Eq. 3) is
called D08;fP is the product of the precipitable ice mass
(mP) (in kg) and the terminal fall speed of precipitable hy-
drometeors (vt):

fP = mPvt (4)

The non-precipitable ice mass fluxfNP would be the product
of non-precipitable ice massmNP and the storm updraftw
(fNP = mNP·w), but asw could not be inferred directly from
Doppler radar, Deierling et al. (2008) assumed that the ver-
tical change in the updraft velocityw is proportional to the
horizontal divergence through the anelastic continuity equa-
tion ∇Hρ0V = ∂ (wρ0)/∂z), so that

fNP = mNP∂w/∂z = mNP(∇Hρ0V ) . (5)

Deierling et al. (2008) also derived relationships between to-
tal lightning flash rates and precipitable and non-precipitable
ice mass fluxes alone, as well as precipitable and non-
precipitable ice masses alone.

Barthe et al. (2010) examined several of these empiri-
cal lightning and storm parameters relationships on a cloud
resolved model. These authors compared the observed and
simulated lightning flash rates from six model parameters:
precipitable ice mass, ice water path, precipitable and non-
precipitable ice mass fluxes product, updraft volume, max-
imum vertical velocity, and cloud top height. They have
scaled the previously relationships using the observations of

two thunderstorms (one sever and one ordinary), and found
that maximum updraft was the best parameter for the severe
storm flash rate proxy, while the cloud top height was the best
one for the ordinary storm. For both storms, the ice mass flux
product captured the thunderstorm electrical activity trend
but overestimated the magnitude.

In our simulation with BRAMS, we estimate the total flash
produced for each individual convective cell by P92 and D08
relationships for every 2 min (1t = 2 min). For P92,k = 4.5
was used andFP92 was calculated only when both precip-
itable and non-precipitable ice masses were observed. For
D08, we also computeFD08 only when both precipitable and
non-precipitable ice masses were observed andfP andfNP
are estimated at each time step using Eqs. (4) and (5), respec-
tively. The precipitable hydrometeors in BRAMS are hail and
graupel, and the rest of ice species are non-precipitable, i.e.,
aggregates, snow, and pristine crystals. Therefore, at each
time step hail mass and graupel mass were multiplied by their
respective terminal fall speed in each grid point and then
summed over the storm volume to obtainfP. Analogously,
the sum of aggregates, snow and pristine crystal masses were
multiplied by the horizontal divergence in each grid point
and then summed over the storm volume to obtainfNP. Only
grid points inside the storm updraft, above the level of−5◦C,
were considered (w > 0 m s−1), and in the case offNP, only
the ice particles where their terminal fall speed was smaller
than the updraft were considered (Barthe and Pinty, 2007;
Deierling et al., 2008).

The resulting total number of flashes using P92 (FP92×1t)
and D08 (FD08×1t) relationships are presented in Sect. 3.2.

3 Results and discussions

Impact on cloud properties and precipitation

The cloud microphysics simulated by each scenario of Ta-
ble 1 is summarized in Table 2. This table shows the hy-
drometeor paths for all types (peak values), as well as rain
variables at ground level. These values are the peak values
which occur in the center of the computational domain due
to the idealized setup, the simulated cloud is symmetric in
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Table 2. Peak water path (g m−2) of hydrometeors for all simulations. These values are the maximum values in one grid cell of the model
domain during the duration (3 h) of the simulations. Values in parentheses are the percentage deviation from the simulation with no IN (S1,
i.e., percentage deviation= vSy/vS1· 100− 100%, wherev is the variable andy is the simulation type).

S1 S2 S3 S4 S5 S6

Cloud water 41 922 42 066
(+0.3 %)

41 965
(+0.1 %)

41 645
(−0.7 %)

42 085
(+0.4 %)

41 453
(−1.1 %)

Rain 9092 8398
(−8 %)

8370
(−8 %)

8320
(−8 %)

8618
(−5 %)

8355
(−8 %)

Hail 380 752
(+98 %)

775
(+104 %)

758
(+100 %)

544
(+43 %)

774
(+104 %)

Graupel 29 225
(+675 %)

164
(+465 %)

88
(+203 %)

190
(+555 %)

149
(+414 %)

Aggregates 41 308
(+644 %)

372
(798 %)

565
(+1265 %)

223
(+437 %)

465
(+1022 %)

Snow 68 210
(+211 %)

235
(+248 %)

90
(+34 %)

199
(+194 %)

210
(+210 %)

Ice crystal 43 83
(+93 %)

110
(+155 %)

230
(+433 %)

85
(+96 %)

107
(+147 %)

Precipitable ice 409 977
(+139 %)

940
(+130 %)

846
(+107 %)

734
(+80 %)

924
(+126 %)

Non-precipitable ice 152 601
(+295 %)

717
(+371 %)

886
(+482 %)

506
(+233 %)

781
(+413 %)

the horizontal directions. It can be seen in Table 2 that the
inclusion of IN caused a small impact in total liquid water
(cloud water and rain) among the simulations. The simula-
tion with no IN (S1) produced 41 922 g m−2 of cloud water
and 9092 g m−2 (or 9 mm) of rain, which is less than a unit
of percentage higher than those with IN (S2, S3, S4, S5) for
cloud water and a few units of percentage lower for rain. It
must be clarified that high cloud water result is due to forced
simulation, not a real one. Among the simulations with IN,
only S4 and S6 presented a tendency to decrease the total
cloud water, and all those with IN presented a tendency to
decrease the total amount of rain integrated in the column
(−8 %). The last result agrees with Levin et al. (2005), who
also found rain reduction on the ground. It must also be noted
that the observed rainfall amount was 23 mm near the center
grid, close to the simulated rainfall values of 8 to 9 mm.

However, the impact on the total ice production is very
significant. The simulations withP. syringaeas ice nuclei
(S2, S3 and S4) produced total hail path on the order of
750 g m−2 which is ∼100 % greater than the one produced
by S1 (380 g m−2). The default BRAMS simulation (S5)
also produced more hail than the S1 simulation (544 g m−2,
43 % more). The simulation with a lower concentration of
P. syringae(S2) generated 675 % more graupel than S1, and
555 % more than S5. The simulation with an intermediate
concentration ofP. syringae(S3) was the one that produced

more snow, and the simulation with the maximum amount
of P. syringae(S4) produced many more aggregates and ice
crystals (565 and 230 g m−2, respectively) than S1 (41 and
43 g m−2, respectively) and the other simulations. More ag-
gregates and ice crystals, as well as graupel and hail, are es-
sential for rebounding ice collisions and therefore for electric
charge transfer and lightning production, as described in the
next section (3.2).

To show the temporal evolution of the ice hydrometeors
of each simulation, Fig. 3 shows the total mixing ratio of
hail, graupel, aggregates, snow and ice crystals for each sim-
ulation, integrated over the horizontal extent of the cloud at
each 2-min model output. As shown in Table 2, Fig. 3 also
shows that there are significant differences in total hydrom-
eteor mixing ratios among the simulations with no IN (S1)
and those with IN (S2, S3, S4, S5), but with temporal de-
tails. Table 3 gives the maximum values of these variables
and the time when these maximums occurred. The direct im-
pact of IN is on the concentration of pristine ice crystals,
which then indirectly impacts the production of other hy-
drometeors. Therefore, S1 simulation produced the fewest
ice hydrometeors amounts of all the simulations as no IN
was available for nucleation and the only source of ice crys-
tals was due to homogeneous nucleation. This feature also
affected the temporal evolution of the cloud: S1 produced
significant amounts of frozen hydrometeors (mixing ratios
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Table 3. Maximum of ice hydrometeor mixing ratio (g kg−1) for each simulation, where the values in parentheses are the time in minutes
when the maximum occurred.

S1 S2 S3 S4 S5 S6

Hail 15 (t = 46) 42 (t = 40) 46 (t = 40) 47 (t = 40) 26 (t = 42) 46 (t = 40)
Graupel 1.2 (t = 48) 10 (t = 46) 6.8 (t = 46) 3.2 (t = 46) 9.2 (t = 46) 6.6 (t = 44)
Aggregates 3.6 (t = 52) 18 (t = 46) 22 (t = 48) 33 (t = 48) 13 (t = 46) 26 (t = 48)
Snow 2.9 (t = 58) 12 (t = 46) 14 (t = 48) 5.5 (t = 44) 13 (t = 46) 12 (t = 46)
Ice Crystal 4.3 (t = 50) 5.1 (t = 48) 4.7 (t = 50) 13 (t = 44) 4.6 (t = 48) 4.4 (t = 48)

greater than 2 g kg−1) several minutes later than the other
ones, as shown in Fig. 3. Ice crystals by homogeneous freez-
ing in S1 had its peak (4.3 g kg−1) at∼10.5 km altitude after
50 min of simulation. The altitude of the peak of ice crys-
tal production was constant in all other simulations and the
time when the peak occurred was 2–6 min earlier, except for
S3 which occurred at the same time as in S1. The addition
of IN tended to generate two peaks of ice crystals: the one
at 10.5 km by homogeneous nucleation, and a second one at
∼9 km due to heterogeneous nucleation. In simulations S2
and S5 this second peak is not apparent but an elongated
branch of 2 g kg−1 of ice crystals is observed downward of
10 km after 42 to 48 min of simulation in S2 to S5. In S3 and
S4 a second peak of∼4 and∼12 g kg−1, respectively, clearly
developed att = 44 min due to more IN.

Greater amounts of ice crystals in S2 to S5 impacted
the production of other ice species, first due to rimming
and accretion, generating greater amounts of aggregates
(∼2 g kg−1) as soon as 40 min of simulation for S3 and S4,
and 2 min later for S2 and S5. Aggregates also presented two
peaks in S2 to S5, at the same heights as the ice crystal peaks
due to the conversion of ice crystals into aggregates by rim-
ming, accreation and auto-conversion. S5 presented the high-
est aggregate peak with 33 g kg−1 at t = 48 min. Snow also
presented the same behavior in time and vertical space as
aggregates: maximums of snow were produced at∼9 and
10.5 km of height also due to rimming, accretion and auto-
conversion of ice crystals, except for S5 which presented a
single peak at∼9 km of half (5.7 g kg−1) of the intensity of
the other IN simulations (∼13 g kg−1). This behavior might
be because ice crystals would accreate and rime in higher
rates, as well as auto-convert, in an environment with greater
amounts of ice crystals, forming aggregates more quicker
than in environments with fewer ice crystals.

The behavior of ice crystals, snow, and aggregates de-
scribed above was also translated into greater amounts of
hail and graupel. S1 resulted in a hail maximum of 15 g kg−1

at t = 46 min, and a graupel maximum of only 1.2 g kg−1

at t = 48 min, while the bacterial simulations (S2, S3, S4)
produced three times more hail (∼45 g kg−1) 8 min earlier.
The production of graupel by S2, S3 and S4 was also higher
than in S1 but decreased as theP. syringaeconcentration in-
creased, giving place to the production of aggregates. The ag-

gregates increased as theP. syringaeconcentration increased
with a maximum of 33 g kg−1 at t = 48 min for S4, 22 g kg−1

at t = 48 min, and 18 g kg−1 at t = 46 min, as shown in Ta-
ble 3 and Fig. 3.

Scenario S6, presenting the BRAMS default scenario (S5)
plus S4 (the highest bacteria concentration), displays similar
results as S4. Some of the hydrometeors presents even higher
concentrations (see Table 2), compared to the previous sim-
ulations. However, the precipitable ice shows a decrease of
less than 5 % compared to S4 simulation. Therefore, it can
be inferred from the above results that even a smaller concen-
trations of IN, at warmer temperatures, would accelerate the
process of generation of hail and aggregates. This accelera-
tion would be due to higher rates of accretion and rimming,
and then auto-conversion, which quickly transform graupel
and snow into hail and aggregates (respectively), decreasing
the amount of graupel and snow inside the cloud. The next
section shows how these changes in ice species affect cloud
electrification.

4 Impact on cloud electrification

As shown in Sect. 2.2, the amount of precipitable ice (grau-
pel and hail) and non-precipitable ice (aggregates, snow and
ice crystals), as well as updraft, are key ingredients for cloud
electrification and lightning production. Table 2 shows that
P. syringaesimulations produced greater amounts of both
total precipitable and non-precipitable ice than S1 and S5.
The highest total precipitable ice was observed in S3 with
940 g m−2, but the other IN simulations had comparable
values. In the case of total non-precipitable mass, S4 pro-
duced the greatest amount (886 g m−2), followed by S3, S2,
and then S5, with not so comparable values (717, 601, and
506 g m−2, respectively).

However, the strength of the updraft also controls cloud
electrification. Stronger updrafts can happen at the same time
as high generation of precipitable and non-precipitable ice
to efficiently promote rebounding collisions between these
species to transfer electric charges. Therefore, Fig. 4 shows
the precipitable ice mass flux (fP), non-precipitable ice mass
flux (fNP) and maximum cloud updraft (wmax) for each 2 min
of simulation. Also, Table 4 shows the maximum value of
these variables during the whole simulation. It can be seen
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Table 4.Maximum precipitable ice mass flux (fP), non-precipitable ice mass flux (fNP), and cloud updraft (w), as well as the total estimated
number of lightning flashes for each simulation. Numbers in parentheses indicate the time step when the maximum occurred.

maximumf P
(kg m s−1)

maximumf NP
(kg s−1)

wmax
(m s−1)

Total number
of flashes
estimated
by D08

Total number
of flashes
estimated
by P92

S1 5.04× 108 (t = 46∗) 0.065×105 (t = 46∗) 19.1 (t = 40∗) 0 0
S2 8.86× 108 (t = 44) 1.27× 105 (t = 44) 23.6 (t = 44) 85 30
S3 8.60× 108 (t = 44) 1.62× 105 (t = 44) 24.1 (t = 44) 85 34
S4 8.14× 108 (t = 42) 2.11× 105 (t = 44) 25.2 (t = 45) 87 37
S5 7.92× 108 (t = 42) 0.925× 105 (t = 44) 21.5 (t = 44) 28 10
S6 9.08× 108 (t = 42) 2.08× 105 (t = 44) 25.5 (t = 42) 87 36

∗ All time steps are given in minutes.

that simulations with IN developed stronger updrafts, with
the one with most ice production (S4), and therefore greatest
latent heat release, having the strongestwmax (25.2 m s−1)

among S2, S3 and S4. Therefore, the lighting flashes esti-
mated only bywmax (P92) produced more total number of
flashes for these simulations that considered bacterial IN: 30,
34, 37 and 36 flashes for S2, S3, S4 and S6, respectively.
Figure 4 shows that these same simulations produced light-
ning during 4 min of simulation (fromt = 42 tot = 46 min).
S2, S3 and S4 produced the maximum updraft att = 44 min,
while S6 produced 2 min earlier with the strongestwmax
(25.5 m s−1) and the larger number of flashes at an individ-
ual model output (21 flashes att = 42 min). S4 kept slightly
higher values ofwmax throughout the simulation, which re-
sulted in a constant lightning flash production (10, 18 and
9 flashes) and then relatively larger total number of flashes
(37). S5 generated flashes only att = 44 min (28 flashes),
while S1 did not present any flashes. Thereby, lightning
flashes by P92 were produced only whenwmax was greater
than 20 m s−1.

For D08 relationship, it can be seen that the simulation
with no ice nuclei (S1) did not produce lightning because of
the very small production of non-precipitable ice mass flux,
6× 103 kg s−1 (Fig. 4 and Table 3), compared to IN simula-
tions that produced 3 orders of magnitude greater than S1.
The low production offNP led to a low production of pre-
cipitable ice particles (e.g., graupel and hail) by rimming
and auto-conversion processes as shown in Sect. 3.1. This
implied a 36 % smallerfP in S1 (5.04× 108 kg m s−1) than
the control run (S5, BRAMS default) (7.92× 108 kg m s−1),
as the maximum updrafts are similar in S1 and S5 (Fig. 3
and Table 4), producing 28 flashes in S5. WhenP. syringae
ice nuclei were included in S2, S3, S4 the production of ice
crystals increased greatly, generating 85, 85 and 87 flashes,
respectively. S6 simulation, although, presents same amount
of flash of S4, 87 flashes in total (Table 4), approximately
3 times higher than BRAMS simulation (S5). Consequently,

the high number of IN, from BRAMS default, acting below
−8◦C, plays a secondary role.

As P92, D08 only showed flash production att = 44 min
in S5, and fromt = 42 to t = 46 min for S2, S3, S4 and
S6. This result highlights the importance ofwmax lightning
production. D08 produced∼2.5 more lightning flashes than
P92 for all simulations. This suggests that both P92 and D08
are suitable for lightning parameterizations, but their rela-
tionships might need to be rescaled for the type of thunder-
storm simulated here. Barthe et al. (2010) showed the need
for scaling several lightning-cloud parameters relations when
applying them to numerical cloud model. They showed that
varying model spatial resolution produced significant varia-
tion among the simulated storm parameters (precipitable ice
mass, ice water path, precipitable and non-precipitable ice
mass fluxes product, updraft volume, maximum vertical ve-
locity, and cloud top height), with the smallest variation for
cloud top height (6 %) and the largest for precipitable and
non-precipitable ice mass fluxes (59 %). Barthe et al. (2010)
showed that this fact impacts greatly the lightning estimation
for weak thunderstorms (less than 10 fl min−1) from storm
parameters based on dynamical parameters, such as mass
fluxes. They also showed that P92 predicts the magnitude of
lightning flash rate very well, but do not predict the observed
trends. D08 on the other hand captured the electrical activity
but missed the magnitude. Unfortunately, for the storm sim-
ulated here we did not have total lightning information and a
scaling study of P92 and D08 was not possible.

5 Conclusions

The results of this work suggest that, the presence of biolog-
ical ice nuclei active at relatively warm temperatures, and in
particular the bacteriumP. syringae, can induce an increase
in cloud ice, which in turn induces an increase of cloud elec-
tricity. From both lightning frequency calculations, D08 and
P92, the simulations S4 and S6 are from 3.1 to 3.7 higher
than the BRAMS default S5; even S2 and S3, with lower

Atmos. Chem. Phys., 12, 5677–5689, 2012 www.atmos-chem-phys.net/12/5677/2012/
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bacterium concentrations, are 3 times higher. It must be clar-
ified, that these simulations deal with small idealized clouds
with short life and involve very simple numerical model-
ing. Therefore, the results of this simple numerical model-
ing emphasize that biological IN or any IN with warm tem-
perature activity (warmer than−8◦C) are relevant for cloud
electricity, as has been suggested previously in the work of
Phillips et al. (2009). Additionally, this work, Phillips et
al. (2009), found that INA can influence significantly the av-
erage number and size of crystals in the clouds; the horizon-
tal cloud coverage, precipitation and radiative properties and
they open questions about whether emissions of IN particles
can be modified by their own effects on clouds and atmo-
spheric conditions. Besides, Michaud et al. (2011) observed
that centers of hailstones contain much more bacteria than
the surrounding air which emphasizes all results.

It must be notified the simulated rain total decrease,
about 8 %, is in agreement with literature such as Levin et
al. (2005).

BRAMS and RAMS default IN concentration seems to
play a secondary role, affecting weakly the total number of
flashes. Future works should consider modifying the default
parameters (−8◦C) to explore deeper convective storms in
other realistic contexts that involve more detailed parame-
terization of the hydrometeor concentrations. Also, a more
detailed study on the relationships between the observed and
simulated storm parameters and microphysics is needed be-
fore further conclusions can be taken from the actual number
lightning flashes produced, as showed by Barthe et al. (2010).

The real biological IN activity inside of clouds is a rather
unknown factor with many implications, including cloud
tops, rainfall amount and cloud albedo as examples, as em-
phasized by Phillips et al. (2009), cited above. Additionally,
there are many other biological materials acting as IN such
as fungal spores, algae, pollen, other bacterial species, etc.
(Morris et al., 2004; Pouleur et al., 1992), that when taken to-
gether may have an even more important potential impacts on
cloud parameters and cloud electricity. Additionally, cloud
electrification, by itself, has many important impacts, among
them, public security and NOx production.
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