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Estimation of matrices with row sparsity

An increasing number of applications is concerned with recovering a sparse matrix from noisy observations. In this paper, we consider the setting where each row of the unknown matrix is sparse. We establish minimax optimal rates of convergence for estimating matrices with row sparsity. A major focus in the present paper is on the derivation of lower bounds.

Introduction

In recent years, there has been a great interest for the theory of estimation in high-dimensional statistical models under different sparsity scenarii. The main motivation behind sparse estimation is based on the observation that, in several practical applications, the number of variables is much larger than the number of observations, but the degree of freedom of the underlying model is relatively small. One example of such sparse estimation is the problem of estimating of a sparse regression vector from a set of linear measurements (see, e.g., [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF], [START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF], [START_REF] Lounici | Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators[END_REF], [START_REF] Van De Geer | High-dimensional generalized linear models and the Lasso[END_REF]). Another example is the problem of matrix recovery under the assumption that the unknown matrix has low rank (see, e.g., [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Rohde | Estimation of high-dimensional low rank matrices[END_REF][START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF]).

In some recent papers dealing with covariance matrix estimation, a different notion of sparsity was considered (see, for example, [START_REF] Cai | Optimal rates of convergence for sparse covariance matrix estimation[END_REF], [START_REF] Rigollet | Comment: "Minimax estimation of large covariance matrices under ℓ 1 -norm[END_REF]). This notion is based on sparsity assumptions on the rows (or columns) M i• of matrix M . One can consider the hard sparsity assumption meaning that each row M i• of M contains at most s non-zero elements, or soft sparsity assumption, based on imposing a certain decay rate on ordered entries of M i• . These notions of sparsity can be defined in terms of l q -balls for q ∈ [0, 2), defined as

B q (s) = v = (v i ) ∈ R n2 : n2 i=1 |v i | q ≤ s (1)
where s < ∞ is a given constant. The case q = 0

B 0 (s) = v = (v i ) ∈ R n2 : n2 i=1 I(v i = 0) ≤ s (2) 
corresponds to the set of vectors v with at most s non-zero elements. Here I(•) denotes the indicator function and s ≥ 1 is an integer.

In the present note, we consider this row sparsity setting in the matrix signal plus noise model. Suppose we have noisy observations Y = (y ij ) of an n 1 × n 2 matrix M = (m ij ) where

y ij = m ij + ξ ij , i = 1, . . . , n 1 , j = 1, . . . , n 2 , (3) 
here, ξ ij are i.i.d Gaussian N (0, σ 2 ), σ 2 > 0, or sub-Gaussian random variables. We denote by E = (ξ ij ) the corresponding matrix of noise. We study the minimax optimal rates of convergence for the estimation of M assuming that there exist q ∈ [0, 2) and s such that M i• ∈ B q (s) for any i = 1, . . . , n 1 .

The minimax rate of convergence characterizes the fundamental limitation of the estimation accuracy. It also captures the interdependence between the different parameters in the model. There is an rich line of work on such fundamental limits (see, for example, [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF][START_REF] Tsybakov | Introduction to non-parametric estimation[END_REF][START_REF] Johnstone | Gaussian Estimation: Sequence and Wavelet Models[END_REF]). The minimax risk depends crucially on the choice of the norm in the loss function. In the present paper, we measure the estimation error in • 2,p -(quasi)norm for 0 < p < ∞ (for the definition see ( 4)).

For n 1 = 1, we obtain the problem of estimating of a vector belonging to a B q (s) ball in R n2 . This problem was considered in a number of papers, see, for example, [START_REF] Donoho | Minimax risk over l p -balls for l q -error Prob[END_REF], [START_REF] Birgé | Gaussian model selection[END_REF], [START_REF] Abramovich | Adapting to unknown sparsity by controlling the false discovery rate[END_REF], [START_REF] Rigollet | Exponential screening and optimal rates of sparse estimation[END_REF]. Let η vect denote the minimax rate of convergence with respect to the squared Euclidean norm in the vector case. It is interesting to note that the results of the present paper show that, for the case p = 2, the minimax rate of convergence for estimation of matrices under the row sparsity assumption is n 1 η vect . Thus, in this case, the problem reduces to estimation of each row separately. The additional matrix structure does not lead to improvement or deterioration of the rate of convergence. We show that it is also true for general p.

A major focus in the present paper is on derivation of lower bounds, which is a key step in establishing minimax optimal rates of convergence. Our analysis is based on a new selection lemma (Lemma 1). The rest of the paper is organized as follows. In Section 1.1, we introduce the notation and some basic tools used throughout the paper. Section 2 establishes the minimax lower bounds for estimation of matrices with row sparsity in • 2,p -norm, see Theorems 1 and 2. In Section 3, we derive the upper bounds on the risks using a reduction to the vector case. Most of the proofs are given in the appendix.

Definitions and notation

Let A be a matrix or a vector. For 0 < q < ∞ and A ∈ R n1×n2 = (a ij ), we denote by A q = i,j |a ij | q 1/q the elementwise l q -(quasi-)norm of A, and by A 0 the number of non-zero coefficients of A:

A 0 = i,j I(a ij = 0)
where I(•) denotes the indicator function. For any A = (A 1• , . . . , A n1• ) T ∈ R n1×n2 and p > 0 define

A 2,p = n1 i=1 A i• p 2 1/p . ( 4 
)
For p = 2, A 2,2 is the elementwise l 2 -norm of A and we will use the notation • 2,2 = • 2 . For 0 < p < 1, we have the following inequality

A + A ′ p 2,p ≤ A p 2,p + A ′ p 2,p .
For q ∈ [0, 2) and s > 0 we define the following class of matrices

A(q, s) = {A ∈ R n1×n2 : A i• ∈ B q (s) for any i = 1, . . . , n 1 }. (5) 
In the limiting case q = 0, we will also write

A(s) = {A ∈ R n1×n2 : A i• ∈ B 0 (s) for any i = 1, . . . , n 1 }. (6) 
We set 

N n1×n2 = {(i, j) : 1 ≤ i ≤ n 1 , 1 ≤ j ≤ n 2 }.

Lower bounds

We start by establishing the minimax lower bounds for estimation of matrices over the classes A(s) (Theorem 1) and A(q, s) (Theorem 2). We denote by inf  the infimum over all estimators  with values in R n1×n2 . Consider first the case q = 0.

Theorem 1. Let n 1 , n 2 ≥ 2 and p > 0. Fix an integer 1 ≤ s ≤ n 2 /2 . Assume that for (i, j) ∈ N n1×n2 the noise variables ξ ij are i.i.d Gaussian N (0, σ 2 ), σ 2 > 0. Then, (i) inf  sup A∈A(s) P  -A 2 2,p ≥ C σ 2 (n 1 ) 2/p s log e n 2 s ≥ β; (ii) inf  sup A∈A(s) E  -A 2 2,p ≥ C σ 2 (n 1 ) 2/p s log e n 2 s .
where 0 < β < 1, C > 0, and C > 0 are absolute constants.

Proof. It is enough to prove (i) since (ii) follows from (i) and Markov inequality. For a A ∈ R n1×n2 , we denote by P A the probability distribution of N (A, σ 2 I) Gaussian random vector where I denotes (n 1 n 2 ) × (n 1 n 2 ) identity matrix. We denote by KL(P, Q) the Kullback-Leibler divergence between the probability measures P and Q.

To prove (i) we use Theorem 2.5 in [START_REF] Tsybakov | Introduction to non-parametric estimation[END_REF]. It is enough to check that there exists a finite subset Ω ′ of A(s) such that for any two distinct B, B ′ in Ω ′ we have

(a) B -B ′ 2 2,p ≥ C σ 2 (n 1 ) p/2 s log e n 2 s , (b) KL(P B , P B ′ ) ≤ α log (card Ω ′ )
for some constants C > 0 and 0 < α < 1/8. Denote by {0, 1} s n1×n2 the set of all matrices A = (a ij ) ∈ R n1×n2 such that a ij ∈ {0, 1} and each row of A contains exactly s ones. For any two matrices A = (a ij ) and

A ′ = (a ′ ij ) in {0, 1} s n1×n2 define the Hamming distance d H (A, A ′ ) = (i,j)∈Nn 1 ×n 2 I {aij =a ′ ij } .
We use of the following selection lemma proved in Appendix A.

Lemma 1. Let n 1 , n 2 ≥ 2 and 1 ≤ s ≤ n 2 /2. Then, there exists a subset Ω of {0, 1} s n1×n2 such that for some numerical constant C ≥ 10 -5 log(|Ω|) ≥ C n 1 s log e n 2 s (7) 
and, for any two distinct A, A ′ in Ω, the Hamming distance satisfies

d H (A, A ′ ) ≥ n 1 (s + 1) 16 . (8) 
Fix 0 < γ < 1 and define

Ω ′ = σ γ log e n 2 s A : A ∈ Ω
where Ω is a set satisfying the conditions of Lemma 1. For p = 2 using (8) we obtain that for any two distinct

B, B ′ in Ω ′ B -B ′ 2 2 ≥ γ 2 σ 2 n 1 s 16 log e n 2 s .
This implies (a) for p = 2. For p = 2 we will use the following elementary lemma, cf. Appendix B.

Lemma 2. If A = (a ij ) and A ′ = (a ′ ij ) are two elements of {0, 1} s n1×n2 such that d H (A, A ′ ) ≥ n 1 (s + 1) 16 
, then the cardinality of the set

J(A, A ′ ) = 1 ≤ i ≤ n 1 : n2 j=1 I {aij =a ′ ij } > s 32 is greater than or equal to n 1 64 . Lemma 2 implies that for any two distinct B, B ′ in Ω ′ B -B ′ 2 2,p ≥ γ 2 σ 2 log e n 2 s s 32 p/2 n 1 64 2/p ≥ γ 2 σ 2 64 1+2/p n 2/p 1 s log e n 2 s , (9) 
which yields (a) for p = 2.

To check (b), note that d

H (A, A ′ ) ≤ 2n 1 s for all A, A ′ ∈ {0, 1} s n1×n2 . This implies KL(P B , P B ′ ) = 1 2 σ 2 B -B ′ 2 2 ≤ γ 2 n 1 s log e n 2 s . ( 10 
)
Since also |Ω| = |Ω ′ |, from ( 7) and ( 10) we deduce that (b) is satisfied with α < 1/8 if γ > 0 is chosen sufficiently small. This completes the proof of Theorem 1.

Note that there are n2 s n1 possible sparsity patterns which satisfy the hard sparsity condition on the rows. By standard bounds on binomial coefficients, we have log n2 s n1 ≍ n 1 s log n2 s . Consequently, the rate n 1 s log en2 s corresponds to the logarithm of the number of models.

Let us turn out to the soft sparsity scenario. For any 0 < q < 2 and s > 0 define the quantity

η(s) = n 1 s σ 2 log 1 + σ q n 2 s 1-q/2 ∨ n 1 s 2/q ∨ n 1 n 2 σ 2 (11) 
The minimax lower bound is given by the following theorem proved in Appendix C. Theorem 2. Let n 1 , n 2 ≥ 2. Fix 0 < q < 2 and s > 0. Suppose that for (i, j) ∈ N n1×n2 the noise variables ξ ij are i.i.d Gaussian N (0, σ 2 ), σ 2 > 0. Then, there exists a numerical constant c * such that

(i) inf  sup A∈A(q,s) P  -A 2 2 ≥ c * η(s) ≥ β,
where 0 < β < 1 and

(ii) inf  sup A∈A(q,δ) E  -A 2 2 ≥ c * η(s).

Minimax rates of convergence

Consider the problem of estimating of a vector v = (v i ) ∈ B q (s) ⊂ R n2 from noisy observations

y i = v i + ξ i , i = 1, . . . , n 2 ,
where ξ ij are i.i.d. Gaussian N (0, σ 2 ), σ 2 > 0.

The non-asymptotic minimax optimal rate of convergence for estimation of v in the l 2 -norm, obtained in [START_REF] Birgé | Gaussian model selection[END_REF], is given by

η vect (s) = σ 2 s log e n 2 s
when q = 0 and by

η vect (s) = s σ 2 log 1 + σ q n 2 s 1-q/2 ∨ s 2/q ∨ n 2 σ 2 when 0 < q < 2.
We see that, for p = 2, the lower bounds given by Theorems 1 and 2 are n 1 η vect (s) in the case of hard sparsity and n 1 η vect (s) in the case of soft sparsity. We get the same rate as when estimating each row separately. This implies that, in this particular case, the additional matrix structure does not lead to improvement or to deterioration of the rate of convergence.

As shown below and in view of the lower bounds of Theorems 1 and 2, optimal rates for arbitrary p can be also obtained from vector estimation method. It suffices to apply to the rows of M a minimax optimal method for vector estimation on B q (s) balls. One can take, for example, the following penalized least squares estimator M of M (cf. [START_REF] Birgé | Gaussian model selection[END_REF]):

M = argmin A∈R n 1 ×n 2 Y -A 2 2 + λ A 0 log e n 1 n 2 A 0 ∨ 1 (12)
where λ > 0 is a regularization parameter. The penalty in ( 12) is inspired by the hard thresholding penalty A 0 , which leads to mij that are thresholded values of y ij (see, for instance [START_REF] Härdle | Wavelets, Approximation and Statistical Applications[END_REF], page 138). The penalized least squares estimator defined in ( 12) can be computed efficiently. Let y (j) denote the jth largest in absolute value component of Y . The estimator M is obtained by thresholding the coefficients of Y : we keep y (j) such that

y 2 (j) > λ log(e n 1 n 2 ) + j i=2 (-1) i+j+1 i log(i)
and set all other coefficients equal to zero.

In what follows we assume that the noise variables ξ ij are zero-mean and sub-Gaussian, which means that they satisfy the following assumption.

Assumption 1. E(ξ ij ) = 0 and there exists a constant K > 0 such that

(E|ξ ij | p ) 1/p ≤ K √ p for all p ≥ 1 for any 1 ≤ i ≤ n 1 and 1 ≤ j ≤ n 2 .
This assumption on the noise variables means that their distribution is dominated by the distribution of a centered Gaussian random variable. This class of distributions is rather wide. Examples of sub-Gaussian random variables are Gaussian or bounded random variables. In particular, Assumption 1 implies that E ξ 2 ij ≤ 2 K 2 . The next theorem presents oracle inequalities for the penalized least squares estimator M , both in probability and in expectation.

Theorem 3. Let M be the penalized least squares estimator defined in [START_REF] Härdle | Wavelets, Approximation and Statistical Applications[END_REF], a > 1 and λ = 2a K 0 K 2 where K 0 > 0 is large enough. Suppose that Assumption 1 holds. Then, for any ∆ > 0

M -M 2 2 ≤ inf A∈R n 1 ×n 2 a + 1 a -1 M -A 2 2 + C K 2 A 0 log e n 1 n 2 A 0 ∨ 1 + 2 a 2 a -1 ∆ (13) with probability at least 1 -2 exp -C0 ∆ K 2
, and

E M -M 2 2 ≤ inf A∈R n 1 ×n 2 a + 1 a -1 M -A 2 2 + C K 2 A 0 log e n 1 n 2 A 0 ∨ 1 + C K 2 (14 
) where C, C 0 and C are numerical constants.

For the particular case of Gaussian noise, the result (14) of Theorem 3 is proved in [START_REF] Birgé | Gaussian model selection[END_REF], and the result [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF] in [START_REF] Bunea | Aggregation for regression learning[END_REF]. Theorem 3 extends the analysis to the case of sub-Gaussian noise. The prooof is given in Appendix D. Now suppose that M ∈ A(s). Using Theorem 3 and the inequality

M -M 2,p ≤ n 1/p-1/2 1 M -M 2
that holds for any 0 < p ≤ 2 we obtain the following corollary.

Corollary 1. Let M be the penalized least squares estimator defined in [START_REF] Härdle | Wavelets, Approximation and Statistical Applications[END_REF] with λ = K 0 K 2 where K 0 > 0 is large enough. Suppose that Assumption 1 holds and that M ∈ A(s). Then, for all 0 < p ≤ 2 and for any

∆ > 0 M -M 2 2,p ≤ C K 2 n 2/p 1 s log e n 2 s + ∆ ( 15 
)
with probability at least 1 -2 exp

-C2 ∆ K 2
, and

E M -M 2 2,p ≤ C K 2 n 2/p 1 s log e n 2 s . (16) 
These inequalities shows that, for 0 < p ≤ 2, the penalized least squares estimator [START_REF] Härdle | Wavelets, Approximation and Statistical Applications[END_REF] achieves the rate of convergence given by Theorem 1.This implies that this rate is minimax optimal.

The next corollary shows that the estimator ( 12) also achieves the minimax rate of convergence in a more general setting when M ∈ A(q, s) for 0 < q < 2. For any 0 < q < 2 and s > 0 define the quantity

ψ(s) = n 1 s K 2 log 1 + K q n 2 s 1-q/2 ∨ n 1 s 2/q ∨ n 1 n 2 K 2 . ( 17 
)
Corollary 2. Let M be the penalized least squares estimator defined in [START_REF] Härdle | Wavelets, Approximation and Statistical Applications[END_REF] with λ = K 0 K 2 where K 0 > 0 is large enough. Suppose that Assumption 1 holds and M ∈ A(q, s). Then, there exists numerical constant C * such that for any

∆ > 0 M -M 2 2 ≤ C * ψ(s) + ∆ with probability at least 1 -2 exp -C2 ∆ K 2
, and

E M -M 2 2,p ≤ C * ψ(s).
We give the proof of Corollary 2 in Appendix F. If the noise variables ξ ij are i.i.d Gaussian N (0, σ 2 ), we have ψ(s) = η(s). Thus, the rate of convergence given by ( 11) is minimax optimal.

A Proof of Lemma 1

To prove Lemma 1 we use the Varshamov-Gilbert bound. The volume (cardinality)

V 1 of {0, 1} s n1×n2 is V 1 = n 2 s n1 .
Note that the volume of the Hamming ball of radius n 1 (s + 1)/2 in {0, 1} s n1×n2 is smaller than the volume V 2 of the Hamming ball of the same radius in a larger space of all matrices A = (a ij ) ∈ R n1×n2 such that a ij ∈ {0, 1} and A contains at most n 1 s ones. Let K = n 1 (s + 1) 2 where ⌊x⌋ denotes the integer part of

x. A standard bound implies

V 2 = K i=1 n 1 n 2 i ≤ en 1 n 2 K K ≤ 2en 2 s + 1 n1(s+1)/2
where we use that f (x) = x log en 1 n 2 x is growing for x ≤ n 1 n 2 .

In order to lower bound V 1 we use Stirling's formula (see, e.g., [10, p. 54]): for any j ∈ N j! = j j+1/2 e -j √ 2π ψ(j) with e (12 j+1) -1 < ψ(j) < e (12 j) -1 .

Using ( 18) we get

n 2 s ≥ e -1/6 n 2 s n2+1/2 √ 2π s n 2 s -1 n2-s+1/2 . (19) 
Now, the Varshamov-Gilbert bound implies that there exists a subset Ω of for n 2 /8 ≥ s ≥ 501.

{0, 1} s n1×n2 such that d H (A, A ′ ) > n1(s+1) 2 for any A, A ′ ∈ Ω, A = A ′ and |Ω| ≥ n2 s n1 2en 2 s + 1 n1(s+1)/2 ≥    e -1/6 n 2 s n2+1/2 (s + 1) s+1 2 √ 2π s n 2 s -1 n2-s+1/2 (2en 2 ) s+1 2    n1 which implies log |Ω| ≥ n 1 - 1 6 - 1 2 log s -log( √ 2π) + (n 2 + 1/2) log n 2 s + s + 1 2 log(s + 1) -(n 2 -s + 1/2) log n 2 s -1 - s + 1 2 log(2en 2 ) ≥ n 1 - 1 6 - 1 2 log s -log( √ 2π) + s log n 2 s -1 - s + 1 2 log 2en 2 s + 1 . (20 
2) Consider next the case s < 501 and s ≤ n 2 /8. Now, instead of the set {0, 1} s n1×n2 we will deal with the set {0, 1} 1 n1×l where l = ⌊n 2 /s⌋. Using the same arguments as above, we will show that there exists a subset Ω ⊂ {0, 1} 1 n1×l such that d H (A, A ′ ) ≥ n 1 /2 for any A, A ′ ∈ Ω, A = A ′ and log(card Ω) ≥ C n 1 log (e n 2 ). In this case, the previous values V 1 and V 2 are replaced by

V 1 = l n1 , V 2 = ⌊n1/2⌋ i=1 n 1 l i ≤ (2el) n1/2 and log | Ω| ≥ n 1 2 (2 log (l) -log (2el)) ≥ n 1 log(l) 10 ≥ 10 -4 n 1 s log en 2 s
for s < 501 and n 2 /s ≥ 8. To embed Ω in {0, 1} s n1×n2 define

Ω = {A ∈ {0, 1} s n1×n2 : A = ( Ã, . . . , Ã s times , 0) , Ã ∈ Ω , 0 ∈ R n1×(n2-ls) }. We have Ω ⊂ {0, 1} s n1×n2 , card Ω = card Ω and d H (A, A ′ ) ≥ n 1 (s + 1) 4 for any A, A ′ ∈ Ω, A = A ′ .
3) In order to deal with the case n 2 /8 ≤ s ≤ n 2 /4.5 define s ′ = s 2 and

n ′ 2 = n 2 -(s -s ′ ).
Then, n ′ 2 ≥ 8s ′ and we can apply the previous result. This implies that there exists a subset Ω of {0,

1} s ′ n1×n ′ 2 such that d H (A, A ′ ) ≥ n 1 (s ′ + 1) 2 ≥ n 1 (s + 1) 4 for any A, A ′ ∈ Ω, A = A ′ and log(card Ω) ≥ 10 -4 n 1 s ′ log e n ′ 2 s ′ ≥ 10 -4 2 n 1 s log e n 2 s
where we used

n ′ 2 /s ′ ≥ n 2 /s. To embed Ω in {0, 1} s n1×n2 define Ω = {A ∈ {0, 1} s n1×n2 : A = ( Ā, 1, . . . , 1 s-s ′ times ) , Ā ∈ Ω , 1 = (1, . . . , 1) T ∈ R n1 }. We have Ω ⊂ {0, 1} s n1×n2 , card Ω = card Ω and d H (A, A ′ ) ≥ n 1 (s + 1) 4 for any A, A ′ ∈ Ω, A = A ′ .
Using exactly the same argument we can treat cases n 2 /4.5 ≤ s ≤ n 2 /3 and n 2 /3 ≤ s ≤ n 2 /2 to get the statement of Lemma 1.

B Proof of Lemma 2

Assume that card (J(A, A ′ )) < n 1 64 . Then, denoting by J C (A, A ′ ) the complement of J(A, A ′ ) and using that card

J C (A, A ′ ) ≤ n 1 , we get d H (A, A ′ ) ≤ 2s card (J(A, A ′ )) + s 32 card J C (A, A ′ ) < 2s n 1 64 + n 1 s 32 = n 1 s 16 
which contradicts the premise of the lemma.

C Proof of Theorem 2.

It is enough to prove (i) since (ii) follows from (i) and the Markov inequality.

To prove (i) we use Theorem 2.5 in [START_REF] Tsybakov | Introduction to non-parametric estimation[END_REF]. We define k ≥ 1 be the largest integer satisfying

k ≤ s σ -q log 1 + n 2 k -q/2 . ( 21 
)
If there is no k ≥ 1 satisfying [START_REF] Tsybakov | Introduction to non-parametric estimation[END_REF], take

k = 0. Set k = k ∨ 1 and S = k ∧ n2 2 . Let Ω ′ ⊂ {0, 1} S
n1×n2 be the set given by Lemma 1. We consider

Ω = τ δ S 1/q A : A ∈ Ω ′
where 0 < τ < 1 and 0 < δ ≤ s will be chosen later. It is easy to see that Ω ⊂ A(q, s).

Since the noise variables ξ ij are i.i.d Gaussian N (0, σ 2 ), for any two distinct B, B ′ in Ω, the Kullback-Leibler divergence KL(P B , P B ′ ) between P B and P B ′ is given by

KL(P B , P B ′ ) = B -B ′ 2 2 2 σ 2 (22) 
We consider now three cases, depending on the value of the integer k defined in [START_REF] Tsybakov | Introduction to non-parametric estimation[END_REF].

Case [START_REF] Abramovich | Adapting to unknown sparsity by controlling the false discovery rate[END_REF]:

k = 0. Since k = 0, the inequality (21) is violated for k = 1, so that s ≤ σ q (log (1 + n 2 )) q/2 . ( 23 
)
Here S = 1 and we take δ = s. We have that for any two distinct B, B ′ in Ω,

B -B ′ 2 2 ≥ n 1 τ 2 4.5 (s) 2/q . ( 24 
)
On the other hand, by Lemma 1, we have that

log |Ω| ≥ C n 1 log (1 + n 2 )
and using ( 23)

KL(P B , P B ′ ) = 1 2 σ 2 B -B ′ 2 2 ≤ τ 2 n 1 s 2/q σ 2 ≤ τ 2 n 1 log(1 + n 2 ) ≤ α log |Ω| (25) for some 0 < α < 1/8 if 0 < τ < 1 is chosen sufficiently small. Case (2): 1 ≤ k ≤ n 2 /2. We take δ = s S 1/q . For any two distinct B, B ′ in Ω, B -B ′ 2 2 ≥ n 1 τ 2 (S + 1) 9 s S 2/q ≥ n 1 τ 2 9 (s) 2/q s σ -q log 1 + n 2 k -q/2 1-2/q ≥ n 1 τ 2 9 s σ 2-q log 1 + n 2 k 1-q/2 ≥ n 1 τ 2 9 s σ 2-q log 1 + n 2 s -1 σ q 1-q/2 . ( 26 
)
By Lemma 1, we have that

log |Ω| C n 1 S log 1 + n 2 S ≥ C n 1 2 s σ -q log 1 + n 2 s -1 σ q 1-q/2
and KL(P B ,

P B ′ ) = 1 2 σ 2 B -B ′ 2 2 ≤ τ 2 n 1 σ 2 s 2/q S 1-2/q ≤ τ 2 n 1 σ 2 s 2/q s σ -q log 1 + n 2 s -1 σ q -q/2 1-2/q ≤ τ 2 n 1 σ -q log 1 + n 2 s -1 σ q 1-q/2 ≤ α log |Ω| (27) 
for some 0 < α < 1/8 if 0 < τ < 1 is chosen sufficiently small.

Case (3): k > n 2 /2. Since k > n 2 /2, the inequality (21) is violated for k = n 2 /2, so that s ≥ n 2 σ q 2 . ( 28 
)
In this case S = n 2 /2 and, using (28), we can take δ = n2 σ q 2 . We have that for any two distinct B, B ′ in Ω,

B -B ′ 2 2 ≥ τ 2 n 1 n 2 σ 2 18 . (29) 
On the other hand, by Lemma 1, we have that

log |Ω| ≥ C n 1 n 2 and KL(P B , P B ′ ) = 1 2 σ 2 B -B ′ 2 2 ≤ τ 2 n 1 n 2 2 ≤ α log |Ω| (30)
for some 0 < α < 1/8 if 0 < τ < 1 is chosen sufficiently small. Now the statement of the Theorem 2 follows from ( 24) -( 25), ( 26) -( 27), ( 29) -(30) and the Theorem 2.5 in [START_REF] Tsybakov | Introduction to non-parametric estimation[END_REF].

D Proof of Theorem 3.

This proof essentially follows the scheme suggested in [START_REF] Bunea | Aggregation for regression learning[END_REF] by adding an extension to the case of sub-Gaussian noise. Let A ∈ R n1×n2 be a fixed, but arbitrary matrix. Define for all 1 ≤ r ≤ n 1 n 2

B r = Ā = A ′ -A ∈ R n1×n2 : A ′ 0 = r . Let {J k }, k = 1, . . . , n1n2
r be all the sets of matrix indices (i, j) of cardinality r. Define Rewriting this inequality yields

M -M 2 2 + pen( M ) ≤ M -A 2 2 + 2 Σ (i,j) ξ ij ( M -A) ij + pen(A) ≤ M -A 2 2 + 2   (i,j) ξ ij ( M -A) ij M -A 2   M -A 2 + pen(A). For B = (b ij ) ∈ R n1×n2 we set V (B) = (i,j) ξij bij B 2 , then for any a > 1 1 - 1 a M -M 2 2 + pen( M ) ≤ 1 + 1 a M -A 2 2 + 2aV 2 ( M -A) + pen(A). (31) Next, since R n1×n2 = n1n2 r=0 ( n 1 n 2 r ) k=1 B r,k , we obtain 2aV 2 ( M -A)-pen( M ) ≤ max 0≤r≤n1n2 max 0≤k≤( n 1 n 2 r ) max Ā∈B r,k 2aV 2 ( Ā) -pen( Ā + A) .
Note that for r = 0 we have that B 0 (A) = {-A} and 2aV 2 (-A)pen(-A + A) = 2aV 2 (A).

Let J Ā denotes the sparsity pattern of Ā = (ā ij ), i.e.

J Ā = {(i, j) ∈ N n1×n2 : āij = 0} , then for any Ā ∈ B r,k V 2 ( Ā) =   (i,j)∈J Ā ξ ij āij Ā 2   2 ≤ Π r,k (E) 2 2 .
This together with (31) imply

M -M 2 2 ≤ a + 1 a -1 M -A 2 2 + a a -1 pen(A) + 2a 2 a -1 V 2 (A) + a a -1 max 1≤r≤n1n2 max 0≤k≤( n 1 n 2 r ) 2a Π r,k (E) 2 2 -λr log e n 1 n 2 r . (32) 
By Assumption 1, the errors ξ ij are sub-gaussian. We will use the following tail bounds in order to control the last term in (32).

Lemma 3. Let Assumption 1 be satisfied. Then, there exists absolute constants c 0 , c 1 , c 2 , c 3 > 0 such that for

K 1 = K 0 K 2 with K 0 > 0 large enough P max 1≤r≤n1n2 max 0≤k≤( n 1 n 2 r ) Π r,k (E) 2 2 -K 1 r log e n 1 n 2 r ≥ ∆ ≤ c 1 exp - c 2 ∆ 2 K 2 , (33) 
E max 1≤r≤n1n2 max 0≤k≤( n 1 n 2 r ) Π r,k (E) 2 2 -K 1 r log e n 1 n 2 r ≤ c 0 K 2 (34) 
and

P V 2 (A) -K 1 A 0 ≥ ∆ ≤ 2 exp - c 3 ∆ 2 K 2 (35) 
Now ( 14) follows from Lemma 3 and (32).

To prove [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF], note that by Lemma 3 and (32), for λ = 2a K 0 K 2 there exist numerical constants C, C 1 , C 2 > 0 such that

P M -M 2 2 ≥ inf A∈R n 1 ×n 2 a + 1 a -1 M -A 2 2 + C A 0 log e n 1 n 2 A 0 + 2a 2 a -1 ∆ ≤ P max 1≤r≤n1n2 max 0≤k≤( n 1 n 2 r ) Π r,k (E) 2 2 -K 1 r log e n 1 n 2 r ≥ ∆/2 + P V 2 (A) -K 1 A 0 ≥ ∆/2 ≤ C 1 exp -C 2 ∆ K 2
which proves [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF].

E Proof of Lemma 3

We have that

p ∆ def = P max 1≤r≤n1n2 max 0≤k≤( n 1 n 2 r ) Π r,k (E) 2 2 -K 1 r log e n 1 n 2 r ≥ ∆ ≤ n1n2 r=1 ( n 1 n 2 r ) k=1 P Π r,k (E) 2 2 ≥ ∆ + K 1 r log e n 1 n 2 r ≤ n1n2 r=1 n 1 n 2 r P Z r ≥ ∆ + K 1 r log e n 1 n 2 r -2rK 2 
where Z r = r i=1 ξ 2 i -E(ξ 2 i ) and ξ 1 , . . . , ξ r are i.i.d. random variables satisfying Assumption 1. Note that ξ 2 i are sub-exponential random variables with ξ 2 i ψ1 ≤ 2 K 2 . Applying Bernstein-type inequality (see, e.g., Proposition 5.16 in [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF]) and using that n1n2 Taking K 0 large enough we get

p ∆ ≤ 2 exp - C 2 ∆ K 2 ∞ r=1 exp {-r log 2} ≤ C 1 exp - C 2 ∆ K 2 .
This proves (33) and easily implies the bound on expectation value (34).

To proof (35), we apply Bernstein-type inequality to V 2 (A) = (i,j)∈JA (ξ ij ) 2 :

P   (i,j)∈JA ξ 2 ij -E ξ 2 ij ≥ K 1 A 0 -2 A 0 K 2 + ∆   ≤ exp -C 2 K 0 A 0 -A 0 + ∆ 2 K 2 ≤ 2 exp - C 2 ∆ K 2 .
F Proof of Corollary 2.

We use Theorem 3. First, taking A = 0 in [START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF], we get

M -M 2 2 ≤ a + 1 a -1 M 2 2 + 2a 2 a -1 ∆ ≤ a + 1 a -1 n 1 s 2/q + 2a 2 a -1 ∆ (36)
with probability at least 1 -2 exp -C2 ∆ K 2 . Now, choosing A = M , we obtain that

M -M 2 2 ≤ C K 2 M 0 log e n 1 n 2 M 0 ∨ 1 + 2 a 2 a -1 ∆ ≤ C K 2 n 1 n 2 + 2 a 2 a -1 ∆ (37)
with probability at least 1 -2 exp -C2 ∆ K 2 . Finally, Theorem 3 implies that for any 1 ≤ s ′ ≤ n 2 /2, all a > 1 and any ∆ > 0

M -M 2 2 ≤ inf A∈A(2s ′ ) a + 1 a -1 M -A 2 2 +C K 2 n 1 s ′ log 1 + n 2 2 s ′ + 2a 2 a -1 ∆ (38)
with probability at least 1 -2 exp -C2 ∆ K 2

. Now we use the following lemma.

Lemma 4. Let 1 ≤ s ′ ≤ n 2 /2 and 0 < q ≤ 2. For any M ∈ A(q, s), there exists A ∈ A(2s ′ ) such that M -A 2 2 ≤ s 2/q (s ′ ) 1-2/q n 1 .

(39)

For the proof of this lemma, see Lemma 7.2 in [START_REF] Tsybakov | Aggregation and minimax optimality in highdimensional estimation[END_REF] (case 0 < q ≤ 1) and the proof of Lemma 7.4 in [START_REF] Tsybakov | Aggregation and minimax optimality in highdimensional estimation[END_REF] (case 1 < q ≤ 2). Now, (38) and Lemma 4 imply that for any 1 ≤ s ′ ≤ n 2 /2 M -M 2 2 ≤ C K 2 n 1 s ′ log 1 + n 2 s ′ + s 2/q (s ′ ) 1-2/q n 1 + ∆ .

The terms depending on s ′ on the right side of (40) are balanced by choosing s ′ = c ′ s K q log 1 + n 2 K q s -1 -q/2 with suitable constant c ′ > 0. With this choice of s we get

M -M 2 2 ≤ C n 1 s K 2-q log 1 + n 2 K q s 1-q/2 + ∆ . (41) 
The inequalities (36), ( 37) and (41) imply the statement of the Corollary 2.

  For two real numbers a and b we use the notation a ∧ b := min(a, b), a ∨ b := max(a, b); we denote by ⌊x⌋ the integer part of x; we use the symbol C for a generic positive constant, which is independent of n 1 , n 2 , s and σ and may take different values at different appearances.

B

  r,k = Ā = (ā ij ) ∈ B r : a ′ ij = 0 ⇐⇒ (i, j) ∈ J k where a ′ ij = āij + a ij . We have that dim(B r,k ) ≤ r. Let Π r,k (B) denote the projection of the matrix B onto B r,k and pen(A) = λ A 0 log e n 1 n 2 |A| 0 ∨ 1 . By the definition of M , for any A ∈ R n1×n2 , Y -M 2 2 + pen( M ) ≤ Y -A 2 2 + pen(A).

e n 1 n 2 r r exp -C 2 K 0 r log e n 1 n 2

 22 r .
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