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Abstract

We consider the inverse problem of detecting the location and the shape of several
obstacles immersed in a fluid flowing in a larger bounded domain 2 from partial
boundary measurements in the two dimensional case. The fluid flow is governed by
the steady-state Stokes equations. We use a topological sensitivity analysis for the
Kohn-Vogelius functional in order to find the number and the qualitative location of
the objects. Then we explore the numerical possibilities of this approach and also
present a numerical method which combines the topological gradient algorithm with
the classical geometric shape gradient algorithm; this blending method allows to find
the number of objects, their relative location and their approximate shape.

Keywords: Geometric inverse problem, topological sensitivity analysis, topological gra-
dient, shape gradient, Stokes equations, Kohn-Vogelius functional.
AMS Classification: 49Q10, 35R30, 49Q12, 76D55.

1 Introduction

We deal in this work with the inverse problem of determining the number, the position
and the shape of relatively small objects inside a two dimensional fluid. We assume that
the fluid motion is governed by the steady-state Stokes equations. In order to reconstruct
the obstacles, we assume that a Cauchy pair is given on a part of the surface of the fluid,
that is a Dirichlet boundary condition and the measurement of the Cauchy forces. Hence,
the identifiability result of Alvarez et al. [5, Theorem 1.2] implies that this problem could
be seen as the minimisation of a cost functional, which in our case will be a Kohn-Vogelius
type cost functional.

The small size assumption on the objects leads us to perform asymptotic expansions on
the involved functional. For this, we will use the notion of topological gradient which will
determine a criteria in order to minimise the cost functional. The topological sensitivity
analysis consists in studying the variation of a cost functional with respect to the modi-
fication of the topology of the domain, for example when we insert ‘holes’ (or objects) in
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the domain. It was introduced by Schumacher in [43] and Sokolowski et al. in [47] for the
compliance minimisation in linear elasticity.

Topological sensitive analysis related to Stokes equations have been studied in the past
by several authors, especially relevant are the works of Guillaume et al. [29], Maatoug [30],
Amstutz [6] with steady-state Navier-Stokes equations and [7] with generalization for some
non-linear systems and Sid Idris [44] which develops a detailed work in the two-dimensional
case. In all of these works the focus is set to find topological asymptotic expansions for a
general class of functionals where the system satisfies only Dirichlet boundary conditions.

Closer works to our problem have been presented in the past by Ben Abda et al. [10] and
by Caubet et al. [20]. In the first reference they consider a Neumann boundary condition
on the small objects obtaining general results in two and three dimensional cases, with a
complete development of the theory only on the three dimensional case. In the work of
Caubet et al., they deal with the same problem as the one we consider here but only again
on the three-dimensional case. In our two-dimensional case, due to the impossibility to
have an asymptotic expansion of the solution of Stokes equations by means of an exterior
problem (phenomena which is related to the Stokes paradox), we have to approximate it by
means of a different problem. The deduction of this approximation is strongly influenced
by the recent work of Bonnaillie-Noél et al. [11]. Indeed the same problem appears for the
Laplace equation: it is based on the fact that the existence of a solution of the boundary
value problem

—-AV = 0 in R?\w
V = wup(z) on dw (1.1)
V — 0 at infinity

is not guaranteed except when wug(z) = 0. The classical analysis of elliptic equation in
unbounded domain is made in the functional setting of weighted Sobolev spaces. It is
known that has a unique solution in a space containing the constants, hence this
solution is the constant ug(z) which prohibits the condition at infinity if ug(z) # 0. Taking
into account of this, we can define the asymptotic expansion for the Stokes system which
is a crucial part in order to obtain the desired expansion for the functional involved. It is
important to remark that (for a given real number wug(z)) several technical results which
lead to the main result are different to the ones in the three-dimensional setting which
involves additional difficulties to our problem.

From the obtained theoretical results, we present some numerical simulations in order
to confirm and deepen our theoretical results by testing the influence of some parameters
in our algorithm of reconstruction such as the shape and the size of the obstacles. We also
propose an algorithm which joins the topological optimization procedure with the classical
shape optimization method using the previous computation of the shape gradient for the
Kohn-Vogelius functional made by Caubet et al. in [21]. This blending method allows not
only to obtain the number and qualitative location of the objects, moreover it allows to
approximate the shape of this ones. Nevertheless, we precise that the geometrical shape
optimization step will fail if the previous topological step doesn’t give the total number of
objects.

To conclude, we also mention the recent developments on topological sensitivity based
iterative schemes made by Carpio et al. in [I6] [I8, [19]. We also refer to some works
using the level set method by Lesselier et al. in [34, 25, 26]. Combinations of several
shape optimization methods was also recently tested by several authors. Allaire et al.
propose in [3] to couple the classical geometrical shape optimization through the level
set method and the topological gradient in order to minimize the compliance. The same
combination is made for another problem by He et al. in [32]. In [I5], Burger et al. use



also this combination for inverse problems. There, the topological gradient is incorporated
as a source term in the transport Hamilton-Jacobi equation used in the level set method.
Concerning the minimization of the compliance, Pantz et al. propose in [42] an algorithm
using boundary variations, topological derivatives and homogenization methods (without
a level set approach).

Motivations This obstacle inverse problem arises, for example, in mold filling during
which small gas bubbles can be created and trapped inside the material (as it is mentioned
in [I0]) We can also mention the fact that the most common devices used to spot immersed
bodies, such as submarines or banks of fish, are sonars, using acoustic waves: Active sonars
emit acoustic waves (making themselves detectable), while passive sonars only listen (and
can only detect targets that are noisy enough). To overcome those limitations, one want to
design systems imitating the lateral line systems of fish, a sense organ they use to detect
movement and vibration in the surrounding water (as emphasized in [23]).

Organization of the paper The paper is organized as follows. First, we introduce
the adopted notations. Then, in Section |2 we present in details the considered problem
and give the main idea used to study it: we introduce some perturbed domains and the
considered Kohn-Vogelius functional. Section [3|is devoted to the statement of the main
result: we give the topological asymptotic expansion of this functional. In Section [, we
prove the asymptotic expansion of the solution of the considered Stokes problems when
we add small obstacles inside. Then, we use the resulting estimates to prove the main
results by splitting the functional in Section [} We make numerical attempts in Section [6}
We explore the efficiency of this method and point out these limits. Finally we propose a
new algorithm in Section [7] which combines the topological gradient techniques with shape
gradient techniques in order to be able to find the number of objects, their approximate
location and their approximate shape. Technical results needed to justify the expansions
are postponed in appendices.

2 The problem setting

Introduction of the general notations. For a bounded Lipschitz open set Q C R2,
we denote by LP(Q2), W™P(Q) and H*(Q2) the usual Lebesgue and Sobolev spaces. We note
in bold the vectorial functions and spaces: LP(Q2), W"P(Q), H*(2), etc. Moreover, we
denote by W&P(€2) the weighted Sobolev spaces defined in Appendix [B| Definition For
k € N, we denote |-[|; o the norm |[-[|gx gy and ||, o the semi-norm of HY(Q). We also
use the notations ||'||1/2,8Q and ||-H_1/2789 to define respectively the norms ”'||H1/2(8Q) and

[li-1/2(90)-  We represent the duality product between H-Y2(6Q) and HY2(0Q) using
the notation (-, -)5q. Finally, n represents the external unit normal to 92 and we define

the space
L3(Q) := {p e L?(Q), /p = o} :
Q

We here precise that the notation fQ means [, p(x)dz which is the classical Lebesgue inte-
gral. Moreover, we use the notation [, p to denote the boundary integral [, p(z)ds(z),
where ds represents the surface Lebesgue measure on the boundary. The aim is to simplify
the notations when there is no confusion.



Framework. Let Q be a bounded Lipschitz open set of R? containing a Newtonian and
incompressible fluid with coefficient of kinematic viscosity v > 0. Let w C R? a fixed
bounded Lipschitz domain containing the origin. For z € Q and 0 < € << 1, we denote

Wye = 2+ cw.

The aim of this work is to detect some unknown objects included in 2. We assume that
a finite number m™ of obstacles w; . C 2 have to be detected. Moreover, we assume that
they are well separated (that is: @,, e, NW,; ¢, = 0 for all 1 <4, j < m* with ¢ # j) and
have the geometry form

* k * k
W, ep = 2k T EkWg 1<k<m”,

where ¢y is the diameter and wj C R? are bounded Lipschitz domains containing the
origin. The points 27, € 2, 1 < k < m”*, determine the location of the objects. Finally, we
assume that, for all 1 <k <m*, i _ is far from the boundary 0f2.

Let f € H/ 2(09) such that f # 0 satisfying the compatibility condition

mf-n:o. (2.1)

In order to determine the location of the objects, we make a measurement g € HY 20)
on a part O of the exterior boundary 99 with O ¢ 9. Then, we denote w? := J;L, w3, .,
and consider the following overdetermined Stokes problem

—vAu+Vp = 0 in Q\w}
dive = 0 in Q\w?
u = f on 00 (2.2)
u = 0 on Jw!
olu,p)n = g on O C IN.

Here u represents the velocity of the fluid and p the pressure and o(u,p) represents the
stress tensor defined by
o(u,p) == v (Vu+'Vu) — plL.

We assume here that there is no body force and consider the homogeneous Dirichlet bound-
ary conditions on the obstacles, which is the so-called no-slip boundary conditions. Notice
that, if dive = 0 in €2, we have

—vAu + Vp = —div (vD(u)) + Vp = —div (o(u,p)) in Q,
with D(u) := (Vu + 'Vau). Thus we consider the following geometric inverse problem:
Find w! CC Qand a pair (u,p) which satisfy the overdetermined problem (2.2)). (2.3)

To study this inverse problem, we consider two forward problems:

Find (u$,,p5) € H' (Q\wz) x LE(Q\@:) such that

—vAuy, +Vp, = 0 in Q\wz
divuy = 0 in Q\wz (2.4)
uy, = f on 0f)
u, = 0 on Ow,



and

( Find (us,,p5,) € HY(Q\wz) x L2(Q\wz) such that
—vAu5, +Vp3,, = 0 in Q\wz
divuj, = 0 in Q\wz
€ ) (25)
o(u,piyyn = g on O
uy, = f on IQ\O
L uy,, = 0 on Jwe,
where w = (Jj_| Wz ¢, for a finite number m of objects located in z1,...,2y. These

two forward problems are classically well-defined. We refer to [13, 27| for the results
of existence and uniqueness of (u}),p7,). Notice that the compatibility condition (2.1))
associated with Problem is satisfied. The existence and the uniqueness of (u3;, p3,)
is for example detailed in [20, Theorem A.1|. We underline the fact that p3, does not need
to be normalized to be unique due to the Neumann boundary conditions imposed on O.
One can remark that if we coincides with the actual domain w}, then u3, = uj, in Q\w;.
According to this observation, we propose a resolution of the inverse problem of
reconstructing w? based on the minimization of the following Kohn-Vogelius functional

1
FEV (i) 1= [ viD(h) Dl

We then define

Trev(Q\wz) = FLV (uh, ufy).
We can notice that, integrating by parts the expression of ]:fv(u%,uj/[), we get that
FEV(u$),us,) = 1// (f —ujy) - (o(up,pp)n — g). This expression shows that the error

can be expressed by an integral involving only the part of the boundary where we make
the measurement and reveals the coupling of the solutions wvia this functional. Finally, we
can notice that the Dirichlet error is weighted by the Neumann error, and vice versa.

Remark 2.1. In order to guarantee that the inverse problem of finding w? and a pair (u, p)
satisfying has a solution, we have to assume the ezistence of such a w?. This means
that the measurement g is perfect, that is to say without error. Then, according to the
identifiability result [4, Theorem 1.2] proved by Alvarez et al., the domain w} is unique.
Notice that in [{], w? is assumed to have a CH' boundary but we can only assume that it
has a Lipschitz boundary in the Stokes case (see [9, Theorem 2.1]). Hence, if we find w}
such that Jrv(Q\ wk) = 0, then uj, = uj, in Q\ W} , i.e. uj, satisfies and thus
we = w! 1s the real domain.

In the following, for ¢ = 0, we will consider as a convention that wg = ( (instead of
wo = Upeq {2k}, which comes from the definition of w,), and therefore: Qy = Q. Then,
we will denote (u%,p%) € H'(Q) x L3(Q) and (uf,,p%,) € H(Q) x L2(Q) the respective
solutions of the following systems:

Find (u%,p}) € H'(Q) x L3(Q) such that

—vAu), +Vph, = 0 in
div u% =0 in
uy = f on 0f)
and
Find (u9;,p%,) € H'(Q) x L%(Q) such that
—vAul, +Vp), = 0 inQ
divu, = 0 inQ
o(ul;,ply)n = g on O
u, = f on IN\O.



3 The main result

From now on, we consider that we seek a single obstacle w, . := 2z 4 ew, located at a point
z € ). Notice that in the case of several inclusions, we proceed by detecting the objects one
by one. Thus, after detecting a first obstacle w., ,, we work replacing the whole domain €2
by Q\wz, w; (and then we have Ow,, -, C 0 (Q\Wz,.m;) \O) and the results presented below
(in particular the topological derivative) are still valid for a new inclusion w, .. Note that,
the asymptotic expansion of the solution of elliptic boundary value problem in multiply
perforated domains is studied in [12] [36].

3.1 Introduction of the needed functional tools

We recall that the topological sensitivity analysis consists in the study of the variations of
a design functional J with respect to the insertion of a small obstacle w, . at the point
z € Q (with no-slip boundary conditions). The aim is to obtain an asymptotic expansion
of J of the form

T(Q2e) = T(Q) +£(€)0T (2) +0(§(e))  VzeQ, (3.1)
where € > 0, £ is a positive scalar function intended to tend to zero with ¢ and where
Qe = Nz,
with w, ¢ := 2z + ew. We summarize the notations concerning the domains in Figure

O

o0

QZ€

)

Figure 1: The initial domain and the same domain after inclusion of an object

The computation of the topological gradient 6.7 in this work is mainly based on the
paper by Caubet and Dambrine [20] which deals with the presented problem in the three-
dimensional setting. The work of Bonnaillie-Noél and Dambrine [11], which deals with
asymptotic expansions for Laplace equation in a domain with several obstacles, was the
basis for the choice of the approximating problem in the two-dimensional setting. We also
have been inspired strongly by the works of Sid Idris in [44] and [28, 29] (written with
Guillaume), where the authors study topological asymptotic expansions for Laplace and
Stokes equations in two and three dimensions, which provides us several techniques specially
useful for the technical proofs presented in the appendix. Finally, let us point out the works
of Amstutz [6] [7], where the author develops a topological asymptotic expansion for a cost
functional in the context of a fluid governed by the stationary Navier-Stokes equations,
which contribute to understand better the possibilities for the asymptotic expansion of the



solutions for our considered systems. It is important to mention that in all these situations
the problem involves only Dirichlet boundary conditions.

We recall the expression of the fundamental solution (E, P) to the Stokes system in R?
given by

1 T
E(x) = — (—logllz||l+ e, fe , P(r) = ———, 3.2
@) = g Cleglellrate),  P@) = o (32)
with e, = HxH, that is —vAE; + VP; = de;, where E; denotes the 4 column of E,
x
(ej)jz:1 is the canonical basis of R? and 4 is the Dirac distribution.

3.2 The result

The following theorem gives us the expression of the topological gradient of the Kohn-
Vogelius functional Jxv:

Theorem 3.1. For z € (), the functional Jxyv admits the following topological asymptotic
exTPansion

4y 0

Trv (o) — Ty (Q) = _logg(\uD(z)p — |l (2)*) + o (_ 1igg) 7

where ul, € H'(Q) and v, € H'(Q) solve respectively Problems [2.4) and [2.5) with

we = 0 and o(f(e)) is the set of functions g(e) such that lim._ % = 0. Therefore, we
have

€)= s nd Oy (2) = Amul(ub )~ ) )

in the general asymptotic expansion (3.1)).

Remark 3.2. Notice that, contrary to the 3 dimensional case [20, Theorem 3.1] the topo-
logical gradient doesn’t depend on the geometry of w. The formula applies for all shapes
in 2D. This phenomena is closely related to the Stokes paradoz as been pointed in [1, 2, [{4)]
and is coherent with the results obtained by several authors in similar problems, for example
[6, 18, (10, (28, [29).

Remark 3.3. For simplicity in what follows we will work with an origin-centered inclusion,
that means: w,. = woe =: we also consider Q. := Qo .. The procedure for all z € €1 is
ezxactly the same just by taking account the change of variable y = z+¢cx, instead of y = ex
that we will use.

4 Asymptotic expansion of the solution of the Stokes problem

In order to provide an asymptotic expansion of the Kohn-Vogelius functional Jky, we need
first an asymptotic expansion of the solution of the Stokes problems and .

Unlike the three-dimensional case, the two-dimensional problem cannot be approxi-
mated by an ‘exterior problem’, which in general in this case doesn’t have a solution
which vanishes at infinity. This kind of problem has been treated by Bonnaillie-Noél and
Dambrine in [I] for the Laplace equation in the plane: we will follow this procedure in
order to find a suitable approximation for the Stokes problem.

We recall that we here focus on the detection of a single obstacle (see the beginning of
Section . This section is devoted to the proof of the following proposition:



Proposition 4.1. The respective solutions u3, € H'(Q, .) and u5, € H'(Q..) of Prob-
lems (2.4) and (2.5) admit the following asymptotic expansion (with the subscript § = D
and § = N respectively):

1
w5 (a) = uSla) + he(Cile) = Uile) + Opna,y ().
where (Uy, P;) € H'(Q) x L3(Q) solves the following Stokes problem defined in the whole
domain ()
—VAUH—I—VPH = 0 in
divU, = 0 in (4.1)
Uu, = C, on 01},

with he := —~— and

—loge

Cy(z) == —4nvE(x — z)ug(z), (4.1 bis)
where E is the fundamental solution of the Stokes equations in R? given by (3.2)). The
notation Oy (q_ ) (fgs) means that there exist a constant ¢ > 0 (independent of €) and
g1 > 0 such that for all 0 < e < &1

0 c

Huﬁ(x) - u, () — he(Cy(x) — Uh(x))HLQz,s < ng.

We recall that we will detail the proof in the case z = 0 (see Remark [3.3).

4.1 Defining the approximation

As we mentioned above, the approximation should be done in a different setting compared
to the three-dimensional case, following the same strategy as in [IT]. This basically consists
in building ‘a correction term’ to the solution given by E(x — z)ug which has a logarithmic
term and then tends to infinity at infinity and is not of finite energy in R? \ @. Therefore
it has to be considered only in €. To this, we consider the pair (Uy, Py) € H'(Q) x L2(Q2)
solution of Problem and we combine these solutions with unknown scale parameters
a(e) and b(e). Imposing the desired scales to the error function, we will be able to determine
the scale factors a(e) and b(¢) which define completely the approximation for uZ. Here, we
will detail the Dirichlet case, the treatment of Neumann case is analog.

Consider the solution (Up, Pp) € H'(Q) x L(Q) of Problem (4.1)) with § = D. The
idea is to combine this solution and the function C'p to build a proper corrector. To build
this, we search coefficients a(e) and b(e), such that the error r%, defined by:

up(z) = up(x) + a(e) Cp(x) + b(e) Up(z) + ri(z)

is reduced with respect to R, := u$, — u%. Notice that the remainder r%, satisfies:

VAT + Vpre, = 0 in €.
divry, = 0 in Q. (4.2)
ry = —(a(e)+b(e)) Cp(x) on 0N '
rs, = —ul(x) —a(e)Cp(z) —b(e)Up(z)  on duw,

where py< s defined in analogous way with pressure terms, that is

pp(@) = pp(z) — a(e)llp(z) — b(e)Pp(x)

pre () 1=
with IIp(z) := —4rvP(z) - u$(0)..



For z € 092, we have:
rH(z) =0(1) & a(e) + b(e) = o(1),

Let us assume for a while that w is a disk. Then, for x € Jwe, there exists X € 9B(0,1)
such that x = ¢X and we have

r5(z) = 0(1) & —uh(eX) —ale) Cp(eX) — b(e) Up(eX) = o(1),
We can expand the terms U p(eX) and u% (e X) via Taylor developments:
uh(eX) = u)(0) + O(e) and Up(eX) = Up(0) + O(e),
and thus, we get (noticing that O(e) is contained in o(1)):
r5 (i) = o(1) & —ud(0) — a(e) Cp(eX) — b(e) Un(0) = o(1),
where ¢ = 1,2. Therefore, we have the linear system in unknowns (a(e), b(¢)):

{ a(e) +be) = 0
a(e) Cp(eX)+b(e)Up(0) = —u(0).

We easily get that b(¢) = —a(e) which implies:
a(e) (Cp(eX) — Up(0)) = —up(0).

This vectorial equality implies two possible choices for a(e), recalling that Cp(eX) =
—4nvE(eX)uY(0), we get (for 4,7 € {1,2},i # j)

a(s) _ (U'OD(O))Z
c1 (u(0)); —loge - (uh(0)); + c2 (u(0); + (Up(0)):’

where ¢; and ¢y are two positive constants. This leads that a(e) can be expressed as
a(e) = C%Oga for another positive constant denoted by C' in the two possible cases, and
then, we get the following scale:

1 1 1
+0|—— ) =ths4+0 — 0.
—loge (log2 5) <log2 &?) e

It is important to notice, as been pointed in [I1, Remark 2.2|, that this construction is
performed in the case of a disk, where |z| = ¢ for € Ow,. In the general case, w is not a
ball and then log |z| # loge for all z € Jw. and one has to add correctors as performed by
Maz’ya et al. in [37), Section 2.4, p. 60—64]. This correction of loge is of order zero, is then
negligible with respect to the logarithmic term. The linear system in (a(e),b(¢)) remains
unchanged and so h. is still the same rational fraction.

Hence, we approximate u%, by:

up () = up(z) + he(Cp = Up) + rp(2).
Analogously, we approximate uj, by:

uis () = ul (z) + he(Crr — Uny) + r5(2).



4.2 An explicit bound of r}, and rj, with respect to ¢

The Dirichlet case Notice that, in this case, the rest r%, satisfies:

VAT, +Vpe = 0 in Q.
divry, = 0 in Q.
r;, = 0 on 0f) (4.3)
re, = —u%, —h(Cp—-Up) ondw..

The key point to obtain a bound of 7%, is the following lemma. We postpone its
technical proof in Appendix [C]

Lemma 4.2. Let ¢ > 0. For ¢ € H1/2(8wz’€), P c H1/2(8Q), let (ve,qe) € Hl(Qz’E) X
L3(2.c) be the solution of the problem

—vAv.+Vg = 0 in Q.
Mo e mow (40
Ve = @ on 0w, .
There exists a constant ¢ > 0 (independent of €) such that:
[vell10,. <c (12111 /2,00 + lleEX)l1/2,00) - (4.5)

Using this lemma, we get:

IrH 0. < ¢ llub(eX) +ha(CpeX) = UpEeX))]|, ., -

Notice that:
ub(eX) + he(Cp(eX) — Up(eX))
[(log(e]| X|1) — er'er) - up(0) = Up(eX))]

ul (ex) + “Toge

= up(eX) — up(0) + [(log (| X1)) — e'er) - up(0) — Up(eX))

—loge

[(log (X)) — er'er) - up(0) — Up(eX)).

=eVaud, (¢,
€ uD(C)+—oge

We have used a Taylor development of u% in the last equality and (, is some point in the
line which joins 0 and €X. Now, recalling that VuOD is uniformly bounded and using the
boundness of U p and the other terms by their definition, we get that:

C

1
Irblho. =0 ().
which concludes the proof of Proposition .1 with § = D.

[y (eX) + he(Cp(eX) = Up(eX))ll1j2.00 < ce+ (4.6)

c
—loge = —loge’

Therefore:
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The Neumann case In this case, the rest r§, satisfies:

—vAr§, + Vpre, = 0 in Q.
divry, = 0 in Q.
ryy = 0 on 90\ O (4.7)
o(ryp,prs,)n = @[U(CM, Iy )n—o(Up, Py)n]  on O
re; = —ul, —h(Cy—Up) on Owe,

where the pressure associated to C'js is defined explicitly by the expression
My (z) == —4nvP(z) - ul,(0). (4.8)

In order to be able to bound this rest, we use the following lemma. Its technical proof is
postponed in Appendix [D]

Lemma 4.3. Let ¢ > 0. For vy € HY/2(0), ® ¢ H/2(00\0) and ¢ € HY?(dw, ), let
(ve,qe) € HY(Q,2) x L2(Q,.) be the solution of the Stokes problem

—vAv. + Vg, 0 in Q.
dive., = 0 in Q..
o(ve,ge)n = P on O (4.9)
v. = ® on I0\O
v = on Odw, .

There exists a constant ¢ > 0 (independent of €) such that:

loelha, < ¢ (1911120 + 1®ll2 006 + l9EX) 1 /200) - (4.10)

Thanks to this lemma, we know that there exists a constant ¢ > 0 independent of ¢,
such that:

1
—loge

il < e (= (I(Car Tl _yao + o s, Pl o)
+ || ~ud (eX) = hao(Cr(eX) — UM(EX))HI/W) . (4.11)
We have
[o(Crr, M)y 50 < el Culionpeo1) and [[o(Unr, Pun|l_y 00 < cdlUnmlig.. (4.12)

In fact, for all ¢ € HY/2(0) and all n € H'(Q\ B(0,1)), extension of ¢ such that Moo =

0, we have

(o(Cum, Iy)n, ¢>71/2,1/2,o = V/Q\B(O 3 D(Cum):V(n) < CHD(CM)HO,Q\B(OJ) H’7”1,Q\B(o,1)

and, choosing 1 such that |||l o\ p(o,1) = |#ll1/2,0, We obtain that

lo(Car, ar)nl[y 5 0 < cl|D(Cu)lo,0\p(0,1) = /CumlLo\B0,1)-

The same procedure for Uy in 2. instead of Q\B(0, 1) gives the bound for o(U pr, Par).
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Remark 4.4. Notice that we need to consider the set Q\ B(0,1) for o(Cus, )0 in order
to obtain a bound independent of : we need to consider a set sufficiently away from zero,

due to the definition of Cps. For Uy, we don’t have this problem because it is defined in
the whole €.

Now we need estimates for the functions Uj,; and Cj;. Notice that, from the well
posedness of the problem (4.1]) with § = N, we have:

Ul o < cllCurlliyz.o0-

But Cy/(x) = —4nvE(x) ug(O) which is bounded if z is away from zero. The same applies
for the derivative of Cps because VC'yr(xz) = O(1/r). Therefore, on dw, we have |Cps(x)| <
cand |[VCy(x)| < ¢, and then:

[Unlly 0 < e

For Cp we will need a bound for the term |Casly0\p(o,1), for this, first notice that
|IVC| = O(1/r) and let R big enough such that @ C B(0, R), therefore:

1/2
1 1/2
Cuy <|Cwm <c / dx =c(2rInR =c.
CumlionBo,1) < 1CMlLBO,RNB(O,1) < so.RB0. T2 ) ( )

We finally get:
UMl < cand |CM|1,Q\B(0,1) <ec

Then, from (4.12)),

lo(Cars )|y g0 < cand (lo(Uar, Par)n|_y 0 < c.

The other term of (4.11)) is treated identically as in the Dirichlet case (see (4.6))) and

therefore, we get:
c

l75] < ¢ + ce +
M1, —10g€

< )
—loge = —loge
which concludes the proof of Proposition [£.1] with §j = N.

5 Proof of Theorem [3.1]

We recall that we will detail the proof only for the case of an origin-centered inclusion, i.e.
z =0 (see Remark [3.3).
5.1 A preliminary lemma

First we need an estimate of the norm [|-[|; 5 o, of an uniformly bounded function. Here
[[[l1 /2,6, has to be seen as the trace norm

11 /2.0, = inf { ooy w € HY(O\@20), wjan . = 1}

Lemma 5.1. Let e € (0,1/2). If u € HY(Q) is such that its restriction to @y (i.e. w. for
e =1) is C1, then there exists a constant ¢ > 0 independent of € such that

K IFTeaey

C

u < —.
H ||1/2,8wg—\/Tg6

12



Proof. From Theorem there exists a constant ¢ > 0 independent of € such that

1/2

B 1 ‘U(Jf') - u(y)\2
u <ce V2 = s +c // — > ds(x)ds(y .
lelly /2,00 \/ngﬂ 2 (o) dwexowe |z —yl* N

Since wu is uniformly bounded on Ow,, we use the change of variables y = ex to prove that
there exists a constant ¢ > 0 independent of € such that

Il L2y, < c'/2.

Moreover, using the changes of variables x = ¢X and y = €Y, the fact that u(eX) =
u(0) + eV (u)((x) X, Cx € we and u(z +€Y) = u(z) + eV(u)((y)Y, G € we (Cx and (y
are some points in the lines which join 0 to €éX and €Y respectively due to a Taylor
expansion), there exists ¢ > 0 independent of ¢ such that

9 1/2
( /] lel) = wly)l g, >ds<y>>
Bwe X Duwe !m —y?

Yy 9 1/2
= <//a » €2|5(V(u)(C:2)|))(( _Z(F)(CY)YN ds(:c)ds(?/)> < ce.

Therefore, we get:

fullypn, <ce V22 e S
/200 = V-loge ~ V-loge
O
5.2 Splitting the variations of the objective
Now, we turn our attention to the Kohn-Vogelius functional given by
1
Tiv() = 5v [ [Dlup) - Dl )
We first recall the following decomposition:
Lemma 5.2. We have
Irkv(Qe) — Trv(2) = Ap + A, (5.1)

where
Ap = y/ D(up — uOD) :D(up — uOD)
+v [ D@ —ud): D) - 1v / D)
Qe We

and .
Av = [ oty — udporhy —#8on) -uly - 5v [ PSP
Owe We

Proof. We integrate by parts and use the conditions satisfied by (u5,, p5,), (uS;, pis)s (ud, p%)
and (u,,p%,) to obtain this decomposition. For details see [20, Lemma 5.2|. O

13



5.3 Asymptotic expansion of A,

We follow here a similar strategy as the one used in the 3D case detailed for example in [20],
in contrast to that work we rely on the Stokes fundamental solution properties and the
definition of the approximation problem instead of single layer formulas present in the 3D
case. We know using elliptic regularity that Vu?w is uniformly bounded on w.. Thus

- ,,/ D(ul))? < c/ e2 = 0(e%). (5.2)
We recall that:

(@) = uly (@) — uly (@) = he(Car(z) — Un())
prs, (@) = pas(x) = Py (@) = he(Tar(z) — Par(x)),

where (U 7, Pyy) € HY(Q) x LE(Q) solves [@.1)), C )y is given by (4.1 bis)) (with § = N) and
IT,s is given by (4.8). Then the following equality holds

/8 [ (uly — wly, Py — pO)m] - uly =
We

/8 [U(T’?M,prij)n] ~u%4+h5/a [O’(CM*UM,HM*PM)D] ’u,?\/[ (5.3)

Let us first focus on the first term in the right-hand side of (5.3). Using the same argument
as the one used in the deduction of (4.12]), we get:

lo(rirprnl|_, 5, < D) log. - (5.4)
Therefore, using the explicit upper bound of Hu%”l /2.0 given by Lemma we have

/ [o(r5ypos )] - ul wQillmn < S .-
- i 200 = Toge M MlLe:

Then, using the explicit upper bound of [|ry,[|, o given by Proposition we obtain

< HU(T%,P@)HH_UQ,M

1
€ - 9 | < ¢ _ -
/aws [o(rha P Jm] - v | < log®/% e X <(—10g€)3/2> ' (55)
For the other term
/a [0(Cr — Un Iy — Pay)n] -y = : [0(Car, ar)n] - ufy, — : [0(Unr, Pa)n]-ufy,

we study each term separately. For this recall that: u9,(z) = u3,(0)+eVul,(¢;), with ¢, €
we. Then:

/ (0(Car, Ty)] - uly = / (0(Car, Tyr)m] - () — )y (0) + uly (0))
Owe Owe

= & [ oo Tun]- Vuly () + /8 (0(Cr, yr)m] - ud (0)

Owe

= 0@+ / (0/(C s, ar)m] - s (0).

Owe

14



We get the last equality because Vu?w is uniformly bounded and:

/ [U(CM,HM)H] = / div (U(CM,HM)) = —/ (—I/ACM + VHM) = —471'1/’11,9\4(0)
Owe We

We

because of the definition of the pair (Cps, ) = (—4rvEuY,(0), —47nvP-uf,(0)) in terms
of the fundamental solution (E, P) of Stokes equation. Analogously:

| @ Py =0+ [ 0@ Paynl -y (0)
because of the definition of the pair (U s, Ppr), we get:

/ng [0(U a1, Pyr)n] :/ div (U, Par) = 0.

We

Therefore:
4y €
h Cy — Uy, Ty — P, ul, = G0 +0 : 5.6
[ (@ U T = el -y = PG OF 0 (<) 69
Gathering (5.2)), (5.5) and (5.6)), we obtain
4my 1
Ay = 9,(0)? : 5.7
= e O o () 5.7
5.4 Asymptotic expansion of Ap
We recall that
1 1
Ap = oV ; D(u5 — ul) : D(us — ul) + v A D(u5 — ul) : D(uh) — 21// ID(u)?
5 e We
and that:

5 (2) = up(z) — up(z) — he(Cp(zx) — Up(x))
prs, (@) = pp(x) = Pp(2) — he(lp(2) — Pp(x)),

where (Up, Pp) € HY(Q) x LE() solves ([&.1)), Cp is given by (@1 bis)) (with § = D and
z = 0) and the pressure associated to C'p is defined explicitly by the expression

Mp(z) := —4rvP(z) - u)(0).

Proceeding as in the previous section we prove that
02 2
—5v | [D(up)|” = 0().
We

Moreover, using Green’s formula, we have

v [ D(us, — ud):D(ud) = / (o(d, p)n) - (uy — ul)
Q. Owe
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1
Now, let us study ol D(u$, — ul) : D(us, — ul). Using Green’s formula
Qe

v [ D@, —ud)fP =2 / [o(uS — ub, p5 — pb)n] - (u — ul)
Qe Owe

:_2/3 [U(’l"%,pr%)n] -u%—th/a [O'(CD—UD,HD—PD)H]-’U,%.

We

Proceeding as in the previous section (see inequality (5.5))), we use an inequality similar
to (5.4), the asymptotic expansion of u%, given by Proposition and Lemmato obtain

< clludllpow 750 € .
y RYS (—10g5)3/2

/8 [a(r%,pr%)n] . uOD
We

For the other term, we do similar computations as in Aj; to prove that
/ 0(Cp — Up,Tlp — Pp)n] - 6 = — 4z (0) + O(e).
Owe

Therefore
47y

1
Ap = ———u%(0)? : 5.8
b= e b OF +o =) (5:5)

5.5 Conclusion of the proof: asymptotic expansion of Jxy

Gathering (5.1)), (5.7) and (5.8), we conclude the proof of Theorem

4y 0

(WO - @) +o (=2} 659

Tkv(Qe) = Trv(Q) =

—loge

6 Numerical Simulations

6.1 Framework of the numerical simulations

The use of the topological derivative aims to give us the number of inclusions and their qual-
itative location. To make the numerical simulations presented here, we use a P1b-P1 finite
elements discretization to solve the Stokes equations (12.4)) and . The framework is the
following: the exterior boundary is assumed to be the rectangle [—0.5,0.5] x [—0.25,0.25].
Except when mentioned, the measurement is assumed to be made on all the faces except
on the one given by y = 0.25. We consider the exterior Dirichlet boundary condition

(1)

In order to have a suitable pair (measure g, domain w*), we use a synthetic data: we
fix a shape w* (more precisely a finite number of obstacles wj,...,w,), solve the Stokes
problem in Q\w* using another finite elements method (here a P2-P1 finite elements
discretization) and extract the measurement g by computing o(wu,p)n on O.

In the practical simulations that we present, we add circular objects. In order to
determine the radius of these spheres, we use a thresholding method. For an iteration k,

it consists in determining the minimum argument P* of the topological gradient § 7xy in
0\ (Uf_, @) and in defining the set 2 of the points P € 0\ (U}, @) such that
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Then we fix a minimum radius 7y, := 0.01 and we define the radius of the k™ sphere by
7L = max (T‘min,Inil’l(|:13p—l‘]3*|,|yp—yp*|)> . (6.1)
Pe»

Notice that this method obviously depends on the mesh.
We use the classical topological gradient algorithm (see for example [22], 29] [3T],[6]) that
we recall here for reader’s convenience:

Algorithm

1. fix an initial shape wg = @), a maximum number of iterations M and set i = 1 and
k=0,

2. solve Problems (2.4 and ([2.5) in Q\ (U?:o aTj),

3

compute the topological gradient 6 7xy using Formula (5.9), i.e.

§Twcv (P) = 4mv (\u%(z)F - ‘u?w(z)}Z) Pe\||

J

k
wi |

=0

4. seek Pf,, := argmin (6JKV(P), Pe\ (U;?:O @))
if || Py, — Pjo|| < migr + 7o +0.01 for jo € {1,...,k}, where rj, is the radius of wj,
and 71 is defined by , then r;, = 1.1 xrj,, get back to the step |2, and i <—i+1
while ¢ < M,

6. set wgr1 = B(P; 1, Tk+1), where rg g is defined by ,

7. while ¢ < M, get back to the step[2 i < ¢+ 1 and k + k + 1.

We add to this algorithm a stop test (in addition of the maximum number of iterations).
In every iteration, we compute the functional Jxy . This non-negative functional has to
decrease at each iteration. Thus, we stop our implementation when it is not the case, 7.e.
when Jxy (Q\ <Ufié FJ)) > Jkv (Q\ (U?:o FJ))

Notice that with this algorithm, we add only one object at each iteration. This method
can be slower than the one proposed by Carpio et al. in [I7]: they can add several obsta-
cles simultaneously adding points where the topological derivative is large and negative,
selecting well calibrated thresholds. The same authors in [16] detailed this approach: they
introduce a non-monotone scheme that allows to add and remove points, to create and
destroy contours at each stage and even to make holes inside an object. However, in our
case, adding only one object at each iteration seems to be more appropriate because other-
wise objects can be added wrongly. Moreover, notice that step [5] comes to the assumption
that the objects are well separated. Finally, since we assumed that the obstacles are far
away from the exterior boundary, we have to take away the added objects on it. Then, if
the minimum of the topological gradient is on the exterior boundary, we push the added
inclusion inside with a depth 0.005 in the rectangular cases. In origin-centered circular
domain we push the added inclusion inside in a quantity proportional to the point, i.e. if
the detected point is (z*, y*) we force it to be (n-z*,n - y*) where n is usually 0.95 or 0.9.

6.2 First simulations

First we want to detect three circles wj, w3 and w3 centered respectively in (0.475, —0.235),
(—0.475,—0.225) and (0.470,0.150) (i.e. near from the exterior boundary) with shared
radius 7* = 0.013. The detection is quite efficient (see Figure . Indeed we detect three
objects with shared radius » = 0.01 for wj and w3 and r = 0.015 for w], we summarized
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Exact Shape Final Iteration (8)
o PR
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Figure 2: Detection of w}, wj and w3

Table 1: Detection of w}, w; and w3

actual objects (0.475, -0.235) | (-0.475, -0.225) | (0.470, 0.150)
approximate objects || (0.484, -0.234) | (-0.485, -0.235) | (0.485, 0.166)

relative error
llcreal — CGP:DH/HCTeal”

0.0171 0.0269 0.0325

1600  Kohn-Vogelius functional

Figure 3: Evolution of the functional Jky during the detection of wj, w3 and w;.

the results in Table [Il Here, we stop the algorithm because of the functional increases as
we can see in Figure [3]

Notice that some iterations are being made just to adjust the size of a detected object.
We can also remark that the values of the cost functional are still relatively high and this
refers to the fact that, up to our knowledge, there does not exist a theoretical result of
convergence of this algorithm yet.

In this first simulation, the objects are very far away from each other. But what happens
when the obstacles are close from each other? Figure [4] shows that the detection of close
objects is efficient if the distance between the obstacles is big enough. Indeed, we want to
detect three circles w}, w? and w§ centered respectively in (—0.475, —0.225), (0.470, 0.100)
and (0.470,0.130) with shared radius r* = 0.01. We obtain just two circles with shared
radius 7 = 0.01 as summarized in Table[2l However if we increase the distance of the near
circles enough, considering now, for example, the circle wg,,, centered at (0.470,0.205) we
get an efficient detection of the three circles, as we summarize in Figure [5| and Table
The distance needed for an efficient ‘differentiation’ between the objects is relatively high:
the required distance in this case is about 27,;,.

Now the question we asked is: can we detect other shapes than spheres? Thus, we want
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Figure 4: Detection of w}, wf and wg
Table 2: Detection of w}, wi and wg
actual objects (-0.475, -0.225) | (0.470, 0.100) | (0.470, 0.130)
approximate objects || (-0.482, -0.235) | (0.480, 0.140) | (0.480, 0.140)
relative error
0.0180 0.0858 0.0290
[ereal — Cappll/l|¢reatl
Exact Shape Final Iteration (5)
W s e S M R AR RN
o 7 NN RN VANAN VA VATATAVI NN A e 020K 2 AN Y] RN (AN AT
%) NS 55 i : \ %\/\Iﬂ\v i
o SESSES A s X Sk,
> o 2 > 0 -

Figure 5: Detection of w}, wi and wg,,

to detect objects with different shapes: we explore two interesting examples, the first one is
the detection of several squares: there are simply defined by their side a = 0.013, and their
center (the squares have their sides parallel to the axis). So we define the square w3 centered
in (0.475,—0.225) the square w§ centered in (—0.475, —0.225) and the square wg centered
in (0.470,0.150). We obtain Figure [6} a circle centered in (0.485, —0.235) one centered in
(—0.482, —0.235) and one centered in (0.485,0.155) with shared radius r» = 0.01.

Exact Shape Final Iteration (3)
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Figure 6: Detection of w3, wg and wg
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Table 3: Detection of w}, ws and wg,,

actual objects (-0.475, -0.225) | (0.470, 0.100) | (0.470, 0.205)
approximate objects || (-0.480, -0.235) | (0.482, 0.105) | (0.485, 0.210)
relative error

lcreal — Capp”/”CrealH

0.0213 0.0271 0.0308

The next example deals with a more complex geometry, we have to detect a circle wj,
and a non convex object w}; composed by several circle arcs as a boundary. The algorithm
is capable to detect both objects and increase the radio of the approximating ball for the
non convex object in order to cover it properly. The results are adjoint in Figure [7]

ion (19)
o

Figure 7: Detection of wj, and wj;

In conclusion of these first simulations, this method permits to give us the number of
objects we have to determine and their qualitative location if they are separated enough.
Moreover, it is efficient to detect different types of shapes, including objects with corners,
or even non convex obstacles, in the sense that this topological algorithm is able not only
to find the number and relative location of this objects, it is also able to determine their
‘relative size’ (with respect to its topological set diameter, for example).

6.3 Influence of the distance to the location of measurements

As been pointed out in [20] in the 3 dimensional case, the distance to the location of
measurements is fundamental in order to get a good detection of the objects. In the
following table [d we notice that, when we move the object away from the boundary of
measurements, we get a worse estimate of their location, and in a extreme case a completely
wrong detection: more objects than the expected ones. This simple example shows that
in our case we have the same problem as in 3-dimensional case: when we try to detect
an object which is ‘far away’ from the boundary, the detection tends to locate it near
the boundary (one of the coordinates is correctly estimated) but, as the distance increase,
we get some problematic behavior, as we see in our example when the algorithm declares
more objects than the real ones. This phenomenon of bad detection can be explained by
the regularizing behavior of the Stokes equations (which is related to the behavior of the
fundamental solution (3.2))). We emphasize this difficulty of detection pointing out that the
functional Jky and its topological gradient are less sensitive to the addition of obstacles
when they are far away from the exterior boundary.
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Table 4: Detection when we move away from boundary

real object approximation relative error
[ereat — Cappll/l|¢reat |
(0.475, 0.220) || (0.485, 0.223) 0.0199
(0.435, 0.180) || (0.480, 0.184) 0.0960
(0.395, 0.140) || (0.480, 0.144) 0.2031
(0.355, 0.100) || (0.470, 0.100) 0.3118
(0.300, 0.050) 2 objects no value

6.4 Influence of the size of the objects

We now want to study how the size of an object (or several objects) modifies the quality
of the detection given by our algorithm. In order to do that, we start by testing how is the
detection of a single circle while we increase the radius. Notice that we consider the circle
near to the boundary in order to get the best possible approximation as we have seen in
the previous section. The following table [§] resumes this first test.

Table 5: Detection when we increase the size of the object

real object

approximation

center rel. error
llcreal — capp”/”crealu

radio rel. error

’Treal - rapp|/rreal

(0.475, 0.225), r=0.013 || (0.485, 0.220), r—0.010 0.0213 0.2308
(0.470, 0.220), r—0.030 || (0.469, 0.219), r—0.025 0.0027 0.1667
(0.450, 0.200), r=0.050 || (0.449, 0.199), r—0.045 0.0029 0.1000
(0.420, 0.160), r—0.080 || (0.439, 0.189), r—0.055 0.0771 0.3125

From this we can notice that, when the object is relatively small, the detection is quite
efficient, but the quality is decreasing when the object becomes ‘too big’. Notice that the
main error is linked with the size of the approximation object, and not with their relative

position.

A more extreme example is putting a ‘very big sized’ object. In that case, which can
be seen in Figure [§] we notice that the detection is completely wrong: we get an incorrect
estimate of the number of objects.

Exact Shape
B

Final Iteration (19)
O

Figure 8: Bad Detection for a ‘very big sized’ object
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Interesting results we get when we introduce several objects with higher size, as we
can see in Figure [0} the coordinate location is relatively good, but the size approximation
tends to stuck in one of the objects. The algorithm choses one of the objects in order to

Figure 9: Detection of several ‘big sized’ objects

adjust its size on each iteration.

We can conclude that the detection of the objects depends strongly on the number of
them and the size of them. If we are trying to detect a single object we get a reasonable
tolerance on the size of the object in order to get a good estimates of their position and
size, and only ‘big objects’ are badly detected. In the case of several objects, the algorithm
tends to predict their relative location but only the size of one object is improved between
iterations.

6.5 Simulations with noisy data

We now want to study how robust is our algorithm in presence of noisy data. For this, we
decompose the measurement g = g1e; + goea (where (eq, e2) is the canonical basis of R?)
and we consider the following noisy versions of g; and go:

92112 (0)

lg1llr20)
T Te— o
HU2HL2(0)

up and g9 :=go+
HU1HL2(0)

gl =g1+o U9,

where wuj,ug are random variables given by an uniform distribution in [0,1) and o > 0
is a scaling parameter. Notice that this definition implies that the data ¢g; and go are
contaminated by some relative error of amplitude o in L?(0O). Then, the noisy data will
be:

g° =gie1+gsea.

For this test, we consider the same domain 2 and and the same measure region O as in
the previous ones and the objects are the circles or radius » = 0.015 centered in (0, —0.230),
(—0.350, —0.230) and (0.470,0.150). The results are presented in table [6]

From this table we can observe that our algorithm is able to detect with precision the
number and relative position of several small obstacles near the boundary O where the
measurements are taken, when the boundary data g is contaminated with a moderated
amount of noise. When the boundary data contains a higher level of noise, the relative
position becomes less precise and finally the algorithm detects an incorrect number of
obstacles and therefore the detection becomes completely wrong.
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Table 6: Detection when we introduce noisy data

Noise Level real objects approximations centers radius
rel. errors || rel. errors
(0.350, -0.230), r=0.013 | (0.350, -0.232), r=0.011 0.0048 0.1538
oc=0% (-0.350, -0.230), r=0.013 || (-0.355, -0.231), r=0.013 0.0122 0.0000
(0.470, 0.150), r=0.013 (0.480, 0.152), r=0.011 0.0207 0.1538
(0.350, -0.230), r=0.013 || (0.350, -0.234), r=0.012 0.0096 0.0769
oc=5% (-0.350, -0.230), r=0.013 || (-0.357, -0.234), r=0.012 0.0193 0.0769
(0.470, 0.150), r=0.013 (0.483, 0.153), r=0.010 0.0270 0.2308
(0.350, -0.230), r=0.013 || (0.350, -0.235), r=0.010 0.0119 0.2308
oc=15% (-0.350, -0.230), r=0.013 || (-0.358, -0.235), r=0.010 0.0225 0.2308
(0.470, 0.150), r=0.013 (0.485, 0.153), r=0.010 0.0310 0.2308
(0.350, -0.230), r=0.013 || (0.350, -0.235), r=0.010 0.0119 0.2308
o=25% (-0.350, -0.230), r=0.013 || (-0.358, -0.235), r=0.010 0.0225 0.2308
(0.470, 0.150), r=0.013 (0.485, -0.026), r=0.010 0.3580 0.2308
(0.350, -0.230), r=0.013
o=30% (-0.350, -0.230), r=0.013 4 objects found no value | no value
(0.470, 0.150), r=0.013

7 A blending method which combines the topological and
geometrical shape optimization algorithms

The previous numerical simulations show that, using the topological gradient algorithm,
one can detect the number of objects and their qualitative location but we do not have
informations about the shapes of the objects. Hence it can provide initial shapes for an
optimization method based on the boundary variation method for which we have to know
the number of connected objects we have to reconstruct (see [2I]). We present here a
combination of these two approaches in order to find the number of objects, their locations
and their shapes.

As mentioned in the introduction, combinations of several shape optimization methods
was recently tested by several authors. The most of them used the level set method
(see [3, B2], 15]). We also mention the algorithm proposed by Pantz et al. in [42] which
uses boundary variations, topological derivatives and homogenization methods. We here
present an algorithm only based on the classical shape gradient and the topological gradient,
without using the level set method or some homogenization methods.

We first recall some theoretical results concerning the computation of the shape deriva-
tive of the Kohn-Vogelius functional (see [21] for details). We precise that, in this part,
in order to simplify the notation, we will not use the index ©: hence we will use w = we,
up = uy and upy = uj,.

7.1 Shape derivative of the Kohn-Vogelius functional

Let dy > 0 fixed (small). We define Oy, the set of all open subsets w of  with a C1:!
boundary such that d(z,09) > dy for all z € w and such that Q\@w is connected. The
set Oy, is referred as the set of admissible geometries. We also define {24, an open set with
a C'*° boundary such that

{z € Q; d(z,09Q) > do/2} C Qq, C {z € Q; d(z,00) > dy/3}.
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To define the shape derivatives, we will use the velocity method introduced by Murat and
Simon in [39]. To this end, we need to introduce the space of admissible deformations

U := {6 € W>(RY); Supp 6 C Qy, } .

For details concerning the differentiation with respect to the domain, we refer to the papers
of Simon [45], [46] and the books of Henrot and Pierre [33] and of Sokotowski and Zolésio [4§].

We consider a domain w € Oy,. Then, we have the following proposition (see [21I]
Proposition 2]):

Proposition 7.1 (First order shape derivative of the functional). For V € U, the Kohn-
Vogelius cost functional Jiy is differentiable at w in the direction V' with

1
DIr( @)V == [ (otw.)n) - dwun(V-w) + 30 [ D@ (vVem), (1)
ow ow
where (w, q) is defined by
w:=UuUp — Uy and q:=DPp—PM-

Moreover, Proposition 4 in [21] explains the difficulties encountered to solve numer-
ically this problem. Indeed, the gradient has not a uniform sensitivity with respect to
the deformation direction. Hence, since the problem is severely ill-posed, we need some
regularization methods to solve it numerically, for example by adding to the functional
a penalization in terms of the perimeter (see [14] or [24]). Here we choose to make a
parametric regularization using a parametric model of shape variations.

7.2 Numerical simulations
7.2.1 Framework for the numerical simulations

We follow the same strategy than in [2I] that we recall for readers convenience. We
restrict ourselves to star-shaped domains and use polar coordinates for parametrization:
the boundary dw of the object can be then parametrized by

O = {( Zj ) +r<e)(‘;§fz>,ee [O,QW)},

where zg,y9 € R and where r is a C1! function, 27-periodic and without double point.
Taking into account of the ill-posedness of the problem, we approximate the polar radius r
by its truncated Fourier series

N
rar(0) == ad) + Z ay cos(k6) + by sin(k0),
k=1

for the numerical simulations. Indeed this regularization by projection permits to remove
high frequencies generated by cos(kf) and sin(kf) for k >> 1, for which the functional is
degenerated.

Then, the unknown shape is entirely defined by the coefficients (a;,b;). Hence, for
k=1,...,N, the corresponding deformation directions are respectively,

V=V, = < é > Vo=V = ( (1’ > V3(8) == Vg, (0) := ( cosf >

sin 6
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cos

sin @ sin 0

Vakial0):=V i 6) mcos(ht)  omg) ). Varsa®)= Vi, 0)=sini6) ( Sovp ).

0 € [0,27). The gradient is then computed component by component using its characteri-

zation (see Proposition formula ([7.1))):
(VJKV(Q\w))k = DJrv(Q\@) - Vi, k=1,...,2N +3.
This equality is simply that

lim JKv((I + th)(Q\w)) — JK\/(Q\@)
t—0 t

=DJgy (W) V.

7.2.2 Algorithm

The first step is the use of the previous topological gradient algorithm described in Sec-
tion [6.1] It permits to obtain the number of objects and their qualitative location which
represents an initial shape wg for a reconstruction using a boundary variation method.
Then, the geometrical optimization method used for the numerical simulation is here the
classical gradient algorithm with a line search (using the Wolfe conditions: see for example
[40, eq. (3.6) page 34]):

Algorithm

1. fix a number of iterations M and take the initial shape wp (which can have several
connected components) given by the previous topological algorithm,

solve problems and with we = w;,

extract Vup, Vupn, pp and pys on Ow; and compute VJgy (Q\w;) using formula ,
use the Wolfe conditions to compute a satisfying step length ay;,

move the coefficients associated to the shape: wiy1 = w; — ;VJgy (w;),

get back to the step 2| while i < M.

> o w0

We precise that we here use the adaptive method described in |21, Section 4.3]. It con-
sists in increasing gradually the number of parameters during the algorithm to a fixed final
number of parameters. For example, if we want to work with nineteen parameters (which
will be the case here), we begin by working with two parameters during five iterations,
then with three parameters (we add the radius) during five more iterations, and then we
add two search parameters every fifteen iterations. The algorithm is then the same than
the one described above only replacing step [f| by

wi+1(1 : m) = wi(l : m) - ozz-VJKv(wi)(l : m),

where w;(1 : m) represents the m first coefficients parametrizing the shape w; (the same
notation holds for VJgy (2 \ @;)(1 : m)). The number m grows to the fixed final number
of parameters following the procedure described previously.

To finish, we precise that we use the finite elements library MELINA (see [35]) to make
this geometrical shape optimization part.

7.2.3 Numerical simulations

The framework is the following: we assume the kinematic viscosity v is equal to 1, the
exterior boundary is assumed to be the unit circle centered at the origin and we consider
the exterior Dirichlet boundary condition

() {( 2 ) eman).
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where n = (ny, ng) is the exterior unit normal. Notice that f is such that the compatibility
condition is satisfied. We assume that we make the measurement on the whole
disk 0€2 except the lower right quadrant. Here, we want to detect two squares wj, and wis
centered respectively at (—0.6, 0.3) and (0.6, 0.3) with a distance between the center and
the vertices equal to 0.2.

The first step, which is the topological approach, leads to two circles of radius 0.15
centered respectively at (—0.573, 0.328) and (0.533, 0.328) (see the ‘initial shape’ in Fig-
ure . Since the real objects are “big”, we impose here ryi, = 0.15 in the topological
algorithm (see (6.1])). This means that, practically, we assume that we know the character-
istic size of the objects, i.e. if the objects are small or big. Then, the shape optimization
algorithm leads to a good approximation of the shapes, at least for one of the obstacle
(see Figure . We also underline the fact that, after the topological step, the cost of

ext. bound.
————— exact shape

-~~~ initial shape
19 param. adapt.

08+

06+

04t

0.2

02t

04f

0.6

081

Figure 10: Detection of wj, and wjs with the combined approach (the initial shape is the
one obtained after the “topological step”’) — Zoom on the improvement with the geometrical
step for wis

the functional is here about 1.26 and that, after the geometrical step, we obtain a cost
about 2 - 1072 which qualitatively means that we improved the detection.

In conclusion, this blending method which combines the topological and the geometrical
shape methods leads to good result in the identification of obstacle immersed in a fluid:
we detect both the number of obstacles, their locations and their shapes.

8 Conclusion

Using a Kohn-Vogelius approach, we have detected the number of potential objects im-
mersed in a two dimensional fluid and their qualitative location. To do this, we have
computed the topological gradient of the considered Kohn-Vogelius functional using an
asymptotic expansion of the solution of the Stokes equations in the whole domain when
we add small obstacles inside: we adapted the usual 3D techniques to the two dimensional
setting case, in which the classical asymptotic expansion of the solution of the Stokes equa-
tions are no longer valid. We obtain a formula valid for any geometry of small obstacles,
which is a particular characteristic of the two dimensional setting of the problem. We
have made some numerical attempts which have shown that ‘not too big’ obstacles close
to the part of the boundary where we make the measurements can be detected. Once
these restrictions are satisfied, the detection is quite efficient, even for objects with corners
or non convex shapes. Finally, we have proposed and implemented an algorithm which
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combines the topological sensitive analysis approach with the classical shape derivative
approach. This blending method led us to detect the number of objects using a topological
step and, if this first step actually gives the total number of obstacles, a geometrical shape
optimization step detects their approximate location and approximate shape from only the
boundary measurements. This method gives interesting results in the simulations.

A A result concerning the space of traces

Here we recall a result used in the paper concerning the boundary values of functions, in
particular when domains depend on a parameter (see [38, Chapter 4]):

Theorem A.1 ([38] Section 4.1.3. page 214). Let Q and w be two bounded simply connected
domains of RN (N >2) of class C%'. Let p € (1,4+00), € € (0,1/2) and w, := ew. Let us
assume that wz C Q and that there exists a constant ¢ > 0 depending only of N, p, w and
Q such that d(we, Q) > ce. Then

O powe ~ &) [l ey T e

where
Vipowe = inf {H“”WLP(Q\@ s u € WH(O\D), ujgw, = f},
=N . N_q
6 P mln(l v )7 forp< N
—N
a(€) = 5T (1 |10g€| )’ fO?“p:N
877 fOTp > N,
and

e, = l0w]™ / /8 @) = )] ds(@)as(y)

p 1/p
[f]pﬁws = (//8 » |$ - y|N+(p>2 ds(x)ds(y)> forp € (1,+0).

B Some results on the exterior Stokes problem

B.1 Definition of the weighted Sobolev spaces

First, we recall the definition of the weighted Sobolev spaces. We introduce the weight
function p(z) := (2 + |z|*)'/? and the following Sobolev spaces (for more details, see [4]):

Definition B.1. Let 1 < p < co. For each real number o and each open set O C R%, we
set

L2(0) := {u € D'(0), p*u € Lp((’))} ,
Wiz . | {€P(0)uely ,(0), VueLi(0)} if d+al,
JL(0) = {ueD(0), (In(p)uecll (0), VueIZ(0)}  if +a=1

olp —|-
Consider now the space W, (O) = D((’))” Iwir©). It is standard to check that

o Lp 1
W, (O) = {1} S Wojp((')), Vg = 0} .

27



o lp ’ 1 1
The dual space of W, (O) is denoted by W~ 1P (O), where p is such that — + — =1 (it
p p

is a subspace of D'(O)).

Notice that these spaces are reflexive Banach spaces with respect to the norms:

HUHLE(O) = Hpa“HLp(o)y
1/p .
(”””5240> + ”V“”iz(m) if §+a#l,
lelwiro) = W 1P N
( W‘Li—1(o)+ ||VU|L1;(O)> if ];‘Fa: 1.

B.2 The exterior Stokes problem in two dimensions

The following results are presented in [44], we present them here for reader’s convenience.
We first recall the following lemma concerning the Stokes problem in the whole space R?:

Lemma B.2. Let (u,p) be a solution of

_ _ 2
{ vAu+Vp = 0 inR (B.1)

divu = 0 inR2%
Then every solution which is a tempered distribution should be a polynomial.

Proof. Applying Fourier transform to (B.1)) we immediately notice that the support of @
and p is contained in {0}. Therefore, those distributions should be a finite sum of Dirac
deltas, which implies that w4 and p are polynomials. O

B.2.1 Decomposition of the solution of the exterior Stokes problem

Let w be a Lipschitz open set of R? and let W(w®) := {v € Wé’2(wc);divv = 0} where

w¢ :=R?\@W. W(w°) is a closed subspace of W(l)’Z(wC) when we consider the induced norm.

Notice that the bilinear form a(u,v) = | D(u): D(v) is coercive in W(w®) (as well as
in W(l)’Q(w)). Therefore, for ¢ € H'/?(dw) such that / ¢ -n =0, the problem:
Ow
—vAu+Vp = 0 in &°
dive = 0 in @° (B.2)
u = ¢ onJdw,

is well-posed and has a unique solution in W(l)’z(wc) (and also in Wé’z(w)). We present
here an explicit representation of u and p.
In such case, we have:

—vAu + Vp = [D(u)n]dy, =: T in D'(R?).

Now, let us define:
v=ExT, q:=PxT,

where (E, P) is the fundamental solution of the Stokes system given by (3.2) and * denotes
the convolution product. Then,

—vAv 4+ Vq =T in D'(R?).
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Now notice that the pair (u — v,p — q) solves (B.1)), then by the previous lemma this
solution should be a polynomial. Then:

u:E*T—i—Ulz/ t(x)E(y — z)ds(x) + U;,
Ow

p:P*T—}—Pl:/ t(z)P(y — x)ds(z) + P,

w

where U and P; are polynomials and ¢ = D(u)n.
Using a Taylor development for u we get a logarithmical term, due to:

E(y— ) = E(y) — VE(O(y,z))z,

where 6(y,x) = y — ax with a € (0,1), then:
uly) = E@) /8 ta)ds(a) - /8 @) VE(Oly.)ads(w) + U
But log ¢ W(l]’2 (@), which implies:
/ Hx)ds(z) = (£,1) = 0.
Ow

Also, due to U € Wé’Q(Ec), we must have U; = A, where X is a constant. Therefore, we
have:
u = O(1) at infinity.

A similar reasoning gives p(y) = O(1/r), where r = ||y||, and P; = 0. Therefore we have:

u(y) = — /a t(x)VEO(y,x))x ds(z) = X+ W (y), (B.3)

p@%=L;K@Vwawa®@% (B.4)

and w,p are bounded at infinity. Moreover, we have (see for example [44] Section 2.5.1])
W (y) = O(1/r) which implies, due to the well-posedness of the problem the existence of
¢ > 0 such that:

1Al < cllelli /2,00 (B.5)
The study of the function W in (B.3|) will be useful for important results: we study a

priori estimates for this function, in a similar way as Guillaume in [28§].
B.2.2 Some notations and preliminaries

For a given function u € H!(Q), we define the function & on € := Q/e by u(y) = u(z),
y = x/e. Using that V u(z) = (Vyu(y))/e, we obtain

|ﬁ@=4wwmﬁh=éWﬁm2w

Hence,
July g = [l 5 (B.6)
Similarly, we obtain
ullg.o =€ llullyg - (B.7)
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By changing the origin, the same equalities hold with the change of variables y = (x —z2) /e,
for z € Q.
Finally, let us introduce some other domains. Let R > 0 be such that the closed ball

B(z,R) is included in © and w, . C B(z, R). We define the domains

= OB R and D= B(z, R)\w:

(see Figure . Thus, in particular, we denote Q9 := Q\B(0, R) and D? := B(0, R)\zw.

[3}9]

Figure 11: The truncated domain

B.2.3 Estimates for W

We have the following estimates for W:

Lemma B.3. Let ¢ € HY%(w) such that / p-n =0 and z € Q. We consider
Ow

(u,p) € Wé’2(R2\E) x L2(R?\@) the solution of the Stokes exterior problem
—vAu+Vp = 0 in R:\w
dive = 0 in R:\w
u = ¢ on Jw.

Recall that in this case u = XA+ W (see (B.3|)). Then there exists a constant ¢ > 0
(independent of € and @) and g1 > 0 such that for all 0 < & < &1

Wlopspe < c(=loge)/*[@lly2, w
’W|1,D§/s < 6”90”1/2,80.) and |W

W)

Proof. For sake of simplicity we will prove this result for z = 0, the general case comes
from linear change of coordinates.

By the formula given in (B.3) we notice that: |W(y)| < ﬁ”cp“l/? 0w~ Therefore:
y b

0,Q% /¢ < CH‘P”l/Q,aw’
1,0%/e < sz”‘P”l/zaw'

This tmplies:

<c ”‘P“l/z,aw-
1an,s

g
(W (z/e)| < Cm“%\h/zm-
2
e
Analogously: [VW (z/e)| < Cw”‘ﬁ’ﬂl/z,aw-
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Using these estimates we can bound the following quantities:

1/2
1
7% — = / W (z/¢)|? = dx
|| Ho,B(o,R/a)\B(O,M) (B(O,R)\B(O,EM)| (/)| 22 >
. 1/2
< cllelliy2,om / T dT
BO,R\BO,) |17l
= c|lell/2,00(log R —logeM)'/?
< cllelli /2,00 (—loge)!/2.
and
. 1/2
£
VW s < / c——lpll? 5 5,d < celle -
! lo.B(0, R/ )\ B B0.RNEGTT \|x|]4H 15 /2,0 lell1/2,0

Now, noticing that, in B(0, M) \ @, we have classic a priori bounds for W:

IWl1,B0m\e < cllelli2ow

we get:
IWllo,B0,m\a < cllelli2o. and Wi goame < cllell /2,00,
and then:

W llo,p0/= < W llg po.8/ep 5030 + W lo,oame < ¢ (1oge) ™ llll 2,00 -

|W|1,Dg/5 < |W|0,B(O,R/5)\B(O,M) + |W’0,B(O,M)\E <c ||90”1/2,8w :

The other estimates can be computed directly:

1/2
g2 1
%% = [|[W = < / c——=|le 2 w5 dT <c|p w
|| ”O,Q%/a || ||0’Q/5\B(07R/5) (Q\B(QR) ”:I;HQH ||1/2,8 2 > || H1/2,8

64

1/2
w =W B < / Ci—— 2 AT < ce? -
‘ |0,Q%/5 ‘ IO,Q/E\B(O,R/E) ( N\BOR) HxH4 H§0H1/2,8 ) “90”1/2,8

From the previous inequalities we can estimate the size of the function W (%) in €.,
indeed, by change of variables (recall the equalities given by , (B.7)), we get that, for

small e:

1 —~
(Iw
3

then

+|[w| ) = W00/ + W llo g, e < e(~1oge) ™7 ol 2.0

0,D? 0,0Q%

W W ~1/2
HWHO,Dg * HWHOQ% < ce(=loge) 2@l z0. -

But, by equivalence of norms, we know there exists a constant M which doesn’t depend of
¢ such that: -
M HW

<[]0 + 171
0,02 0,09 0,2%

where we conclude -
[W], . < ce(-108e) 2 ol s
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Analogously we get:
‘” 10, = ||(lCH1/2,8w

and therefore: . .
[W], o =" )., = clelhn

1,0, e/l1,Q. —

C Proof of Lemma (4.2

The following results are based in the ones presented in [44, Chapter 3|. We will use
the notations introduced in section [B:2:2] The statements will be presented for general
domain {2, ., but for sake of simplicity we will work in the proofs in the case z = 0,
the general case comes from a linear change of coordinates. The proof of Lemma [1.2] is
decomposed in the following three lemmas.

Lemma C.1. Let ¢ > 0. For ® € HY/2(9Q), let (v.,q.) € HY(Q..) x LE(Q..) be the
solution of the Stokes problem

—vAv.+Vg. = 0 in Q..
divv, = 0 in Q.
v, = @ on 0N (C.1)
ve = 0 on Ow, .

Then there exists a constant ¢ > 0 (independent of ¢ and ®) and €1 > 0 such that for all
O<e<e

[velli .. < cll®lly 200 (C.2)

Proof. Let g9 > 0. Consider v, solution of (C.1)) for € = g¢. It satisfies:

e, = / Voo de < cleo)| @1 200.

€0

Now consider v, the extension by 0 of v, to all 2, and consider v the solution of the
System
—vAv+Vq = 0 in
dive = 0 in Q2
v = P on 0f),

i.e. when we consider € = 0 in . Notice that, by minimization of energy, we have:
[v[1,0 < v e = |vgl10., -
Also, the well-posedness of the problem gives the existence of ¢ > 0 (¢ = ¢(£2)) such that:
V|00 < c||®]1 /2,00

Now, notice that if 1 < g9 we have 1w C gow and then ., C Q,, so, for all e € (0,e1),
we have:

[vel10. < [Veol1,0. = [veol1,0., < c(e0)l|ll1/2,00-

Noticing that v; — v € H}(Q) and thanks to Poincaré inequality, we have:

[ve = vlo,a + [v|o < clve —vl1a + cl|®lli/2,00
clveli. +clvlia + ||l /2,00 < c(eo, Q)| /2,00

[Velo0 = |velon. <
<
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Also, denoting by vg, the extension by zero of v,, to Q, we get, by minimization of energy
that:
[vel. < [ve . = [velia., < cleo)l|@]l/2,00-

Combining the last two inequalities we get the desired result. O

From the previous Lemma, we get the following one:

Lemma C.2. Let ¢ > 0. For ¢ € HY(Q) such that divee = 0 in Q, let (ve,q.) €
HY(Q, ) x L&(2. ) be the solution of the Stokes problem

—vAv, + Vg. = 0 in Qz,e
divee = 0 in Q..
ve. = 0 on 0N (C3)
Ve = on 0w, .

If there exists q € L3(Q) such that —vA@+Vq =0 in Q, then there exists a constant ¢ > 0
(independent of € and @) and €1 > 0 such that for all 0 < & < &1

[velli o, . < cllell/znn - (C.4)

Proof. We consider the pair (w. := v. — ¢, l. :== ¢. — q). This satisfies:

—vAw.+VI. = 0 in Q.
divw, = 0 in €,
w, = — on 0f)

w, = 0 on Ow, .

By the previous lemma, we have for all € < e5:

[well10.. < cllell/2o00-

Noticing that ¥ is defined in the whole domain and is the solution of the Stokes system,
we have:

lellia.. < llelhe < dlell/zon
Therefore, we finally get:
[vellio. o < llwellio. . + llelle. . < cllelli/zo0-
O

Lemma C.3. Let ¢ > 0. For A € R?, let (ve,q.) € HI(QZ@) x LE(Q..c) be the solution of
the Stokes problem

—vAv, + Vg. = 0 in Qz,e
divv, = 0 in .
ve. = 0 on 0f2 (C.5)
Ve = A on Ow, .
There exists a constant ¢ > 0 (independent of €) such that:
A
A (C.6)

() < Cc———.
H E||1,Qz,5 — \/ng
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Proof. Consider the following sets:
I,={zeR?: ||lz| =r} and C(r1,r2) = {z € R* 1 1y < ||z|| <72}.
Also, consider the following quantity:
r* :=sup{r>0: B(0,r) C Q\w}.

Let us now consider the pair (w.,l.), the unique solution of the system:

—vAw.+ VI, = 0 in C(1,7%/¢)
divw, = 0 in C(1,7%/¢)
Wwe: = 0 on Fr*/z—:
w: = A on I';.

Also, consider the functions v.(y) = v.(z) and ¢:(y) = lg.(z) with y = £. The pair
(Ve, ¢-) satisfies:

—vAv.+Vg = 0 in

o[ Qm |2

divo, = 0 in
Q
v. = 0 on 8<>
€
Ve = A on Ow.

Notice that we have: w C B(0,1) C B(0,%) C % Now consider w, the extension of

Q
w. to — \ W, by zero in the outer part (respect to the original domain) of the extended
€

domain and by A in the inner part of the extended domain. Therefore, by the principle of
minimization of energy we have:

[vel1,0. = |7’A€|1,%\5 < "‘7775’1,%\5 = |w€|170(17§)- (C.7)
Let ¥ == A+ 4dmvE 7

and ¢ := 4mvP - where (F, P) is the fundamental

( */€) 10g( */€)
solution of Stokes equatlons in R? given by (3.2). We have:
—vAYp+Vgqg = 0 in C(1,7%/¢)
divep = 0 in C(1,7*/¢)
t
¢ = lc)egr( e'r/s) on FT’*/E

'(p - A + ler( eT/AE) on Fl’
and a computation provides:

Al
W ey < e,
[Ylcme) < = Toge

Now, notice that the pair (w. — %,l. — ¢) is solution of the Stokes equations with
boundary condition — eT( erA ) in both borders of the domain. Therefore, using the previous

lemmas we get that:

c|A|
—loge’

N - C
[we — Yl100,/e) = [We — Yl10er) < ler'erAll12,rs <
— g
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So, we get by (C.7)):
lvel1,0. < ‘w5‘170(17%) < |we — ¢’170(17§) + |¢|1,c(17g)
BN VP Y
—loge V—loge = /—loge’

Finally, consider v, the extension of v. to Q by A (notice that this extension is in Hy(€2),
therefore we can use Poincaré inequality). We have:

<

IN

[vell1.0. [vello.ge + |vela. < cllvcfloq + |velia.

Al
v—loge’

A

< clvclia + |velio. = (e + Dvelia. <c

O]

Proof of Lemmal[f.3 1f ¢ is constant on dw, and ® = 0, the previous lemma gives the
desired result. If ® £ 0 another previous lemma gives the desired estimate. So, let’s focus
on the case where ¢ is not constant. Let V' the bounded solution of

—vAV + VP, = 0 in R?2\ @
divV = 0 in R?2\ @
V. = ¢(ez) on dw.

We have by (B.3) V = X+ W with A € R? and W = O(1/r). Notice that this implies
W (%) = 0O(e). We define z. := v. - W (%) and p,. 1= q. — %PW (%), where Py is defined
by (B.4]) with y = z/e. Notice that z. satisfies:

—vAz.+Vp,, = 0 in Q.
divz, = 0 in €.
z. = -W (f) on 0f2
z: = A on Owe.

Using the previous lemmas we can bound the terms of this function, and A can be bounded
thanks to (B.5)). Finally we have that W (%) satisfies the desired estimate by Lemma
and we conclude by triangle inequality. O

D Proof of Lemma 4.3

First, we have the following lemma:

Lemma D.1. Let ¢ > 0. For ¢ € H Y/2(0), ® € H/2(00\0) and X € R?, let (ve,q.) €
H'(Q, ) x L2(2, ) be the solution of the Stokes problem

—vAv.+Vg = 0 in Q..
divv,. = 0 in Q..
o(ve,ge)n = ¥ on O (D.1)
ve. = ® on 90\O
Ve = A on Ow,e.

Then there ezists a constant ¢ > 0 (independent of € ) and g1 > 0 such that for all0 < € < &1

locllya., < e (11120 + @100 +AT)
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Proof. Let ¢ > 0 and (ve,¢.) € H(Q, ) x L2(€2, ) be the solution of Problem (D.1). Let
(V.,Qe) € HY(, o) x L2(9, ) be the solution of

—VvAV.+VQ: = 0 in Q..
divV, = 0 in €.,
oc(Ve,Qa)n = 0 on O (D.2)
V. = & on 9Q\0O
Ve = A on Ow, .

Let v, and ‘7; the respective extensions of v, and V. to 2 by A. Then, we have for all
We {\I' EH' (M), div® =0, Tla,., =0, ¥y 5= 0}

1
o /Q D(v. — V.):D(¥) = (3, T),
and then taking ¥ =v. — V.

o [p@ - vo)

2
0.0 = <¢a Ve — VE>O-
Thus, there exists a constant (independent of €) such that

|pwz-vo) v - V.

2
< .
Lo cltlono) o

Moreover, since v. — V. = 0 on 9Q\0, Korn’s inequality (see for example [41], eq. (2.14)
page 19]) leads

(with a constant ¢ independent of ¢). Hence,

v.— V.

<cl||Dw: -V
1,Q_CH (ve e)

0,0

|ve — VEH%,QZ,E = ‘ ve — ‘Z

2 o~
Lo Sl 0|D@E: - V)

v = Ve

0,2

< cl#ll_ij0| o Sel¥lizolve— Vel

)

Thus,
o2~ Vellyg.. < clll_y0-

Now, let us prove that [V,  <c <||<I’H1/2’BQ\5 + \M) For a fixed g9 > 0, Prob-

lem (D-2) is well-posed and admits a unique solution (V,, Qs,) € H (2.4,) x L2(Qs,)
and there exists a constant ¢ > 0 such that

Vsl < € (I®l2000 + 1Al /200.., ) -
Notice that, by (A.1) we get that:

1
(eo(—logeg

||)\H1/2,awz,50 ~ ))1/2 HAHLQ(awz,EO) + D\]p’awzﬁo .

The later term is zero, because A is constant, so we get, by a change of variables that:

1 1
M /2,00, ™ o log e 12 IAl2(60,.) = (“logeo)/?

1MLz (o) = c(€0, Ow) AL
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Let 0 < &1 < g such that .., C Q.. for all 0 < e < ey. Let ‘7; the extension of V
to © by A. The solution V. of (D.2) can be considered as the solution of the following

minimization problem: min {V Vg } , where
veu Alee

U = {V € HI(QZ’S), divV =0in Q,., V=X on dw,., V=% on 89\6}.
Hence, for all 0 < € < €1, we have

|‘/6|1,QLE <c ‘VEO

=clValia., <clVallia.,, <c (19l 0ma + Al).

Z,€Q z,eQ

1,9z,

Notice that [[Viol|; o < ¢[[®]l; /2, 90\5- Hence, using Poincaré’s inequality,

Vel = [Ve], o < [Ve=Vall, o+ IVolloa < <[V = Vo, + Vol
<c|Ve| +elVolia <elVelia., +cllVollig < ¢ (I®lly2000 + A1) -
Hence, we have the announced result. O

Proof of Lemma[].3 The proof is similar to the one presented in the previous section for
the Dirichlet system. If ¢ is constant on Jw,, the previous lemma gives the desired result.
So, let’s focus on the case where ¢ is not constant. Let V' the bounded solution of

—-vAV +VP, = 0 in R?\ @
divV = 0 in R?2\ @
V. = ¢(exr) on Jw.

We have by (B.3) V = A+ W with A € R? and W = O(1/r), notice that this implies
W (%) = O(g). We define z. := v.— W (£) and p,, = ¢ — 1 Py (£), where Py is defined

by (B.4) with y = x/e. Notice that the couple (z.,p._) satisfies:

—vAz.+Vp,., = 0 in Q.
divz, = 0 in Q.
0(ze,pz)n = P — %J (W (%) » Pw (%)) n on O
ze = ®-W (%) on 9N\ O
zZ. = A on Jwsg.

The previous lemma gives the existence of ¢ > 0 independent of € such that:

HzeHLQE s ¢ H¢ o %U (W (%) , P ( )) nH—l/Q,O + H(I) -W (%) Hl/Q,@Q\@ + \M)

:
< (Wl yjpo + 2lle (W (2), Pw (£)) 0y 00 + 121150000
+0(e) + lp(ex) [l1/2,00) -

Notice that we have, using the same argument as in (4.12]):

oW C) v (D)2l <l ()

.
0,09,

But:

o )l = I Dl =17l = e

€ € Q9
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where the last inequality comes from Lemma Notice that A can be bounded thanks

to (B.5)), so we have:

2l < ¢ (1150 + 12112000 + OC) + € (el s, + I9(E) 200 -

So, finally, for € small enough, we get:

HUEHLQE < HZEHLQE + HW (%)Hlﬂe
< e llZi20 + 1Rl 2000 + le(en)ll1 /2,00 ) + clle(cn)li/2,00
< ellllloy 2.0 + 1@l 20000 + le(er) /2,00 ) »
and we conclude. O
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