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Abstract—Consumer behaviour holds special importance in
the retail industry. Consumer location impacts consumer be-
haviour by dictating purchase trends. This paper investigates
the problem of examining product sales across a chain of stores
to extract the geographic regions that characterize a product.
Characterizing region for a product is a coherent geographic
region where the consumers actively consume the said product.
We introduce DICE, a diffusion-based technique to uncover all
such regions for a given product, when they exist. In contrast
to current state of the art, DICE involves minimal usage of
parameters and shows remarkable tolerance to noise. We present
experiments conducted on real datasets from a general commer-
cial supermarket in France. Empirical evaluation and user-studies
establish that the presented method significantly outperforms its
natural baseline and previous state of the art approaches.

I. INTRODUCTION

Customer receipt analysis is a common task in the retail
industry and has proven to be very effective for recommend-
ing products, implementing loyalty programmes for customer
rewards and discounts, and optimizing stocks for retailers.
Uncovering areas that mark active consumption for consumer
products is key to understanding how to provision stores in
different locations. In this paper, we adopt a product-centric
analysis across multiple stores that contrasts sales of a given
product in different stores to identify regional trends. In order
to do that, we introduce the notion of characterizing region
for a product, and address the challenge of discovering them.
To the best of our knowledge, the presented body of work is
the first to address such a problem.

Understanding consumer behaviour is of vital importance
for marketers and consumer-goods companies. Much work has
thus been devoted to analyze retail data from consumer-centric
and store-centric viewpoints. While consumer-centric analyses
are used to drive product discounts and recommendations,
store-centric analyses focus on shelf space management and
relative product placement in the store to increase revenue.

In this paper, we complement these approaches by intro-
ducing a product-centric analysis that combines in-store sales
with geographic proximity to identify regional trends for a
product. Such analysis is critical to product marketing. Popular
shopping trends do indeed affect a customer’s decision of
which product to buy. In addition, geographic proximity plays
an important role in a customer’s decision to shop at one place
or another. While some customers choose a store solely based
on geographic proximity, others will travel the extra mile to
find some products. The ability to combine trends with geo

proximity can be very useful for cross-store management and
provisioning.

Consider Figure 1a which shows the heatmap computed
using the sales of a certain product1 in various stores across
France. At each store, the total units sold for the product is
normalized by the total units sold for all products. The hot
zones for the product can be immediately identified as the
southern and western parts of France. These regions, where
the consumers actively consume the product, characterize the
said product. Our aim is to identify and isolate all such
regions that exist for a product. Such characterizing regions
are vital sources of information. Besides being a holistic
cross-store view of a product’s sales, they offer valuable
information to the retailers and manufacturers. One applica-
tion with great potential is the decision to expand or not a
product’s availability in some regions. Most importantly, a key
application that is hardly enabled by other analyses, is cross-
store advertising: a store may advertise that some products
could be found in neighboring stores in order to balance its
overall supply/demand chain. Characterizing regions could also
be used by government instances that go beyond a single
food supply chain to study the consumption of some products
or product types and correlate that information with health
indicators for different regions.

A key challenge in the identification of characterizing
regions is to account for both, in-store sales of a product
and geo proximity of stores. The basic tasks involved in
uncovering characterizing regions are spotting areas deemed
as hot zones, and identifying boundaries for the characterizing
regions within the hot zones. While it is straightforward to
spot such areas for the product in Figure 1a, obtaining them
via manual inspection may not always be trivial. Even if one
could spot the hot zones, realizing a boundary could be difficult
as there may not be a clear contour demarcating sharp fall in
product sales. Automated techniques that can examine large
volume of products to uncover quality characterizing regions,
when they exist, are thus highly lucrative.

A natural way to address the problem is to return the
regions constituted by the k stores that exhibit highest (normal-
ized) sales for the product. Figure 1b shows the result obtained
using such (TopK) scheme. While the resulting regions are
consistent with the heatmap (Figure 1a) they offer a fragmented
view of the product’s regional trends. Product sales across

1The product in example is a type of canned tuna sauce that is hidden for
confidentiality purposes.



(a) Sales heatmap (b) Top-K (c) DICE

Fig. 1. Inadequacy of TopK for uncovering characterizing regions. Figure 1a shows the heatmap for a product where darker color implies higher sales. Figures
1b and 1c show the characterizing regions extracted using the natural baseline (TopK) and our method (DICE). The proposed method returns smoother regions
while preserving “holes”.

stores show high variance (noise) leading to several stray
maximas or outliers i.e. stores that lie far from hot zones
but have sales higher than some stores in the hot zone.
TopK erroneously selects such outliers over stores within the
characterizing regions. Thus, it lacks the necessary smoothing
required to obtain coherent regions.

Uncovering colloquial regions corresponding to entities
from geo-tagged data has recently drawn attention of the
research community [1] [2] [3] [4]. The current state of
the art is established in [5] where the authors study tagged
photographs to extract regions for geo-entities. The key idea is
to represent the tag’s frequency distribution across the map as
an image and identify contours that demarcate sharp changes
in the frequency. These contours are further subjected to a
series of complex image processing operations to obtain the
characterizing region. Region discovery for retail products is
not amenable to such a solution as it assumes the existence of
a sharp boundary (in terms of sales) between the characterizing
region and its surroundings. As we see later in Section IV, this
assumption seldom holds true for retail products.

This analysis suggests that both, the natural baseline and
the current state of the art for related problems, are insufficient
for uncovering characterizing regions for retail products. There
is a clear need for a solution that is robust to the noise in the
data and effectuates the necessary smoothing required to obtain
coherent regions.

To address the insufficiencies of existing methods, we
propose a new approach, coined Diffusion based Iterative
Characterizing region Exploration (DICE), that combines store
sales and geographic proximity to find a set of coherent
regions for a given product. Intuitively, the proposed technique
starts with a seed set of stores that exhibit high sales for the
product and iterates over neighboring stores to find the largest
contiguous regions covering all high-sales stores or stores
that are contiguous to high density ones. DICE models the
diffusion of product endorsements to neighboring stores that
delivers enhanced smoothing. As demonstrated in Figures 1b
and 1c, the obtained results are significantly better than the
natural baseline. In Section IV, we present our experiments
that conclusively establish the significant gains achieved over
the natural baseline and the current state of the art.

To summarize our findings, the performance studies con-

ducted on real datasets from retail domain suggest that a large
number of consumer products have associated characterizing
regions. Further, the proposed technique offers high quality
results when compared to the natural baseline and the previous
state of the art. We validate our results via both, empirical
comparisons that report > 25% gain over previous methods
and user studies that establish that majority of the users prefer
DICE over competing methods and show wide agreement
(> 70%) with characterizing regions returned by DICE.

This paper makes the following contributions:

1) We define the problem of finding characterizing re-
gions of a product and argue for its significance.

2) We design and implement a novel diffusion-based al-
gorithm that, given a product and its sales in different
stores, finds characterizing regions of that product.

3) We run performance experiments that include empiri-
cal evaluation as well as a user study with novice and
expert users that validate our findings on real datasets
from a large French supermarket. We compare our-
selves to the natural baseline (TopK) and the previous
state of the art (SSR). Our experiments establish that
DICE significantly outperforms both.

Our paper is organized as follows. In Section II, we for-
malize our data model and state the problem of identifying the
set of characterizing regions of a product. Section III describes
the design process for DICE. Section IV is dedicated to our
experiments and findings. The related work is summarized in
Section V. We conclude in Section VI.

II. DATA MODEL AND PROBLEM

A. Model

We have a set of products, P = {p1, p2...}, which represent
distinct items available in a typical departmental store. Exam-
ples of products are tuna sauce, red wine, detergent, and cat
food. For confidentiality purposes, we do not provide specific
product names and brands in this paper.

We also have a set of stores, S = {s1, s2...}, where each
store s has a pair of geo-coordinates (s.lat, s.lon) using which
we define the distance between two stores si and sj as below

g(si, sj) =
√

(si.lat− sj .lat)2 + (si.lon− sj .lon)2 (1)



We define a bijective mapping from the set of stores to a set
of cells. The cell for each store is simply a polygon enclosing
that store, with the property that the closest store from any
point within the cell is the enclosed store. Such a set of cells
is easily obtained by computing the Voronoi map over store
locations. The resulting Voronoi polygons form the cells. We
show an example in Figure 2.

We say that two stores are connected if corresponding
Voronoi polygons are adjacent. For a given set of stores,
the region constituted by those stores may range from being
completely fragmented (when no two stores are connected) to
completely unified (when all stores are contiguous). We call
the latter a coherent region.

A transaction is a purchase of some (non-zero) units of
certain products at a store. We assume the existence of a set
of transactions, T = {t1, t2...}, such that each transaction t ∈
T is a 2-tuple indicating the store at which the transaction
occurred and the set of products purchased in the transaction.
For example, the transaction t = 〈sk, {pl, pm}〉 indicates that
products pl and pm were purchased at store sk.

Using Ts to denote the set of transactions occurring at store
s, the total units of product p sold at s is computed as:

sales(p, s) =
∑
t∈Ts

f(p, t) (2)

Here, f is a function that gives the units of p sold in
transaction t. We assume f(p, t) = 0 if p was not sold in
transaction t.

We can now define the density of a product p at a store s,
dp(s), as follows:

dp(s) =
sales(p, s)∑

p′∈P
sales(p′, s)

(3)

We compute the density of a product p at all the stores in
S . This is referred to as the density distribution, Dp, of the
product.

Dp = {dp(s1), dp(s2)...dp(s|S|)} (4)

B. Problem

Our aim is to identify, given a product p, a set of stores,
Sp ⊆ S, such that the stores in Sp have high product density
and result in coherent regions. Note that a product may have
more than one coherent region, as shown in Figure 1c. We
refer to each such coherent region as a characterizing region
and Sp as the set of stores that constitute the characterizing
regions.

A product may not have any meaningful characterizing re-
gion. For a product p, the set of its characterizing regions, Sp is
well defined if the product exhibits localized overconsumption.
If the consumption is relatively uniform across all stores, or
the stores with high density are scattered, the product may not
be coupled to a geographic region and Sp is thus undefined.
That is, for example, the case for generic products that are
consumed uniformly across all stores, such as chewing gum,
toilet paper etc.

The technique we describe in this paper assumes the exis-
tence of characterizing regions for the product. Subsequently,
we show how our solution offers out-of-the-box support for
segregation of products that do have characterizing regions
from those that do not, in Section IV.

III. METHODOLOGY

Our objective is to analyze the density distribution in order
to identify characterizing regions for the product. We focus
on geographically coherent regions, defined in Section II as
a large connected component in the associated Voronoi map.
Intuitively, a coherent region should initially contain several
neighboring stores exhibiting a high density for the product, as
well as other stores with relatively high densities. Conversely,
isolated high-density stores should not cause the emergence of
a region. Thus, our aim is to design a smoothing process that
can expand dense regions. The main challenge in this context
is to balance the smoothing, that allows DICE to include some
regions, while retaining characteristics of the original data
distribution, as some “holes” within a region represent valuable
marketing information.

As stated previously, the natural approach of selecting top
k stores works well for products with sharply defined charac-
terizing regions but it is not a viable solution for majority of
products. Further, it enforces that all products have the same
number of stores (k) in the final result, which may not reflect
true behaviour.

We observe that the popularity of a product at a store is an
endorsement of the product by that store. This endorsement
may affect the product’s popularity in neighboring stores as
stores may influence other stores. Modeling this diffusion gives
us a more refined method to achieve the desired smoothing.

Diffusion over graphs has been well studied in different
version of the influence maximization problem first introduced
by Kempe et al. [6]. The problem involves a scenario where
a user initially activates certain nodes in a social graph.
The activated nodes may then influence neighboring nodes
and activate them. The process stops when no nodes can
be activated. The objective is, given k, to find the set of k
initial nodes to activate to cause maximum spread. To solve
the problem, one has to assume an Influence Propagation (IP)
model. The IP model specifies how the influence spreads from
an active node to an inactive node. Relevant literature offers a
choice between two popular IP models, Independent Cascade
(IC) and Linear Threshold (LT), which characterize different
types of social interactions [7] [8] [9] [10] [11] [12]. While
the IC model assumes independent interaction for each pair of
nodes, the LT model uses threshold-based behaviour.

To design DICE, we select the linear threshold model of
influence propagation as it allows us to incorporate influence
from multiple influencing agents simultaneously and does
not require to assume independence between stores. We now
give an overview of our algorithm and discuss its two core
processes.

Overview of the algorithm: For a given product p, DICE
starts with its (normalized) density distribution Dp. It selects
an initial seed-set of stores (Figure 3b). These stores are
marked as active and the remaining stores as inactive. The



(a) Store locations (b) Voronoi map

Fig. 2. Distribution of stores across France. Fig 2a shows the exact location of all stores while Figure 2b shows the computed Voronoi cells. Each cell
corresponds to a single store. Color of each cell is governed by the total number of transactions that occur at the store. Darker color implies more transactions.

activated stores cast an influence on inactive ones which in turn
may become active. The algorithm iterates and stops when no
inactive stores can be activated (Figure 3c). DICE then extracts
coherent regions as significant connected components covering
the activated stores (Figure 3d). We now go over the salient
features of IP models and discuss them in the context of our
problem in the following subsections.

A. Seeds selection

In influence propagation, the seeds represent the initial
active entities, i.e. the entities that initiate the spread of a
trend. Traditionally, influence propagation models are used
to compute, given a social network, an optimal seed-set to
maximize overall influence spread [6]. DICE however aims at
analyzing past sales records. Hence, the seed-set of a product p
is selected from the input data using Dp. Seed selection plays
a crucial role in influence propagation. The primary goal of
seeds is to bootstrap the process of diffusion. DICE selects
the seeds as the stores that, given Dp, appear to be the most
characterizing. Seeds(p,m) is defined as the set of m stores
having the highest density for product p.

Seeds(p,m) ⊆ S, |Seeds(p,m)| = m

dp(s) ≥ dp(s′) ∀ s ∈ Seeds(p,m), s′ ∈ S \ Seeds(p,m)
(5)

Our aim is to design an algorithm that uses as few parameters
as possible. The formalization of seed-set selection introduces
m, number of desired seeds, as the only parameter admitted by
DICE. In practice, the method is robust and only needs to select
a sufficient amount of seeds to ensure that each characterizing
region of p contains a few of the selected seeds. As long as this
condition is met, influence spreads in those regions resulting
in their discovery by the method. Minor increase in number of
seeds will not have any negative impact. However, selecting too
many seeds tends to add noise to DICE’s results as the resulting
large number of outliers may unify into erroneous regions. Our
experiments in Section IV reveal that stable results are returned
by DICE for large range of values for m.

B. Influence spread

Influence propagation recursively marks entities as active as
they get influenced by a trend. Active entities spread influence
to other entities, which in turn may become active. Propagation

ends when no new entity gets activated. In our model, given a
product p, the set of active stores Sp is initiated to Seeds(p,m).
A non-seed store s becomes active and is added to Sp if the
influence it receives exceeds its threshold θps . We define the
value of this threshold as the difference between the product
density at s and the lowest density of a seed.

θps =

(
min

x∈Seeds(p,m)
dp(x)

)
− dp(s) (6)

DICE assigns a weight factor ws to each store s. Since
larger stores attract more customers, and therefore constitute a
stronger source of evidence for finding characterizing regions,
ws scales with the total number of sales at s, with a logarithmic
damping factor.

ws = log

(
1 +

(e− 1)
∑
p∈P sales(p, s)

maxx∈S
∑
p∈P sales(p, x )

)
(7)

We ran experiments to evaluate different choices for
weighting the stores (including ws = 1). Logarithmic formula-
tion, as in Eq. 7, delivered best results. Intuitively, Eq. 7 assigns
higher weights to stores with greater sales thus allowing them
to spread more influence. The store with greatest number of
sales is assigned a weight of 1.

Here, e is the base of the natural logarithm. Upon its
activation, a store si influences another store sj by bsj ,si ,
which contributes to the possibility of recursively adding more
stores to Sp, and is defined as follows:

bsj ,si =
wsi .dp(si)

g(si, sj)2
∑
x∈S,
x 6=si

1
g(si,x)2

(8)

At any point of the recursive influence spread, the total
influence received by a store s is evaluated as

∑
x∈Sp bs,x,

and is compared against the threshold θps .

DICE focuses on regional trends, so we postulate that a
store with high density (for a product p) influences other
stores and attempts to induce the popularity of the product
in its neighboring stores. We set the influence of a store on
another to decay with the squared distance between these
stores. As Figure 2a shows, stores are far from being evenly
geographically distributed: populated regions, around major
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Fig. 3. Illustration of different stages in DICE. Normalized density distribution (represented as heatmap in Figure 3a) forms the starting point. Selection of the
desired size for the seed-set (m) results in selection of top-m stores as seeds (Figure 3b). The activated stores influence other stores potentially activating them
(Figure 3c). The region constituted by the set of activated stores is reported as the characterizing region (Figure 3d).

cities, have a lot of stores, while rural areas are much sparser.
The distance between neighboring stores varies significantly,
which is amplified by the squared factor in the decay model.
This requires DICE to be able to take into account the sur-
roundings of a store s to parameterize b∗,s, such that isolated
stores may still spread significant amount of influence, while
limiting it on populated regions to avoid snowball effects. The
chosen formulation (Eq. 8) essentially amounts to selecting
the total influence that a store can spread (wsi .dp(si)), and
distributing it among stores according to their distance. This
ensures that the maximum influence cast by any store si over
any store sj is bounded to wsi .dp(si).

We remark that DICE does not completely eradicate the
fragmentation issue incurred by the natural baseline (TopK). Sp
may still contain stores that are clear outliers, i.e. lie far from
hot zones. However, the fraction of such stores is very small
as compared to the stores that form connected components.
As we see in Section IV, DICE significantly mitigates the
fragmentation incurred by the natural baseline (TopK).

C. Detailed algorithm

The details of DICE are presented in Algorithm 1. Sp is
first initialized to be the set of seeds following the approach
described in Section III-A, line 1. I is the set of remaining
stores that can potentially become active through propagation
(line 2). The accumulated influence for each store in I is
initialized to 0 (line 4). DICE then loops until I converges
by monitoring Aprev , the set of stores activated in the last
iteration (line 7). DICE updates the influence accumulated by
inactive stores of I with the influence they receive from stores
activated in last iteration Aprev (line 11) following the update
rules defined in Section III-B. If the influence received by
an inactive store exceeds its threshold (line 13) it becomes
active and is added to Acur, the set of stores activated in this
current iteration. I , Aprev and Sp are then updated at the end of
each influence propagation iteration. After convergence, DICE
returns the set of active stores Sp (line 21).

IV. RESULTS

In this section we report on experiments conducted to
study the behaviour of DICE and evaluate its performance in
comparison to its competitors. All experiments are conducted
on a real dataset that consists of retail transaction logs. Our

Algorithm 1 Diffusion based Iterative Characterizing region
Exploration (DICE)
Input: p: product
Input: m: seed-set parameter
Output: Sp: Set of stores that form the characterizing regions

1: Sp ← Seeds(p,m)
2: I ← S \ Sp
3: for all s ∈ I do
4: s.inf← 0
5: end for
6: Aprev ← Sp
7: while Aprev 6= ∅ do
8: Acur ← ∅
9: for all s ∈ I do

10: for all x ∈ Aprev do
11: s.inf←s.inf+bs,x
12: end for
13: if s.inf>= θps then
14: Acur ← Acur ∪ {s}
15: end if
16: end for
17: I ← I \Acur
18: Aprev ← Acur
19: Sp ← Sp ∪Aprev
20: end while
21: return Sp

performance experiments conclusively establish that DICE
significantly outperforms both TopK and SSR. According to
our user studies, the percentage of users that prefer DICE,
TopK and SSR are 47%, 21% and 32% respectively. The
percentage gains achieved by DICE over TopK and SSR, using
empirical measure, are 25% and 99% respectively.

In the following headings, we first describe the dataset,
(Section IV-A) and the test-bench (Section IV-B). This is
followed by a succinct description of the competing methods,
natural baseline (TopK) and the previous state of the art
(SSR) in Section IV-C. Subsequently we discuss the various
experiments in Section IV-D.



TABLE I. STATISTICS OF RETAIL DATASET.

Set Cardinality
Number of products (|P|) 10,650

Number of stores (|S|) 1,426
Number of transactions (|T |) 1,108,748,098

A. Data

We conduct our experiments over logs generated at a
popular general commercial supermarket that owns over 1800
outlets in mainland France. The logs were gathered over a
period of 27 months from May 1st, 2012 to July 31st, 2014.
The data consists of a large number of csv files in different do-
mains such as stores, transactions, products, customers. Each
line in stores corresponds to a store and consists of a unique
store id and associated meta data (number of employees, geo-
coordinates, opening date etc). In similar fashion, each line in
transactions and products contains an entry for unit transaction
and unit product respectively. The data model described in
Section II fits perfectly to the dataset.

We subjected the raw data to some cleaning operations
which we describe next.

1) Stores: Stores with fewer transactions may result in
superfluous densities. We filter the set of stores to retain those
that have a sufficient number of transactions (|Ts| ≥ 20k).
This results in more than 1400 stores. In Figure 2, we show
the location of obtained stores on the map of France and the
associated Voronoi map.

2) Products: Availability of certain products was limited
to a select few stores. Our focus in this study is on products
that are widely available yet over-consumed in certain locales.
We filter the original set of products to retain only those that
are available in at least η fraction of the stores (coverage). In
Figure 4, we show the number of products for different values
of η. We fix η to 0.9 obtaining roughly 10k products. We
remark at this point that not all products are expected to have
characterizing regions.

Table I reports the final cardinalities of the sets. We
examine over 1 billion transactions across more than 1400
stores for more than 10k products.
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Fig. 4. Distribution of products w.r.t. fraction of stores covered (η). The
X-axis shows the different coverage values. The Y-axis shows the number of
products with coverage ≥ specified value.

B. Platform

All experiments were run on a Intel E5-2650L machine
with 32 GB RAM, running CentOS 6.5. Each algorithm was
implemented in Java and executed on JRE 1.6.0 31.

C. Competitors

In the following, We introduce (in succinct detail) the nat-
ural baseline (TopK) and the current state of the art approach
(SSR) to uncover characterizing regions for products.

1) TopK: TopK is the trivial algorithm for discovering
characterizing regions given product’s density distribution. It
returns the stores with the k highest densities as the result Sp.
The choice of k is non-trivial. By design, the baseline lays no
emphasis on obtaining stores that result in coherent regions. If
the characterizing regions are sharply defined i.e. the density
of stores that comprise the regions is greater than all stores
outside the regions, TopK delivers considerably good results
given suitable k. However, for most products the assumption
does not hold good and resulting characterizing regions are
fragmented and erroneous.

Note that TopK shares certain aspects with DICE as the
latter uses the former for seed-selection which bootstraps the
diffusion process.

2) Scale Space Representation (SSR): SSR [5] establishes
the current state of the art for characterizing region discovery.
The authors attempt to uncover colloquial region boundaries
for location related Flickr tags (such as “germany”, “poland”)
from a large volume of tagged photographs.

The method starts by gridding the map and computing
frequency of the given tag in each cell of the grid. This gives a
representation of the tag’s frequency-distribution over the map
in the form of an image. In the next step, the method identifies
all contours in the image across which the frequency changes
abruptly. This is done by subtracting a high blurred version
of the image from a low blurred version of the image. This
step results in a binary map that highlights the aforementioned
contours.

In the final step, the binary map is subjected to contour
filling and morphological closing to arrive at closed connected
blobs. Of potentially several resultant blobs, the authors retain
the largest. The grid cells that constitute this blob are returned
as the characterizing region. The approach thus returns a single
characterizing region per product which may not be true for
all products.

Note that the data model above closely resembles the
one described in Section II. A photograph corresponds to a
transaction and the tags within the photograph correspond to
products. The two models differ slightly in that photographs
can manifest at any arbitrary point on the map, our transactions
are constrained to occur at fixed locations (stores).

Note further that the instantiation of smoothing and image-
processing operations in SSR requires specification of multiple
parameters. The approach is thus, highly parametric (requiring
specification of up to 4 parameters). The quality of obtained
regions is sensitive to the choice of parameters, thus it is
required that the system be trained on some supplied ground
truth to obtain optimal parameter combination.



D. Experiments

We conduct three different types of experiments. The first
experiment studies the impact of parameter m, the seed-
size for DICE. The remaining two experiments compare the
performances of DICE, TopK, and SSR using an empirical
approach and a user-study respectively.

1) Impact of seed-size parameter: DICE admits a single
parameter, the initial seed-set size, m. |Sp| is guaranteed to
increase with increase in m because a higher value of m
implies a bigger seed-set (which by design is part of the
result). Furthermore, a bigger seed-set implies more influence
on other stores. We study the impact of seed-set size on the
characterizing regions for different products.

We observe that for the same choice of m, certain products
diffuse more than others. We illustrate this with the help of an
example. Figure 5 shows the characterizing regions, obtained
via DICE, for two different products for two different values
of m. While the first product is a peculiar meat, the other is a
common chewing gum. We mark the stores that form the initial
seed-set in red. Note that the stores that comprise the seed-set
are more localized for peculiar meat than for chewing gum. In
Table II we show the size of the final characterizing regions
which establishes that the former product grows significantly
more than the latter.

This behaviour allows us to segregate products that have
meaningful characterizing regions from those that do not
by using a suitable threshold. For the following discourse,
where we evaluate the quality of extracted regions, we restrict
ourselves to products that resulted in meaningful characterizing
regions.

2) Empirical Comparison: Evaluation of the quality of
returned characterizing regions is difficult in the absence of
ground truth. Note that relevant previous studies [4] [5] have
exclusively dealt with extraction of colloquial boundaries for
geographic concepts (such as “germany”). It can be easily
assumed that the region extracted for tag “germany” overlap
with the international boundaries of the eponymous country.
However, for consumer products, it is difficult to affirm with
certainty that the over-consumption of a certain product will
be restricted to certain locales.

Ground Truth: We attempt to fill the void created by the
absence of ground-truth with the aid of domain experts. We
construct a sequence of 2-tuples consisting of products and
French administrative regions i.e. every tuple is of the form
〈p, r〉 such that p ∈ P , r is an administrative region of France,
and p is expected to be characterizing in r. Experts were
instructed to report only such pairs which could be argued
for with high confidence. On account of absence of data, the
administrative region of Corsica was omitted. For each of the
remaining 21 administrative regions of France, we obtained
2 products that were expected to be characterizing in the said
region. This resulted in 42 ground truth pairs of the form 〈p, r〉.

TABLE II. IMPACT OF SEED-SIZE ON SIZE OF CHARACTERIZING
REGIONS (|Sp|).

Product |Sp| (m = 50) |Sp| (m = 100)
peculiar meat 71 175
chewing gum 56 121

Evaluation Scheme: Each of DICE, TopK, and SSR is evalu-
ated against each pair 〈p, r〉 of ground truth by measuring the
Jaccard overlap (in terms of area) between the characterizing
regions for p (as returned by the method) and the French
administrative region r. Subsequently, the Jaccard overlap is
averaged over all the pairs. This measure, Average Jaccard
Overlap, serves as the primary empirical measure for compar-
ing the three methods where higher values are desirable. We
also compute and report the maximum and minimum over all
ground truth pairs.

Parameterization: A key benefit of DICE is its dependence on
a single parameter , the initial seed-set size m. We observed
that for most products, there exists a range of m for which
the resulting regions are nearly the same. This is expected
because if the supplied value of m is less than, but close to,
the optimal value, the iterative diffusion-based design of DICE
would ensure the discovery of all relevant stores Thus, we keep
the seed-set size fixed at 100 for all subsequent experiments
as it returned quality results for a wide choice of products.

TopK suffers from a serious limitation when compared to
SSR and DICE. The characterizing regions for all products
contain the same number of stores, k, as fixing k fixes the
number of stores in the returned regions. Single value of k
may not be suitable for several products simultaneously. Thus,
choosing k becomes a non-trivial task. DICE does not suffer
from this limitation because though the seed-set size m is same
for all products, the number of stores added during diffusion
phase are different and product specific.

We give TopK the flexibility to return characterizing re-
gions of different sizes in the following manner. For each
product, TopK uses the number of stores in the characterizing
regions returned by DICE as the value of k i.e. k = |SDICE

p |.
Thus, TopK is executed with different values of k for different
products. One could argue that this gives undue advantage to
TopK by giving it a calculated guess for k. As we show later,
despite the added advantage, TopK is outperformed by DICE.

In contrast, SSR requires proper specification of up to
four parameters. Of the four parameters listed in Table III,
two, Gaussian kernel size and ε, are fixed to values specified
in [5]. Optimal values for the remaining two parameters are
obtained using Recursive Random Search [13]. We explore the
range [0, 1000] for σ and [0, 200] for ρ. In Figure 6, we show
the variation in Jaccard overlap achieved by SSR (averaged
over all ground-truth pairs) w.r.t its parameters, in vicinity
of the optimal values. The optimal aggregate Jaccard overlap
achieved by SSR is 0.18.

We list the complete set of parameters for all three algo-
rithms with their default values in Table III. We abstain from
listing the default value for TopK since instantiating DICE
instantiates TopK.

TABLE III. DEFAULT PARAMETERS FOR EXPERIMENTS.

Algorithm Parameter Value
DICE Seed-set size (m) 100
SSR Kernel width (σ) 74
SSR Morphological radius (ρ) 16
SSR Gaussian kernel size 45
SSR ε 5× 10−4



(a) peculiar meat, m = 50 (b) peculiar meat, m = 100 (c) chewing gum, m = 50 (d) chewing gum, m = 100

Fig. 5. Impact of seed-size (m) on two different products, peculiar meat and chewing gum. Initial seed-set stores are indicated in red while those added during
diffusion in grey. The seed-set stores are more localized for product peculiar meat than for chewing gum. Consequently the former encounters more growth
(larger number of grey stores) at both values of m during the diffusion step.

Fig. 6. Parameter space exploration for SSR [5]. Optimal Average Jaccard
Overlap is obtained at Kernel Width=74 and Morphological Radius=16.

Result: Finally, we present the results of the empirical com-
parison in Figure 7. DICE achieves significantly higher values
for Average Jaccard overlap (Average) than TopK and SSR.
The relative gains are 19.6% and 99.02%. DICE also achieves
the highest value for maximum Jaccard overlap (Max) and
minimum Jaccard overlap (Min) against a ground truth pair.

For deeper examination, we explicitly present and discuss
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Fig. 7. Performance evaluation of TopK, SSR and DICE against the 42
ground truth pairs. Seed-set size for DICE (m) was fixed at 100. For TopK,
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p |. Parameters for SSR were fixed at σ = 74 and ρ = 16.

the characterizing regions returned for two anonymized prod-
ucts, detergent and canned tomatoes, in Figures 8 and 9.

In Figure 8, results from TopK, while consistent with
the corresponding heatmap, Figure 8d, are expectedly more
fragmented. Whereas SSR (Figure 8c) picks up high frequency
variation within the characterizing region and results in a
characterizing region that is too small.

As compared to the product in Figure 8, the product
in Figure 9 has less sharply defined characterizing region
(i.e. the product density in the characterizing region is not
significantly higher than elsewhere). This can be ascertained
from their respective heatmaps (Figure 8d and Figure 9d). This
increased noise has adverse effects on both TopK and SSR.
For TopK, Figure 9b, the severity of incurred fragmentation
increases substantially. SSR, Figure 9c, results in too large a
region, covering almost all of France. This occurs as the high
frequency variations give rise to several contours (demarcating
sharp fall in product density) in the binary map of SSR which
unify into a single connected component post morphological
closing.

Note that DICE is also adversely affected by increased
noise as established by Figures 9a and 8a. However, the miti-
gating effect of diffusion based design counters the introduced
noise enabling DICE to deliver best results for both products.
The Jaccard overlap as achieved by DICE, TopK, and SSR are
0.41, 0.31, 0.02 for detergent and 0.36, 0.17, 0.04 for canned
tomatoes.

We also remark that SSR was observed to consistently re-
sult in regions that are either too small or too large. Figures 8c
and 9c present the two different extremes achieved by SSR.

To substantiate our argument about fragmentation, we
quantified the incurred fragmentation (as the average pairwise
distance between stores in Sp) and measured it for different
choices of seed-set size (m). We show the obtained result in
Figure 10. TopK incurs more fragmentation than DICE. In
either case, the fragmentation increases with an increase in
seed-set size, since larger seed-sets result in larger character-
izing regions that are spread over a large area. At higher values
of m, both methods return similar regions and thus incur the
same amount of fragmentation.



(a) DICE (b) Top-K (c) SSR (d) Heatmap

Fig. 8. Illustration of characterizing regions obtained for the ground-truth pair (detergent, Languedoc-Roussillon). While TopK (Figure 8b) significantly overlaps
with Languedoc-Roussillon, it includes several distant stores. SSR (Figure 8c) picks up the sharp density variation within the characterizing region and results
in a region that is too small. DICE delivers the best result (Figure 8a). Jaccard overlap with the boundaries of Languedoc-Roussillon region of France are 0.41
(DICE), 0.31 (TopK) and 0.02 (SSR).

(a) DICE (b) Top-K (c) SSR (d) Heatmap

Fig. 9. Illustration of characterizing regions obtained for the ground truth pair (canned tomatoes, Picardie). TopK (Figure 9b) results in high fragmentation
and SSR (Figure 9c) results in a very large region. Jaccard overlap achieved by the 3 approaches with the French administrative region of Picardie are 0.36
(DICE), 0.17 (TopK) and 0.04 (SSR).
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3) User Study: We conduct two different types of user
studies. The first study (comparative evaluation) is done to
perform a human assessment of the quality of the results
obtained by the three methods. The second study (independent
evaluation) captures the utility of results returned by DICE.

Each study was independently conducted on two different
groups of respondents, Users and Experts. The group Users

consisted of 30 novice users from France, while the group
Experts consisted of 8 experts from the retail domain who had
in-depth knowledge of products and their consumption trends.
We now present the two user studies.

Comparative Evaluation: The first study provides a compar-
ison of the goodness of the three methods as perceived by
average users and marketing experts. We generated, randomly,
a list of 20 products and the corresponding characterizing
regions returned by all three methods. For each product,
the respondents were tasked with indicating which of the
three methods best reported the characterizing regions for the
product. The maps were anonymized and randomly permuted
to eliminate any bias. In Table IV we present the votes received
by each method averaged over all user and products.

DICE establishes itself as a clear favorite among both Users
and Experts. While SSR outperforms TopK for Users, the
opposite holds for Experts. We attribute this observation to
the fact that Users exhibit an aesthetic bias that influences
them to vote for the method that returns aesthetically pleasant
characterizing regions. SSR, due to its region selection step,
returns a single contiguous region for each product which is
appealing to Users. Experts, being more informed about the
products’ consumption trends, do no suffer from this bias.

Independent Evaluation: The aim of the second user study
is to perform an independent evaluation of DICE. For each



TABLE IV. USER-STUDY: COMPARATIVE EVALUATION

DICE TopK SSR
Users 46.55 21.13 32.32

Experts 47.46 34.19 18.35

TABLE V. USER-STUDY: INDEPENDENT EVALUATION.

Not agree Weak agree Moderate agree Agree Strong agree
Users 24.05 23.53 28.47 18.33 5.62

Experts 10.24 34.58 27.62 19.52 8.04

product in a randomly generated list of 10, users were asked to
express their level of agreement that the shown map (obtained
via DICE) correctly highlights all parts of France expected
to be characterizing for the product. Agreement levels were
expressed on a scale of 1 to 5. Results were averaged over all
users and all products.

We present the final figures in Table V. More than 70% of
Users and 80% of Experts show some level of agreement with
the results. Experts show greater agreement than Users which
may again be attributed to the aesthetics bias as Experts are
more likely to show agreement with non-trivial shaped regions.

V. RELATED WORK

Uncovering characterizing regions for geotagged data is a
relatively new problem. Most works have dealt with exam-
ining different types of user generated content, such as pho-
tographs, blogs, tweets etc. to unearth colloquial boundaries
[1] [2] [3] [4] [5].

The influence maximization problem [6] [7] [8] [14], due to
its generic formulation, has been widely studied under various
use-cases. Consequently, the IC and LT influence propagation
models have been successfully applied to address viral mar-
keting [9] [10], recommendation systems [11], identification
of influential peers in social graph [12] [15] etc. However,
no previous work has investigated the applicability of such
propagation models towards discovering prominent regions for
retail products.

To the best of our knowledge, the presented body of work is
the first to address the problem of uncovering characterizing
regions for consumer products. The application of influence
propagation models to uncover such regions has not been
investigated in past works.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present DICE, an algorithm that ex-
tracts characterizing regions for a given consumer product
using retail transaction logs. We investigate the application
of decay-based, weighted, influence propagation models to
achieve enhanced smoothing. Intuitively, DICE starts from a
seed set of stores with high sales for a product and iterates
over neighboring stores to find the largest contiguous regions
covering all high-sales stores or stores that are contiguous to
high density ones. As a consequence of this study we have
developed a tool that can be used to extract and analyze
colloquial characterizing regions for consumer products.

Our empirical evaluation and user studies on customer
receipts of a large food supply chain in France show that DICE
discovers meaningful, coherent, product-centric characterizing

regions and outperforms its competitors. This opens several
avenues for future work. In particular, we seek to explore the
following two directions. We intend to combine pattern mining
techniques with characterizing regions to extend our focus
from single product to set of products. We also seek to correlate
found regions with health indicators for different regions to
gather information on customers’ wellbeing. Both directions
open challenging computational questions that necessitate the
development of scalable algorithms to enable the production
of such analytics efficiently.
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