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Abstract

Epigenetic variation, such as heritable changes of DNA methylation, can affect gene expression and thus phenotypes, but
examples of natural epimutations are few and little is known about their stability and frequency in nature. Here, we report
that the gene Qua-Quine Starch (QQS) of Arabidopsis thaliana, which is involved in starch metabolism and that originated de
novo recently, is subject to frequent epigenetic variation in nature. Specifically, we show that expression of this gene varies
considerably among natural accessions as well as within populations directly sampled from the wild, and we demonstrate
that this variation correlates negatively with the DNA methylation level of repeated sequences located within the 59end of
the gene. Furthermore, we provide extensive evidence that DNA methylation and expression variants can be inherited for
several generations and are not linked to DNA sequence changes. Taken together, these observations provide a first
indication that de novo originated genes might be particularly prone to epigenetic variation in their initial stages of
formation.
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Introduction

DNA mutations are the main known source of heritable

phenotypic variation, but epimutations, such as heritable changes

of gene expression associated with gain or loss of DNA

methylation, are also a source of phenotypic variability. Indeed,

several stable DNA methylation variants affecting a wide range of

characters have been described, mainly in plants [1–3]. In most

instances, epimutations are linked to the presence of structural

features near or within genes, such as direct [4–6] or inverted

repeats [7,8] or transposable element (TE) insertions [9], which act

as units of DNA methylation through the production of small

interfering RNAs (siRNAs) [3,10]. Examples of epimutable loci in

Arabidopsis thaliana (A. thaliana) include the PAI [7] and ATFOLT1

genes [8], which have suffered siRNA-producing duplication

events in some accessions and also the well characterized FWA

locus, which contains a set of SINE-derived siRNA-producing

tandem repeats at its 59end [4,5]. Repeat-associated epimutable

loci are almost invariably found in the methylated form [5–9] in

nature, which reflects, at least in part, that DNA methylation is

particularly well-maintained over repeats [11,12]. Indeed, epige-

netic variation at PAI, ATFOLT1 and FWA has only been observed

in experimental settings. Similarly, sporadic gain or loss of DNA

methylation associated with changes in gene expression has only

been documented in A. thaliana mutation accumulation lines

[13,14] and examples of natural epigenetic variation in other plant

species are few [15–17].

Here we report a case of prevalent natural epigenetic variation

in A. thaliana, which concerns a de novo originated gene [18]. We

show that expression of this gene, named Qua-Quine Starch (QQS), is

inversely correlated with the DNA methylation level of its

promoter and that these variations are stably inherited for several

generations, independently of DNA sequence changes. Based on

these findings, we speculate that epigenetic variation could be

particularly beneficial for newly formed genes, as it would enable

them to explore more effectively the expression landscape than

through rare DNA sequence changes.

Results

QQS Is a Novel Gene Embedded within a TE-Rich Region
of the A. thaliana Genome and Is Negatively Regulated
by DNA Methylation

The A. thaliana Qua-Quine Starch (QQS, At3g30720) was first

described as a gene involved in starch metabolism in leaves

[19,20]. Despite being functional and presumably already under

purifying selection (dN/dS = 0.5868; p-value,0.045), QQS is likely

a recent gene that emerged de novo. Indeed, QQS has no significant

similarity to any other sequence present in GenBank [18,19],
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suggesting that it originated from scratch since A.thaliana diverged

from its closest sequenced relative A. lyrata around 5–10 million

years ago. Furthermore, QQS encodes a short protein (59 amino

acids) and it is differentially expressed under various abiotic

stresses [18], which are also hallmarks of de novo originated genes

[21–23].

As shown in Figure 1, QQS is surrounded by multiple

transposable element sequences (Figure 1A) and contains several

tandem repeats in its promoter region and 59UTR (Figure 1B). In

the Columbia (Col-0) accession, these tandem repeats are densely

methylated and produce predominantly 24 nt-long siRNAs

(Figure 1B, Figure S1A and S1B). Publically available transcrip-

tome data [24,25] and results of RT-qPCR analyses (Figure S1C)

show that steady state levels of QQS mRNAs are higher in several

mutants affected in the DNA methylation of repeat sequences,

including met1 (DNA METHYLTRANSFERASE 1), ddc (DOMAINS

REARRANGED METHYLTRANSFERASE 1 and 2 and CHROMO-

METHYLASE 3), ddm1 (DECREASE IN DNA METHYLATION 1)

and rdr2 (RNA-DEPENDENT RNA POLYMERASE 2), which

abolishes the production of 24 nt-long siRNAs as well as most

CHH methylation. These findings indicate that QQS expression is

negatively controlled by DNA methylation and point to the

siRNA-producing tandem repeats as being potentially involved in

this repression.

Stably Inherited Spontaneous and Induced Epigenetic
Variation at QQS

We first observed epiallelic variation at QQS unexpectedly, in a

Col-0 laboratory stock (hereafter referred to as Col-0*) with

increased expression of the gene and decreased DNA methylation

of its promoter and 59UTR repeat elements (Figure 2A). No

sequence change could be detected in the Col-0* stock within a

1.2 kb region covering the QQS gene (Figure 1B), which excluded

local cis-regulatory DNA mutations at the QQS locus as being

responsible for DNA methylation loss in Col-0*. Additionally,

comparative genomic hybridization analysis as well as genome-

wide DNA methylation profiling using methylated DNA imuno-

precipitation assays revealed no major differences between Col-0

and Col-0* (Figure S2).

We next investigated the QQS epigenetic status in pooled

seedlings (S1) derived from the selfing of 12 individual Col-0*

plants (Figure S3). Results revealed a range of QQS epialleles and a

strong negative correlation between DNA methylation and

expression of the gene (Figure 2B and 2C). To explore further

this variation, a single S1 individual was then selfed for each of the

12 lines and seedlings (S2) were analyzed in pool for each line, as

above (Figure S3). Remarkably, the differences in QQS expression

and DNA methylation observed at the S1 generation were also

observed at the S2 generation (Figure 2B and 2C). Taken together,

these results suggest therefore the existence of a range of epiallelic

variants at QQS, which are stably inherited for at least one

generation.

The inheritance of QQS hypomethylated epialleles was also

examined in a random sample of 19 ddm1-derived epigenetic

Recombinant Inbred Lines (epiRILs) obtained by crossing a Col-0

wild-type (wt) line with an hypomethylated Col-0 ddm1 line [26].

High DNA methylation/low expression and low DNA methyla-

tion/high expression of QQS were observed in 14 and 5 epiRILs,

respectively (Figure 2D). This is consistent with Mendelian

segregation of the highly methylated/lowly expressed Col-0 wt

and lowly methylated/highly expressed Col-0 ddm1 parental QQS

epialleles (75%/25% expected because of backcrossing rather than

selfing of the F1; Chi2 = 0,017, p-value.0.05). Indeed, examina-

tion of the epi-haplotype obtained for 17 of these epiRILs [27]

confirmed the wt or ddm-origin of the QQS locus in each case (data

not shown). These results demonstrate therefore that, like many

other ddm1-induced epialleles [28,29], QQS hypomethylated

epialleles can be stably inherited for at least eight generations

and are not targets of paramutation.

QQS Is under Autonomous Epigenetic Control
We next investigated the degree to which DNA methylation of

QQS and of flanking TEs are independent from each other. To this

end, we first analyzed DNA methylation patterns of TE sequences

flanking QQS in a series of epiRIL with contrasted QQS epialleles.

Unlike for ddm1-derived QQS, hypomethylation was not inherited

for the three TEs located immediately upstream of the gene, as

they did systematically regain wt DNA methylation levels

(Figure 3A and 3B), presumably because of their efficient targeting

by RNA-directed DNA methylation (RdDM) [28]. In addition,

although the TE just downstream of QQS was always hypomethy-

lated when inherited from ddm1, hypomethylation was also

observed in one epiRIL that inherited the QQS region from the

wt parent. Thus, there is no strict correlation between DNA

methylation at QQS and this downstream TE. We next examined

the effect of several T-DNA and transposon insertions located

,3.1 kb or 153 bp upstream of the transcription start site (TSS),

653 bp downstream of the 39UTR and within the second coding

exon of QQS. Whereas three of these insertions had no effect on

DNA methylation and expression levels of QQS, the T-DNA

insertion located closest to the TSS was associated with a drastic

reduction of DNA methylation of both the promoter and 59UTR

of the gene, as well as with an increase in QQS expression

(Figure 3A and 3C). However, this insertion had no impact on

DNA methylation of upstream and downstream TEs (Figure 3A

and 3D). Taken together, these results suggest that epigenetic

variation at QQS is most likely determined by sequences within the

promoter and 59UTR of the gene, not by the TEs that are located

immediately upstream or downstream.

QQS Exhibits Epigenetic Variation among Natural
Accessions

We next investigated the possibility that QQS is subject to

epigenetic variation in natural populations. To this end, we first

analyzed QQS expression and DNA methylation in 36 accessions

Author Summary

Epigenetics is defined as the study of heritable changes in
gene expression that are not linked to changes in the DNA
sequence. In plants, these heritable variations are often
associated with differences in DNA methylation. So far,
very little is known about the extent and stability of
epigenetic variation in nature. In this study, we report a
case of extensive epigenetic variation in natural popula-
tions of the flowering plant Arabidopsis thaliana, which
concerns a gene involved in starch metabolism, named
Qua-Quine Starch (QQS). We show that in the wild QQS
expression varies extensively and concomitantly with DNA
methylation of the gene promoter. We also demonstrate
that these variations are independent of DNA sequence
changes and are stably inherited for several generations. In
view of the recent evolutionary origin of QQS, we
speculate that genes that emerge from scratch could be
particularly prone to epigenetic variation. This would in
turn endow epigenetic variation with a unique adaptive
role in enabling de novo originated genes to adjust their
expression pattern.

Extensive Natural Epigenetic Variation
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representing the worldwide diversity [30]. QQS was methylated

and lowly expressed in 29 accessions, but unmethylated and highly

expressed in seven accessions distributed over the entire

geographic range (Figure 4A). This indicates that epigenetic

variation at QQS is widespread in nature. In contrast, upstream

and downstream TEs were consistently methylated in all

accessions (Figure S4A and S4B), thus confirming that the

epigenetic state at QQS is not determined by that of flanking

TEs. We then sequenced a 2.8 kb interval encompassing the QQS

gene and its flanking regions from the seven accessions carrying

the hypomethylated/highly expressed epiallele as well as from

three accessions carrying a methylated/lowly expressed epiallele.

Although several SNPs and indels were identified (Figure S4C), no

correlation between any specific sequence alterations and QQS

DNA methylation or expression states could be established

(Figure 4A). In addition, while Kondara and Shahdara have

identical QQS sequences, they have contrasted DNA methylation/

expression patterns at the locus (Figure 4A and Figure S4C), which

provides further evidence that natural epiallelic variation at QQS is

independent of local cis-DNA sequence polymorphisms and is thus

most likely truly epigenetic. Analysis of a Cvi-0 vs. Col-0

Recombinant Inbred Line (RIL) population revealed in addition

that QQS expression is controlled by a large-effect local-expression

quantitative trait locus (local-eQTL; http://qtlstore.versailles.inra.

fr/) [31]. This suggests that like the Col-0 wt and Col-0 ddm1 QQS

epialleles (Figure 2D), the Cvi-0 hypomethylated QQS epiallele is

stably inherited across multiple generations. This further demon-

strates that epigenetic variation at QQS is not appreciably affected

by sequence or DNA methylation polymorphisms located

elsewhere in the genome and indicates also that QQS is not

subjected to paramutation [29].

To validate experimentally the causal relationship between

DNA methylation and repression at QQS, seedlings of several

accessions were grown in the presence of the DNA methylation

inhibitor 5-aza-29-deoxycytidine (5-aza-dC). In the two accessions

Col-0 and Shahdara, which harbor distinct methylated and lowly

expressed QQS alleles, treatment resulted in reduced DNA

methylation and increased expression of QQS (Figure S4D). In

contrast, seedlings of Jea, Kondara and Cvi-0 accessions, all of

which harbor a demethylated/highly expressed QQS allele, did not

show further reduction of DNA methylation or increased

expression when grown in the presence of the demethylating

agent (Figure S4D). Moreover, whereas expression of QQS in F1

hybrids derived from crosses between Col-0 (methylated QQS) and

Kondara (hypomethylated QQS), was always higher for the

epiallele inherited from the hypomethylated parent, further

confirming that QQS is not subjected to paramutation [29],

treatment with 5-aza-dC reduced dramatically this expression

imbalance, most likely as a consequence of demethylation of the

Col-0-derived QQS allele (Figure S4E). Taken together, these

results clearly demonstrate that DNA methylation at QQS is causal

in repressing expression of the gene.

Wild Populations from Central Asia Exhibit Epigenetic
Variation at QQS

Finally, we asked whether epigenetic variation at QQS could be

observed in natural settings or if such variation only emerged in

the laboratory, where accessions are grown under controlled

growth conditions. To this end, we analyzed QQS expression and

DNA methylation in plants grown from seeds directly collected

from wild populations in Tajikistan, Kyrgyzstan and Iran

(NeoShahdara, Zalisky and Anzali populations, respectively).

Widespread QQS epiallelic variation was observed, both between

and within these diverse wild populations (Figure 4B). In addition,

QQS epigenetic variation was examined in the offspring (after two

single seed descent generations) of 25 NeoShahdara individuals.

These individuals were randomly sampled among a single patch of

several thousands of plants that presumably represent the direct

descendants of the Shahdara accession. Based on 10 microsatellite

markers and one InDel marker, two genetically distinct

Figure 1. QQS is embedded in a repeat-rich region. (A) Genomic structure of the QQS locus (30 kb window) in the Col-0 accession. Dark grey
boxes represent two additional TE sequences predicted by [51,52]. (B) Magnified view of the QQS gene and upstream sequences, showing tandem
repeats (TR), methylation of cytosine residues (5 mC) at the three types of sites (CG, CHG and CHH, H = A, T or C) and locus-specific sense and
antisense siRNAs (numbers referring to copy number). DNA methylation and siRNA data are from [25].
doi:10.1371/journal.pgen.1003437.g001

Extensive Natural Epigenetic Variation
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subpopulations could be identified. While QQS was highly

methylated/lowly expressed in all 16 individuals of subpopulation

#1, clear differences in DNA methylation and expression were

detected among the 9 individuals of subpopulation #2 (Figure 4C).

Whether epiallelic variation at QQS in subpopulation #2 reflects

inherent fluctuations or an intermediary stage in the route to

fixation of one of the two epiallelic forms remains to be

determined.

Discussion

QQS is a protein-coding gene that likely originated de novo in A.

thaliana within a TE-rich region (Figure 1A). We have shown that

this gene, which contains short repeat elements matching siRNAs

(Figure 1B, Figure S1A and S1B), varies considerably in its DNA

methylation and expression in the wild (Figure 4). We also show

that these variations are heritable and independent of the DNA

methylation status of neighboring TEs or of DNA sequence

variation, either in cis or trans (Figure 2 and Figure 3, Figures S2

and S4). Thus, we can conclude that QQS is a hotspot of epigenetic

variation in nature. Consistent with this, QQS is among the few

genes for which spontaneous DNA methylation variation was

observed in Col-0 mutation accumulation lines [13].

Cytosine methylation at QQS concerns CG, CHG and CHH

sites, which is the pattern expected for sequences with matching

siRNAs (Figure 1B, Figure S1B). All three types of methylation

sites likely contribute to silencing of QQS, as judged by the

reactivation of QQS in the met1, ddm1, ddc and rdr2 mutant

backgrounds (Figure S1C; [24,25]). Yet, among the different

DNA methyltransferases targeting DNA methylation at QQS,

MET1 may play a more prominent role, given that DNA

methylation at this locus is only fully erased in met1 mutant plants

[25]. QQS demethylated epiallelic variants may thus preferentially

arise through spontaneous [13] or stress-induced [10] defects in

DNA methylation maintenance and be stably inherited for

multiple generations as a result of the concomitant loss of

matching siRNAs, which would prevent efficient remethylation

and silencing of the gene [28,29]. Indeed, although we could not

detect QQS siRNAs by Northern blot analysis, presumably

because of their low abundance, deep sequencing data indicate

that they accumulate less in met1 mutant plants than in wild type

Col-0 [25].

Few genes have been shown so far to be subject to heritable

epigenetic variation in A. thaliana [5–8,13,14,32] and QQS is

unique among these in exhibiting this type of variation in nature

(Figure 4). This therefore raises the question as to what

distinguishes QQS from other genes, such as FWA, for which

epigenetic variation can be readily induced in the laboratory in

advanced generations of ddm1 and met1 mutant plants [5,33], but

for which this type of variation is not observed among accessions

[11,34]. One possibility is that unlike QQS epivariants, fwa-

hypomethylated epialleles are strongly counter-selected because of

their potentially maladapted phenotype, namely late flowering [5].

Consistent with this explanation, epiallelic variation with no

phenotypic consequences has been documented at FWA in other

Arabidopsis species. In these cases, however, inheritance across

multiple generations has not been rigorously tested [35]. Another

possibility is that de novo originated genes, such as QQS, are

particularly prone to heritable epigenetic variation. This is a

reasonable assumption considering that these genes tend to lack

proper regulatory sequences initially, unlike new gene duplicates,

which by definition come fully equipped [21]. In turn, given that

epigenetic variation enables genes to adjust their expression in a

heritable manner much more rapidly than through mutation while

preserving the possibility for rapid reversion, it could prove

particularly beneficial in the case of genes that are created from

scratch. Once the most adaptive expression state is reached, it

could then become irreversibly stabilized (i.e. genetically assimi-

lated) through DNA sequence changes. Although speculative, this

proposed scenario could be highly significant given the recent

discovery that de novo gene birth may be more prevalent than gene

duplication [23].

Figure 2. Spontaneous and induced epigenetic variation at
QQS. (A) DNA methylation and expression profiles of QQS in seedlings
of the Col-0 and Col-0* stocks. (B) and (C) Negative correlation between
QQS DNA methylation and expression levels in pooled seedlings of Col-
0 and Col-0* (represented by circles and squares in B, respectively) S1
and S2 generation single seed descent lines. (D) DNA methylation and
expression levels of QQS in seedlings of ddm1-derived epiRILs. Error
bars represent standard deviation observed in three biological
replicates (A–D – expression; A – DNA methylation) or two technical
replicates (B–D – DNA methylation).
doi:10.1371/journal.pgen.1003437.g002

Extensive Natural Epigenetic Variation
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Materials and Methods

Plant material and growth conditions
A. thaliana accessions were obtained from the INRA Versailles

collection (dbsgap.versailles.inra.fr/vnat/, www.inra.fr/vast/

collections.htm) [30,36,37]. Insertion lines were obtained from

the GABI-Kat at University of Bielefeld, Germany (GABI-Kat

755C03 and 522C07) [38], the ABRC at Ohio State University

(SALK 003195C) and University of Wisconsin, Madison, US

(WiscDsLoxHs077_09) [39]. Seeds of ddm1-2 [40], rdr2-1 [41] and

ddm1-derived epiRIL lines [26] were provided by V.Colot.

NeoShahdara individuals were genotyped with 10 microsatellite

markers (NGA8, MSAT2.26, MSAT2.4, NGA172, MSAT3.19,

ICE3, MSAT3.1, MSAT3.21, MSAT4.18, ICE5; http://www.

inra.fr/vast/msat.php) and one InDel marker in MUM2 gene

(MUM2_Del-LP TGGTCGTTATTGGGTCTCGT, MUM2

Del-RP TTAAGAACGCCCGAGGAATA). For expression and

DNA methylation assays, seedlings were grown in vitro (MS/2

media supplemented with 0,7% sucrose) for eight days in a culture

room (22uC, 16 hours light/8 hours dark cycle,

150 mmol s21 m22). Treatment with 5-aza-29-deoxycytidine

was performed as described in [8].

RT–qPCR analysis of QQS expression
Total RNA was isolated as described in [42] and cDNA was

synthetized using oligo(dT) primers and IMPROM II reverse

transcriptase (Promega). Real time PCR reactions were run on an

Applied Biosystems 7500 Real-Time PCR System using Platinum

SYBR green (Invitrogen). QQS expression levels relative to Actin2/

PP2A or PP2A/GAPDH internal references were calculated using

the formula (2- (Ct QQS – mean Ct internal references))*100. Primers are

listed in Table S1.

Analysis of DNA methylation by McrBC–qPCR
Total DNA was isolated using Qiagen Plant DNeasy kit

following the manufacturer’s recommendations. Digestion was

carried out overnight at 37uC with 200 ng of genomic DNA

and 2 to 8 units of McrBC enzyme (New England Biolabs).

Quantitative PCR was performed as described above on equal

amounts (2 ng) of digested and undigested DNA samples using

Figure 3. Epigenetic variation at QQS is determined by proximal sequences. (A) Schematic representation of the T-DNA/Transposon
insertion sites (triangles; GABI-Kat 755C03, GABI-Kat 522C07, WiscDsLoxHs077_09G (WiscHs077_09G) and SALK 003185C) and McrBC-qPCR primer
pairs used (vertical arrows; A, B and C represent different primer pairs designed for the same element). (B) DNA methylation levels of TEs flanking QQS
in epiRILs that had inherited a wt or a ddm1-derived QQS epiallele. (C) DNA methylation and expression levels of QQS in lines carrying the T-DNA/
transposon insertions represented in (A). (D) DNA methylation levels of TEs flanking QQS in the GABI-Kat 522C07 T-DNA insertion line. AA and aa
represent wt and T-DNA homozygous individuals, respectively, coming from the selfing of one hemizygous (Aa) plant. NA, not analyzed. Error bars
represent standard deviation observed in two technical replicates (B and D) or three biological replicates (C).
doi:10.1371/journal.pgen.1003437.g003

Extensive Natural Epigenetic Variation
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the primers described in Table S1. Results were expressed as

percentage of molecules lost through McrBC digestion

(1-(2-(Ct digested sample - Ct undigested sample)))*100. As a control,

the percentage of DNA methylation for At5g13440, which is

unmethylated in wt, was estimated in all analyses.

Allele-specific expression assays
To assess the relative contribution of each allele to the

population of mRNA in F1 individuals from reciprocal crosses

between Col and Kondara, a single pyrosequencing reaction using

the primers QQS_pyro_F1 (PCR) - TCAAAATGAGGGTCA-

TATC ATGG, QQS_pyro_R1-biotin (PCR) - ATTGGATA-

CAATGGCCCTATAACT and QQS_pyro_S1 (Pyrosequencing)

- GATATTGGGCCTTATCAC was set up on a SNP polymor-

phic between the QQS parental coding sequences (Figure S4C;

position +285). Pyrosequencing was performed on F1 cDNA, as

well as on 1/1 pools of parents cDNA to establish the allelic

contribution to QQS expression. F1 genomic DNA is used as

pyrosequencing control to normalize against possible pyrose-

quencing biases. Anything significantly driving allele-specific

expression in hybrids is by definition acting in cis, since F1 nuclei

contain a mix of all trans-acting factors [43,44].

Comparative genome hybridization (CGH)
CGH experiments were performed for Col-0* vs. Col-0 using

Arabidopsis whole-genome NimbleGen tiling arrays [45]. The

normalmixEM function of the mixtools package on R was used to

found the normal distribution for the distribution of the Col-0*/Col-0

ratio with an expected number of gaussians of two. A Hidden Markov

model [46] was used to find regions with copy number variation.

Analysis of genome wide DNA methylation (MeDIP–Chip)
DNA was extracted using DNeasy Qiagen kit and MeDIP-chip

was performed on 1.8 mg of DNA as previously described in [47].

Figure 4. Epigenetic variation at QQS is frequent in nature. (A) DNA methylation and expression profile in natural accessions representing the
worldwide diversity. Accessions are organized into clades 1 to 12 according to genetic relatedness [36]. NA, not analyzed. (B) DNA methylation and
expression levels of QQS in plants grown from seeds directly collected in the Central Asian wild populations NeoShahdara, Zalisky and Anzali. For
each line, one to three sibling plants were tested and gave similar results so that only one is represented per individual parent. (C) QQS epiallelic
frequency among 25 NeoShahdara individuals. Plants analyzed here were obtained from seeds produced after two single seed descent generations.
Error bars represent standard deviation observed between two (A – DNA methylation) or three (A – expression) biological replicates or two technical
replicates (B and C).
doi:10.1371/journal.pgen.1003437.g004

Extensive Natural Epigenetic Variation
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The methylated tiles were identified using the ChIPmix method

[48]. Probes methylated in one line only (Col-0 or Col-0*) were

used to create domains. Domains contain at least three consecutive

or nearly consecutive (400 nt min, with one gap of 200 nt max)

tiles with identical methylation patterns.

Overall codon-based Z-test of purifying selection
Available QQS coding-sequences (464 different accessions) were

downloaded from the ‘‘Salk Arabidopsis 1001 Genomes’’ database

(http://signal.salk.edu/atg1001/index.php). A. suecica QQS se-

quence (coming from the A. thaliana genome of this allotetraploid

[49]) was also included in the analysis. The aligned sequences were

used to calculate the probability of rejecting the null hypothesis

(H0) of strict-neutrality (dN = dS; where dN = number of non-

synonymous and dS = number of synonymous substitutions per

site) in favor of the alternative hypothesis of purifying selection

(HA; dS.dN). The analysis was done using the MEGA5 software

under the Nei-Gojobori method [50] with the variance of the

difference calculated by the bootstrap method with 100 replicates.

Our overall analysis of 465 sequences rejected H0 in favor of HA

(dN/dS = 0.5868; p-value,0.045).

Supporting Information

Figure S1 QQS expression is negatively correlated with DNA

methylation. (A) Schematic representation of the tandem repeats

present at the QQS promoter and 59UTR region. (B) Distribution

of DNA methylation at the QQS promoter and 59UTR sequences.

Data is presented as the total number of unmethylated (C) and

methylated cytosines (5 mC) in the three sequence contexts (CG,

CHG and CHH, H = A, T or C) for both DNA strands. DNA

methylation data are from [25]. (C) Assessment of QQS DNA

methylation level and transcript accumulation in seedlings of

ddm1-2 and rdr2-1 mutants. Error bars represent standard

deviation between two (DNA methylation) or three (expression)

biological replicates.

(TIF)

Figure S2 Genome-wide analyses of Col-0 and Col-0*. (A)

Comparative genomic hybridization (CGH) analysis of Col-0* vs.

Col-0 represented as the average of the log 2 ratio of the signal for

the INPUT Col-0* over INPUT Col-0. A single normal

distribution is observed using the normalmixEM function of the

mixtools package on R with an expected number of Gaussians of

two. The CGH analyses of Col-0* and Col-0 show no decrease or

increase in copy number in Col-0*, suggesting that they

correspond to the same accession. In contrast, CGH of Col-0 vs.

Cvi and Col-0 vs. C24 revealed 6.0 and 5.5% of tiles with

significant copy number variation, respectively [Moghaddam, et al

(2011)]. (B–D) Methylated DNA Imunoprecipitation assays.

Representation of the proportion of domains that are methylated

(B) in only one replicate of Col-0 or in both, (C) in only one

replicate of Col-0* or in both and (D) in only Col-0 or Col-0* or in

both. A total of 86% of the domains are methylated in both Col-0

and Col-0*, which is similar to the result obtained for two

biological replicates of Col-0 or of Col-0* (89% and 91% of the

domains methylated in the two replicates, respectively). These

results indicate that the methylomes of Col-0* and Col-0 are only

marginally more dissimilar from each other as they are from their

biological replicates. [Moghaddam A.B, Roudier F, Seifert M,

Berard C, Magniette MLM, et al. (2011) Additive inheritance of

histone modifications in Arabidopsis thaliana intra-specific hybrids.

Plant J 67: 691–700. doi: 10.1111/j.1365-313X.2011.04628.x].

(TIF)

Figure S3 Schematic representation of the experimental design

used to analyze QQS expression and DNA methylation state in

single seed descent lines (named Line A, Line B, Line C and so on)

at the S1 and S2 generations.

(TIF)

Figure S4 DNA methylation levels of QQS correlate negatively

with QQS expression in natural accessions. (A) Schematic

representation of a 30 kb genomic region encompassing QQS.

Red arrows indicate McrBC-qPCR primer pairs used to

determine DNA methylation levels of TEs flanking QQS; A, B

and C represent different primer pairs designed for the same

element. (B) DNA methylation levels of TEs flanking QQS in Col-0

(methylated QQS epiallele), Jea, Ri-0, Sav-0, Cvi-0, Kondara, Jm-0

and Akita (hypomethylated QQS epiallele) accessions. ‘NA’: not

analyzed; ‘ND’: not determined (presumably because of DNA

sequence polymorphisms preventing primer annealing). Error bars

represent standard deviation observed in two technical replicates.

(C) DNA sequence polymorphisms at the QQS locus and flanking

region in accessions carrying methylated and hypomethylated QQS

epialleles. The region analyzed comprises 1.5 kb upstream and

0.6 kb downstream of the QQS transcription initiation and

termination sites, respectively. Nucleotide positions are numbered

relative to the QQS translation initiation site (Position +1).

Methylated accessions (Col-0, Pyl-1, Mh-1 and Shahdara) are

shown in red and hypomethylated accessions (Kondara, Cvi-0,

Jea, Ri-0, Sav-0, Jm-0 and Akita) in black. (D) Effect of the

methylation inhibitor 5-aza-dC on DNA methylation and

expression of QQS. Error bars at represent standard deviation

observed in at least 3 biological replicates. (E) Pyrosequencing

quantification of allele-specific expression of QQS in F1 seedlings

derived from a cross between Col-0 and Kondara and grown with

or without 5-aza-dC. Data is expressed as the % of total transcripts

originating from the Kondara allele (top panel). DNA methylation

level in the same two pools of F1 seedlings (bottom panel). Error

bars represent standard deviation observed in two technical

replicates.

(TIF)

Table S1 Primer list.

(DOCX)
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