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Abstract

Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the
impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost
exclusively by correlative species distribution models (correlative SDMs). However, concerns regarding the reliability
of their predictive power are growing and several authors call for the development of process-based SDMs. Still,
each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used
by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT) that
lie in the continuum between correlative models and process-based models for the current distribution of three major
European tree species, Fagus sylvatica L., Quercus robur L. and Pinus sylvestris L. We compare the consistency of
the model simulations using an innovative comparison map profile method, integrating local and multi-scale
comparisons. The three models simulate relatively accurately the current distribution of the three species. The
process-based model performs almost as well as the correlative model, although parameters of the former are not
fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the
European scale, by establishment and survival through processes primarily related to phenology and resistance to
abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model
could however be improved by integrating a more realistic representation of the species resistance to water stress for
instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and
variations on these processes.
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Introduction

Recent climatic and atmospheric CO2 concentration changes
have been shown to cause modifications in ecosystems
distribution, structure and function [1,2]. These modifications
greatly alter ecosystems biodiversity, distribution and
ecosystems services leading to socioeconomic and financial
costs [3,4]. However, in several cases the loss of biodiversity
and associated services could be avoided or minimised by
developing adaptive management strategies [3] supported by
intelligible species’ potential responses to climate change
integrated indicators. These indicators are often provided by
species distribution models (SDMs) [5]. Yet, forecast of
species’ distributions presents substantial discrepancies
according to the type of predictive modelling approach used
[2,6–8] highlighting the uncertainties associated with these
predictions [6,9].

These uncertainties may puzzle environmental decision
makers and shade doubt on the credibility of species’
distribution projections. Therefore, rigorous estimations of
models strengths, weakness and discrepancies have to be
performed. In this regard, we present here the comparison of
different kinds of SDMs simulating the current distributions of
three major European forest tree species. We identify the
reasons for the discrepancies observed in the simulations in
order to propose new research avenues in the development
and amelioration of such models.

One fundamental assumption in plant biogeography is that at
a continental scale, a potential species’ distribution is mainly
determined by climatic and environmental conditions [10].
Seminal formalised ideas about the relationships between
environmental factors and species’ distribution emerged with
the niche concept by Grinell [11], defined as the set of
environmental conditions required by species to attain positive
population growth rate. Albeit the term “ecological niche” has
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been used and defined in numerous ways since then [12], the
Hutchinsonian [13] formalisation of the niche as a multi-
dimensional space of suitable environmental conditions is still
of prime importance in ecological modelling studies [14].

Indeed, the definition of the realised niche being a subset of
the fundamental niche corresponding to a favourable
combination of environmental variables at a given time and
location for a species’ occurrence [15], remains the essential
assumption of correlative SDMs. These models rely on the
definition of species-specific bioclimatic envelopes based on a
set of bioclimatic limits constraining the observed geographical
species expansion. These limits are then superimposed on the
geographical distribution of the selected bioclimatic variables
for a given scenario [16]. Such models have the advantages of
allowing rapid analyses for numerous individual species even
when the expansion limiting factors are poorly known [16].

However, a number of methodological issues regarding the
use of this type of model have been raised (for a review, see
[17]), among them being:

• The statistical techniques used to construct models and the
selection of explanatory variables included are responsible for
the largest discrepancy in projections [18].

• Many non-climatic factors may influence species
distributions such as migration rates, landscape continuity or
biotic interactions [19].

• The key assumption of equilibrium between species
distribution and environmental conditions may never be verified
[20,21].

Recently, process-based SDMs have been developed which
are deeply grounded in the second definition of the niche
proposed by Rosenzweig [22] as the set of adaptive traits
allowing a species to survive in various environments. A few of
them have been developed for plants [23–25] or animals
[26,27] over the past decades. They incorporate the plasticity
of responses for several key traits and processes governing
species establishment, growth, survival and reproduction in
response to environmental factors. The explicit formulation of
functional relationships between environmental factors, species
traits and biological processes makes the projections of this
kind of models more credible and particularly under novel
combination of climatic factors (ie. unseen combinations of
temperature, precipitations and CO2 atmospheric’
concentrations) [2,6,28,29]. Therefore, we expect that they
might be used more reliably to project the impact of
environmental change in the coming centuries [26], increasing
thus greatly their value for climate change mitigation and
adaptation strategies [6].

However, the development of these models requires a lot of
information on traits, and processes modelled, to produce
pertinent sets of indicators for how vegetation will respond
spatially and temporarily to environmental conditions’
modifications [30].

A third category of SDMs, called hybrid SDMs, emerged in
the 1990s combining the correlative and the process-based
approach to model the fundamental niche [27,30]. The first
models of this kind which were developed are Biogeographical
Equilibrium Models (BEMs; [31]) followed by Dynamic
Vegetation Models (DGVMs [27]). These models were primarily

designed to project biomes distributions and later plant
functional type distributions. Yet, recently these models have
been also used at the species level [32–34]. DGVMs, use
bioclimatic limits (determined using biomes or species’
observed distributions) as purely correlative SDMs, but also
simulate processes related to growth, with formulations
parameterised using field or laboratory measurements like
purely process-based SDMs.

Recent studies have compared the different kinds of SDMs.
Morin & Thuiller [8], Kramer et al. [35] and Cheaib et al. [6]
compared the ensemble of correlative models to process-
based SDMs and hybrid SDMs under future climate scenarios.
They found that although all models projected northward
species distribution shifts, the amplitude of these shifts were
increasingly divergent, depending on the climatic warming
scenario.

Our objectives in the present study were first to assess and
understand the consistency between conceptually different
SDMs: a correlative model (STASH), a hybrid model (LPJ) and
a process-based model (PHENOFIT). Using a present-day
climatic dataset, each model is used to project current potential
distributions of three common tree species Fagus sylvatica L.,
Quercus robur L. and Pinus sylvestris L. at the European scale.
These species have been selected as being major components
of European’s temperate and boreal forests [36], spanning
broad environmental conditions and for which the models’
required data are available. Simulations are compared by
determination of their agreement with the species observed
distribution and by testing the consistency of simulations using
the comparison map profile method (CMP) [37,38].

Second, we aimed to identify the strengths and weaknesses
of each model. We assume that pinpointing areas and scales
of divergence and agreement is a relevant way to distinguish
necessary “processes” or traits to consider when projecting
vegetation distributions. This should identify the fundamental
processes to refine or implement in a model’s generation to
address the shortcoming of the current one.

Materials and Methods

Species distribution models
STASH.  STASH is a correlative envelope model based on

physiological bioclimatic pertinent descriptors [39]. These
descriptors are assumed to drive the species’ physiological
responses to climate. Some of them act as on–off switches and
limit the spatial distribution of the species, while others weight
the degree of establishment success in a grid cell. Each
parameter is fitted based on the species current distribution.
For this reason, STASH is considered here as a correlative
model although its parameters are predefined and not selected
statistically as in most SDMs. See [39] and Appendix S1 &
Table S1 in Supporting Information for further details and
model parameterisation. Stash is available from the EMBERS
group of Lund University, upon request.

LPJ.  LPJ is a dynamic general vegetation model combining
bioclimatic limits to the species establishment and survival and
explicit description of mechanistic of ecosystems’ processes
such as physiology, biochemistry, vegetation dynamics and
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carbon and water fluxes [27]. A minimum set of bioclimatic
limits are used to define the spatial boundaries of the species’
distributions. Using climatic, soil and CO2, LPJ estimates
growth-related indices such as leaf area index (LAI) or net
primary production (NPP). Here, the version described in Gritti
et al. [40] was used but did not take inter specific competition
into account. The simulations were performed at the species
level, using specific parameters when available, or the generic
parameters of the corresponding plant functional type
described in Smith et al. [41].

See [42] and Appendix S1 & Table S1 for further details and
model parameterisation. LPJ is available from the EMBERS
group of Lund University, upon request.

PHENOFIT.  PHENOFIT is a process-based SDM describing
tree species potential distributions. It estimates the fitness of an
average individual of a species in response to climatic and
environmental conditions. The model relies on the assumption
that species adaptation to abiotic conditions is tightly related to
its capacity to synchronise its annual life cycle with seasonal
climatic variations, directly affecting its probability to survive
and to reproduce. Thus, annual survival probability of the
considered species is the product of i) its probability of
surviving climatic stress (frost and drought) until the following
reproductive season and ii) its probability of producing viable
seeds before the end of its current annual cycle. The model
has been validated for a dozen American tree species
[8,23,43,44]. See Appendix S1 & Table S1 for full details and
model parameterisation. PHENOFIT is available from the
Bioflux group of CEFE/CNRS, upon request.

Simulations
To simulate the three species distributions with the three

SDMs, we used observed climate and atmospheric CO2

concentrations from the ATEAM project dataset (http://
www.pik-postdam.de/ateam [45]). This dataset covers the
European window with a 10' resolution, and contains monthly
values of temperature, precipitation and percentage full
sunshine.

Monthly data from the first thirty years were used repeatedly
to run the LPJ from bare ground, with a spin up period of 500
years, until carbon pool equilibrium was attained. This
equilibrium state was used as the starting point for the model
which was driven using the full dataset for the period
1901-2000.

Monthly data were interpolated to daily values for the same
period, following classical methods used by several weather
generators (e.g. CLIGEN [46]) to drive PHENOFIT.

Monthly means were calculated over a twenty-year period
(1981-2000) as input data for STASH. Supplementary
simulations were conducted to disentangle the individual
effects of bioclimatic limits and growth processes within LPJ
species distribution projections by omitting the correlative
component of the model (ie. no bioclimatic constraints). Indeed,
four bioclimatic limits in LPJ drive species survival and
establishment: minimum GDD5 for establishment (GDD5mine);
minimum temperature of the coldest month for survival and
establishment (respectively Tcoldmins and Tcoldmine);
maximum temperature of the coldest month for establishment
(Tcoldmaxe) (Appendix S1 & Table S1 [39]). These limits

represent known or likely physiological limiting mechanisms
defining the climate space in which a species may occur. The
specific values are taken from the forestry literature [47] and by
comparison of current species distributions with bioclimatic
variables [34].

Model evaluation and comparison
Model outputs were occurrence probability for STASH, LAI

for LPJ and a fitness index for PHENOFIT. LAI and fitness are
used as estimates for species occurrence probability. The three
indexes were standardised as continuous variables ranking
from 0 to 1 to ease comparison of model projections. To
evaluate model projection accuracy, we computed the AUC
(Area Under the Receiving Operating Curve (ROC; [48]) and
the Cohen’s kappa statistic [49] using species observed
distribution maps from Atlas Flora Europea [50] completed by
Laurent et al. [51] (See Figure S1). The AUC [48] is used here
as a single threshold-independent measure of model
performance. AUC values range between 0.5 and 1, for which
values > 0.7 indicate a good fit according to the guidelines of
Swets [52]. To calculate Cohen’s kappa, we transformed model
outputs into dichotomous presence-absence projections using
a specific threshold calculated as the model’s output value
leading to maximal distance between the ROC and the 1:1
curve. Kappa ranges between -1 and 1, for which values
between 0.4 and 0.75 are usually considered as a good fit and
values >0.75 an excellent fit according to Landis & Koch [53].
These two statistics give an overall estimation of the accuracy
of model projections but do not allow a localisation of model
weaknesses [37]. For this reason, we also used the
Comparison Map Profile method (CMP; [37,38]) to detect
spatial similarity and difference patterns, as well as their spatial
resolution, at the European scale using three indices:

• The Cohen’s kappa (Kappa) to compare model fit with
observed distributions. This index gives an integrated idea
about the commission and omission modelled relatively to
presence and absence of species. Note that the Kappa value
computed through the CMP method is relatively low, when
compared with monoscale spatial classical methods essentially
due to spatial averaging.

• The absolute distance (D) between model projections. This
index gives an idea about absolute differences between model
outputs.

• The cross-correlation coefficient (CC) to compare spatial
patterns between model projections. This index gives an idea
about relative variations, such as similar or contrasting
directions of gradients and common anisotropies, between
model outputs.

The CMP method is based on a circular moving window
comparison covering the entire considered window. In addition,
the moving window process is repeated several times by
increasing the window size from scale 1 (± 1 pixel around the
central one, approximate window size: 0.5°x0.5°) to scale 20 (±
20 pixels around the central one, approximate window size:
8°x8°) (See Figure S2). Scale 1 resembles a pixel-by-pixel
comparison of the two images, while scale 20 informs on large
gradient similarities between the compared images. This
approach permits us to identify the spatial scale at which
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similarities and differences between images appear. These
similarities are gathered into successive monoscale maps. The
index profile provides the averaged values of all moving
windows computed at the same scale across the image for
each monoscale. We also computed the multiscale index map
as the average pixel by pixel of all its monoscale maps. Both
the profile and the multiscale map are complementary giving
scaling and spatial information about the image comparison,
respectively. Low Kappa and CC values indicate that the
similarity between original images is poor, whereas low D
values indicate good agreement. Hence, the CMP method
highlights different spatial patterns between observed and
projected species presence and of projected scores. For
detailed description of the CMP method see Gaucherel et al.
[37] and the associated software (http://umramap.cirad.fr/
amap2/logiciels_amap/index.php?page=cmp).

Results

Model validation
According to the averaged AUC and Kappa values and maps

of projected current distributions, model projections for the
three species were accurate across the majority of Europe, for
all models (Table 1 Figures 1 & 2). Model predictions were
most reliable for Q. robur (except with LPJ) and least reliable
for P. sylvestris. This suggests that the three models, despite
being different, are able to capture the main climatic constraints
for species distributions.

Yet, discordances between projections and observations
(Figures 1 & 2) are noticeable at specific locations. Visual
comparisons between bioclimatic variables maps (See Figure
S3) and additional LPJ simulations with no bioclimatic
correlation constraints (data not shown) show that the
Tcoldmins and Tcoldmine bioclimatic limits used in LPJ are
responsible for the discrepancy between F. sylvatica and Q.
robur north-eastern projected range limits, while water stress is
responsible for the discrepancy between Q. robur and P.

sylvestris south-eastern projected range limits. They also
reveal that the poor explicit representation and
parameterisation of the hydric constraint in the version of
PHENOFIT used in this study is responsible for an
overestimation of the effect of water stress on the eastern
range limits of F. sylvatica and Q. robur. PHENOFIT
underestimated the presence of P. sylvestris in its
Scandinavian marginal distribution, probably due to local
adaptation of Scandinavian population phenology that we could
not incorporate in this study (due to a lack of phenological data
for this region). P. sylvestris indeed exhibits strong adaptive
differentiation among populations across its range [54].

The three models fail to reproduce the altitudinal distribution
of F. sylvatica in the Alpine region, but this is mainly due to the
coarse resolution of the observed current distribution data and
the simple downscaling method used in this study. Low
accuracy seems to occur also regarding the British Isles for F.
sylvatica and P. sylvestris where Flora Europaea report their
absence. However, more recent species distribution datasets
report the presence of these species in the British Isles [55].

Model projections are systematically more accurate
(approximately two times better) at finer than at larger spatial
scales (Figure 3a). This results from the fact that it is usually
more difficult to match large gradients than local patterns, and
that the three models describe the relationships between local
climate and local species presence. At fine scales, the model
may match the observation due to a correct handling of
concerned processes or by chance (pure random patterns
would lead to an averaged Kappa value around 0.01 at scales
broader then 2). To maintain high Kappa values at broader
scales, the model should match observations in a larger
number of locations, with the correct spatial structure, which is
far less probable.

The profiles of the Kappa anomalies exhibit minima, i.e.
worse fits, for different scales according to the model.
Generally, STASH presents minima at large scales when LPJ
and PHENOFIT present minima at low scales (except in the
case of P. sylvestris for LPJ) suggesting that process grounded
models handle broad scales processes more efficiently. This is
particularly striking in the case of PHENOFIT, which has lower
Kappa values on average than STASH and LPJ (Figure 3 b, c
& d). This reflects a stronger control of species distributions in
PHENOFIT by temperature, a parameter that exhibits broad
scale patterns. Phenology is indeed the keystone of this model
and is strongly controlled by temperature. Interestingly, LPJ
and STASH exhibit similar and higher relative Kappa
anomalies profiles than PHENOFIT, suggesting that LPJ and
STASH share common key features in their projections. These
features are the bioclimatic limits, not derived from processes,
driving species establishment, survival and accordingly
distribution, in LPJ.

This latter result is confirmed by the additional simulations
done with LPJ. They indeed show that whatever the species,
the area within which NPP and LAI are positive, always
encompasses the survival area driven by bioclimatic limits
which itself always encompasses the establishment area also
driven by bioclimatic limits. Survival and establishment reduced
respectively the growth area by 66% and 59% for Q. robur,
52% and 48% for F. sylvatica, 88% and 76% for P. sylvestris.

Table 1. Accuracy of projection of F. sylvatica, Q. robur, P.
sylvestris present distributions by STASH, LPJ, and
PHENOFIT (corresponding to Figure 1).

Species Model AUC SPT kappa0 Kappamean

F. sylvatica STASH 0.84 0.1 0.598 0.453
 LPJ 0.87 0.761 0.623 0.496
 PHENOFIT 0.78 0.138 0.438 0.324
Q. robur STASH 0.85 0.005 0.630 0.396
 LPJ 0.82 0.670 0.529 0.374
 PHENOFIT 0.79 0.576 0.478 0.308
P. sylvestris STASH 0.64 0.304 0.474 0.331
 LPJ 0.68 0.590 0.357 0.312
 PHENOFIT 0.68 0.704 0.321 0.228

kappa0 is the Kappa calculated for the monoscale 0 (pixel by pixel comparison)
and Kappamean is the average Kappa calculated for the 20 monoscales
(corresponding to the Figure 2). Species Presence Threshold (SPT) is defined as
the inflexion point of the ROC curve and represents the specific threshold above
which the focal species is considered as present in model projections.
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Distribution limits of F. sylvatica, Q. robur and P. sylvestris are
thus to a very large extent driven by the bioclimatic limits
determining survival and establishment and not by growth
processes in LPJ. A part of the deviance from the observed
distribution is thus directly due to these bioclimatic limits, as the
comparison between model projections also suggested, in
particular concerning the Tcoldmins and Tcoldmine bioclimatic
limits.

Model comparison
With the exception of F. sylvatica, the absolute distance

between the models’ standardised indices of species’
performance was smaller between LPJ and PHENOFIT than
between LPJ and STASH (Table 2 Figure 4a). This is due to
the fact that LPJ and PHENOFIT yield a high performance
index (LAI for LPJ and fitness for PHENOFIT) across the
species range, while STASH yields an index of occurrence
probability that varies much more across the range (Figure 1).
In the case of F. sylvatica, the geographical variation of the

PHENOFIT index is very similar to that of STASH. The
absolute distance maps (Figure 5) between LPJ and STASH
allowed us to identify two main discordant areas that do not
vary for the three species: northeastern Iberia Peninsula and
the extended Balkanic area. This discrepancy is due to the
underestimation of the effect of water stress on the species
distribution in LPJ. The absolute distance between models also
reveals a too-strong effect of the parameter Tcoldmins
(minimum temperature sustained by the species) at the north-
eastern edge of Q. robur distribution in LPJ. Therefore, model
comparisons confirm the causes of projection inaccuracy
previously identified with the Kappa.

The cross-correlation coefficient between model projections,
capturing differences in spatial structures, does not vary much
across the spatial scale for the temperate broadleaved species
(Figure 4b), while it increases sharply with the spatial scale for
P. sylvestris. This suggests that environmental variables
showing geographical patterns at global scales such as
temperature are key in the distribution of this species.

Figure 1.  Projection of tree species current distributions by the three models after applying the species specific
threshold (columns: STASH; LPJ; PHENOFIT; lines: F. sylvatica; Q. robur; P. sylvestris; black dots: current observed
distribution).  
doi: 10.1371/journal.pone.0068823.g001
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Correlations are generally high in most regions suggesting a
predominant impact of temperature in the three models
compared to water constraints (Figure 6). LPJ and STASH
correlate well and more so than LPJ and PHENOFIT. The
higher correlations between LPJ and STASH are the result of
their more similar projected species distribution limits than a
spatial correlation of their indices within the species
distributions (result not shown). This again stresses the fact
that bioclimatic variables seem to drive species distribution
limits in LPJ while carbon and water flux drive index variation
within distributions. Finally, LPJ and PHENOFIT correlate the
most at high latitudes and altitudes, and in the Mediterranean
area (Figure 6) and the least in the north-eastern part of
Europe.

Discussion

Our results showed that despite their totally different
assumptions, the three SDMs, STASH, PHENOFIT and LPJ,
provide similar and accurate projections of the current
distribution of F. sylvatica, Q. robur and P. sylvestris current

distributions. Good performance of correlative SDMs to project
species current distributions, although not necessarily a good
performance gage in non-analogous conditions is usually taken
as grounded since the models are built on observed species
distributions. Good performance of process-based models to
project species current distributions is more striking since their
observed distributions are normally not used to construct and
parameterise the model.

Coming back to the definition of the niche by Rosenzweig
(1987) as the set of traits that allows a species to survive in
certain environmental conditions, the congruence observed
between the process-based and the hybrid SDMs projections
suggests a certain redundancy of the niche. In other words, the
niche can be described by different sets of traits and/or
processes, equally important. This redundancy of the niche
might result from parallel evolution of all traits and processes
adapting to the same environmental constraints for a particular
species [56]. Indeed, why would growth be optimal if the
species cannot reproduce and vice versa? Thus, it might not be
necessary to have a complete description of the ecosystem in

Figure 2.  Average Kappa over the 20 monoscales for model projections of species present distributions (columns:
STASH; LPJ; PHENOFIT; lines: F. sylvatica; Q. robur; P. sylvestris; black dots: current observed distribution).).  
doi: 10.1371/journal.pone.0068823.g002
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terms of traits and processes to get an accurate projection of
species distributions.

Our detailed analysis of LPJ projections shows that growth
processes actually do not explain species distribution limits
which are almost entirely explained by the bioclimatic limits

driving survival and establishment. Optimal climatic conditions
for growth seem wider than the optimal conditions for
reproduction and survival. LPJ has been developed initially to
project biomes composition, function and distribution based on
competition for light and water between different plant
functional types, competition rules being driven by LAI and
NPP achieved by each PFT. Processes driving survival and
reproductive success have a greater importance in explaining
species’ distribution limits at the European regional scale than
growth processes involved in PFTs’ performances. The latter
playing a larger role in explaining populations’ density patterns
across a species range.

From the three models tested in this study, only PHENOFIT
is able to describe species’ distribution limits solely on the
basis of processes. Processes involved in resistance to abiotic
stresses (ie. frost and drought), and involved in the regulation
of the annual developmental cycle (ie. phenology), appear key
in explaining species range boundaries. Still, PHENOFIT
projections could be substantially improved, by representing
more precisely resistance to drought; but also by representing
more precisely the genetic differentiation that can arise among
populations within the species range. According to our

Table 2. Absolute distance (D) and cross-correlation (CC)
between model projections of the tree species present
distributions (F. sylvatica; Q. robur; P. sylvestris), at the
monoscale 0 (pixel by pixel comparison), D0, CC0, and
averaged over the 20 monoscales, Dmean, CC mean

(corresponding respectively to Figures 5 & 6).

Species Models D0 Dmean CC0 CCmean

F. sylvatica LPJ-STASH 0.1721 0.1797 0.6601 0.4696
 LPJ-PHENOFIT 0.1743 0.1923 0.6163 0.2151
Q. robur LPJ-STASH 0.1650 0.1869 0.7074 0.4929
 LPJ-PHENOFIT 0.1113 0.1542 0.6768 0.2974
P. sylvestris LPJ-STASH 0.2145 0.2007 0.6858 0.4770
 LPJ-PHENOFIT 0.0334 0.1150 0.7467 0.4838

Figure 3.  Mean Kappa of the 3 models projections for species present distributions ((a) circle: F. sylvatica; square: Q.
robur; triangle: P. sylvestris) and relative anomalies (×: LPJ; +: STASH; *: PHENOFIT) for (b) F. sylvatica; (c): Q. robur; (d):
P. sylvestris.  
doi: 10.1371/journal.pone.0068823.g003
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Figure 4.  Mean absolute distance (a) and mean cross-correlation coefficient (b) between models and associated
standard deviation. Circle: F. sylvatica; Square: Q. robur; Triangle: P. sylvestris. Black: LPJ-STASH; Open: LPJ-
PHENOFIT.  
doi: 10.1371/journal.pone.0068823.g004
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simulations, this is especially important for P. sylvestris for
which the lack of observations data didn’t allow us to consider
population’s phenological response heterogeneity.

The comparison of STASH, LPJ and PHENOFIT, mostly
pinpoint models weaknesses, but also highlight the
predominant impact of temperature on P. sylvestris distribution.
Global warming may thus be a major threat to this species’
populations in Western Europe where they are already in the

warmest climatic conditions they can sustain as mentioned by
Reich & Oleskyn [57] and Cheaib et al. [6].

However, the main caveat of this study, like previous model
intercomparison studies [6–8], is that the estimation of the
accuracy of each model relies upon comparison of model
projections with species presence and absence records. Each
of the considered vegetation model selected in this study,
projects the potential distribution of a species (even if

Figure 5.  Average absolute distance between standardised model indices over the 20 monoscales (columns: LPJ-
STASH; LPJ-PHENOFIT; lines: F. sylvatica; Q. robur; P. sylvestris; black dots: current observed distribution).  
doi: 10.1371/journal.pone.0068823.g005
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correlative models are fitted on the species realised
distribution) without considering factors such as dispersal
abilities, complex biotic interactions or human activities which
would explain the species present distribution. In addition, one
has to note that the few databases of species distribution show
major discrepancies even for common and widely distributed
species such as F. sylvatica (Chuine et al., in prep). Therefore,
the estimation of the model projections accuracy is highly
dependent upon the reference database.

Our results also show that process-based SDMs can provide
nearly as accurate projections as correlative SDMs in for the
current species’ distributions. This suggests that their
projections for the future may be more accurate than that of
correlative SDMs because they are thought to be more robust
(yet not demonstrated to our knowledge so far). Still, process-
based SDMs have to achieve higher performance at broader
spatial scales, which could be met by a better representation of
species resistance to drought which is one of the most
important weaknesses of current models. Recent advances in

Figure 6.  Average cross-correlation between models over the 20 monoscales (columns: LPJ-STASH; LPJ-PHENOFIT;
lines: F. sylvatica; Q. robur; P. sylvestris).  
doi: 10.1371/journal.pone.0068823.g006
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our understanding of the relationship between drought, plant
water potential, and the different strategies of resistance to
embolism and plant mortality [58–60] might allow significant
improvements for models in the near future. We should also
improve our representation of non-environmental factors, such
as the genetic differentiation within the species range for the
traits and processes, which are crucial in defining the species
niche, as well as the way we handle history and human
activities. Thus, considering the current caveats of the different
kinds of available SDMs, our results advocate for ensemble
models projections to produce reliable scenarios of species
distribution change for the future [7].

Conclusions

Our results highlight the need for model comparisons to
provide more robust projections of species range shifts in the
near future. Such comparison is a first step to pinpoint model
weaknesses and to suggest improvement paths for failing
components. But it also strongly advocates for the
development of consensual methods to combine SDMs
projections and uncertainties such as [7]. We show that
process-based SDMs can perform almost as well as correlative
SDMs despite the fact they are not parameterised on current
observed species distributions, and that their prediction
accuracy could be improved by integrating a more realistic
representation of the species resistance to water stress. Our
results also suggest that traits and processes responsible for
the species distribution limits are rather those driving survival
and reproductive success than those driving growth.
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