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Abstract

Mapping expression Quantitative Trait Loci (eQTLs) represents a powerful and widely adopted approach to identifying
putative regulatory variants and linking them to specific genes. Up to now eQTL studies have been conducted in a relatively
narrow range of tissues or cell types. However, understanding the biology of organismal phenotypes will involve
understanding regulation in multiple tissues, and ongoing studies are collecting eQTL data in dozens of cell types. Here we
present a statistical framework for powerfully detecting eQTLs in multiple tissues or cell types (or, more generally, multiple
subgroups). The framework explicitly models the potential for each eQTL to be active in some tissues and inactive in others.
By modeling the sharing of active eQTLs among tissues, this framework increases power to detect eQTLs that are present in
more than one tissue compared with ‘‘tissue-by-tissue’’ analyses that examine each tissue separately. Conversely, by
modeling the inactivity of eQTLs in some tissues, the framework allows the proportion of eQTLs shared across different
tissues to be formally estimated as parameters of a model, addressing the difficulties of accounting for incomplete power
when comparing overlaps of eQTLs identified by tissue-by-tissue analyses. Applying our framework to re-analyze data from
transformed B cells, T cells, and fibroblasts, we find that it substantially increases power compared with tissue-by-tissue
analysis, identifying 63% more genes with eQTLs (at FDR = 0.05). Further, the results suggest that, in contrast to previous
analyses of the same data, the majority of eQTLs detectable in these data are shared among all three tissues.
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Introduction

Regulatory variation plays an essential role in the genetics of

disease and other phenotypes as well as in evolutionary change [1–

3]. However, in sharp contrast to nonsynonymous variants in the

human genome, which can now be identified with great accuracy,

it remains extremely difficult to know which variants in the

genome may impact gene regulation in any given tissue or cell

type. [Henceforth we use ‘‘tissue’’ for brevity, but everything

applies equally to cell types.] Expression QTL mapping (e.g. [4–6]

represents a powerful approach for bridging this gap, by allowing

regulatory variants to be identified, and linked to specific genes.

Indeed, numerous studies (e.g. [7,8]) have shown highly significant

overlaps between eQTLs and SNPs associated with organismal-

level phenotypes in genome-wide association studies (GWAS),

suggesting that a large fraction of GWAS associations may be due

to variants that affect gene expression.

Ultimately, understanding the biology of organismal pheno-

types, such as diseases, is likely to require understanding regulatory

variation in many different tissues ([9,10]). For example, if

regulatory variants differ across tissues, then, in understanding

GWAS hits, and using them to understand the biology of disease,

we would like to know which variants are affecting which tissues.

At a more fundamental level, identifying differential genetic

regulation in different tissues could yield insights into the basic

biological processes that influence tissue differentiation. To date,

eQTL studies have been performed in a relatively narrow range of

tissue types. However, this is changing quickly: for example, the

NIH ‘‘Genotype-Tissue Expression’’ (GTEx) project aims to

collect expression and genotype data in 30 tissues across 900

individuals. Motivated by this, here we describe and illustrate a

statistical framework for mapping eQTLs in expression data on

multiple tissues.

While statistical methods for identifying eQTLs in a single tissue

or cell type are now relatively mature (e.g. [11]) current analytic

tools are limited in their ability to fully exploit the richness of data

across multiple tissues. In particular, available methods fall short in

their ability to jointly analyze data on all tissues to maximize power,

while simultaneously allowing for differences among eQTLs present in

each tissue. Indeed relatively few papers have considered the

problem. The simplest approach (e.g. [12,13]) is to analyze data on

each tissue separately (‘‘tissue-by-tissue’’ analysis), and then to

examine overlap of results among tissues. However, this fails to

leverage commonalities among tissues to improve power to detect

shared eQTLs. Furthermore, although examining overlap of

eQTLs among tissues may appear a natural approach to
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examining heterogeneity, in practice interpretation of results is

complicated by the difficulty of accounting for incomplete power.

Both [13] and [14] provide approaches to address this, but only for

pairwise comparisons of tissues.

Compared with tissue-by-tissue analysis, joint analysis of

multiple tissues has the potential to increase power to identify

eQTLs that have similar effects across tissues. Both [15] and [16]

conduct such joint analyses – the first using ANOVA, and the

second using a weighted Z-score meta-analysis – and [16] confirm

that their joint analysis has greater power than tissue-by-tissue

analysis. The ANOVA and Z-score methods each have different

advantages. The ANOVA framework has the advantage that, by

including interaction terms, it can be used to investigate

heterogeneity in eQTL effects among tissues. Gerrits et al. ([15])

use this to identify eQTLs that show significant heterogeneity, and

then classify these eQTLs, post-hoc, into different types based on

estimated effect sizes. The weighted Z-score method has the

advantage that, unlike ANOVA, it allows for different variances of

expression levels in different tissues (which are likely to occur in

practice). However, it does not so easily allow for investigation of

heterogeneity; Fu et al. ([16]) hence assess heterogeneity for pairs of

tissues by using a resampling-based procedure to assess the

significance of observed differences in Z scores. Other papers,

including [17] and [18], also show that joint analyses provide more

power. Our work goes beyond these papers in its modeling of

heterogeneity, and in its use of a hierarchical model to borrow

information across genes to estimate weights associated with

different types of heterogeneity.

Here we introduce a statistical framework for the joint analysis

of eQTLs among multiple tissue types, that combines advantages

of some of the methods above, as well as introducing some new

ones. In brief, our framework integrates recently-developed

GWAS meta-analysis methods that allow for heterogeneity of

effects among groups [19–23], into a hierarchical model (e.g.

[24,25]) that combines information across genes to estimate the

relative frequency of patterns of eQTL sharing among tissues. Like

ANOVA, our approach allows investigation of heterogeneity

among several tissues, not just pairs of tissues. However, in

contrast to ANOVA, our framework allows for different variances

in different tissues. Moreover, unlike any of the methods described

above, our framework explicitly models the fact that some tissues

may share eQTLs more than others, and estimates these patterns

of sharing from the data (a similar idea was applied to ChIP-Seq

data by [26]). Our methods also allow for intra-individual

correlations when samples are obtained from a common set of

individuals. While we focus here on comparing and combining

information across different tissue types, our framework could be

applied equally to comparing and combining across other units,

e.g. different experimental platforms, multiple datasets on the

same tissue types, or data on individuals from different popula-

tions.

The remainder of the paper is as follows. After providing a

brief overview of our framework, we use simulations to

illustrate its power compared to other methods, and then

apply it to map eQTLs, and assess heterogeneity among

tissues, using data from Fibroblasts, LCLs and T-cells ([12]).

Consistent with results from [16], we show that our joint

analysis framework provides a large gain in power compared

with a tissue-by-tissue analysis. Furthermore, compared with

previous analyses of these data, we find a much higher rate of

tissue-consistent eQTLs.

Results

Methods Overview
Consider mapping eQTLs in S tissues. In our applications here

the expression data are from micro-arrays, and so we assume a

normal model for the expression levels, suitably-transformed.

(These methods can also be applied to RNA-seq data after suitable

transformation; see Discussion). That is, in each tissue,

s~1, . . . ,S, we model the potential association between a

candidate SNP and a target gene by a linear regression:

ysi~mszbsgizesi with esi*N (0,s2
s ), ð1Þ

where ysi denotes the observed expression level of the target gene

in tissue s for the ith individual, ms the mean expression level of this

gene in tissue s, bs the effect of a candidate SNP on this gene

expression in tissue s, gi the genotype of the ith individual at the

SNP (coded as 0,1 or 2 copies of a reference allele) and esi the

residual error for tissue s and individual i. Note that the subscript s

on residual variance s2
s indicates that we allow the residual

variance to be different in each tissue. In addition, when tissues are

sampled from the same set of individuals, we allow that the

residual errors e1i, . . . ,eSi may be correlated (with the correlation

matrix to be estimated from the data).

The primary questions of interest are whether the SNP is an

eQTL in any tissue, and, if so, in which tissues. To address these

questions we use the idea of a ‘‘configuration’’ from [21,23]. A

configuration is a binary vector c~(c1, . . . ,cS) where cs[f0,1g
indicates whether the SNP is an eQTL in tissue s. If cs~1 then we

say the eQTL is ‘‘active’’ in tissue s. The ‘‘global null hypothesis’’,

H0, that the SNP is not an eQTL in any tissue, is therefore

c~(0, . . . ,0). Every other possible value of c can be thought of as

representing a particular alternative hypothesis. For example,

c~(1, . . . ,1) represents the alternative hypothesis that the SNP is

an eQTL in all S tissues, and c~(1,0, . . . ,0) represents the

alternative hypothesis that the SNP is an eQTL in just the first

tissue.

Our aim is to perform inference for c. A natural approach

is to specify a probability model, P(dataD c), being the

probability of obtaining the observed data if the true

configuration were c, and then perform likelihood-based

inference for c. The support in the data for each possible

value of c, relative to the null H0, is quantified by the

Author Summary

Genetic variants that are associated with gene expression
are known as expression Quantitative Trait Loci, or eQTLs.
Many studies have been conducted to identify eQTLs, and
they have proven an effective tool for identifying putative
regulatory variants and linking them to specific genes. Up
to now most studies have been conducted in a single
tissue or cell type, but moving forward this is changing,
and ongoing studies are collecting data aimed at mapping
eQTLs in dozens of tissues. Current statistical methods are
not able to fully exploit the richness of these kinds of data,
taking account of both the sharing and differences in
eQTLs among tissues. In this paper we develop a statistical
framework to address this problem, to improve power to
detect eQTLs when they are shared among multiple
tissues, and to allow for differences among tissues to be
estimated. Applying these methods to data from three
tissues suggests that sharing of eQTLs among tissues may
be substantially more common than it appeared in
previous analyses of the same data.

Analyzing eQTLs Jointly in Multiple Tissues
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likelihood ratio, or Bayes Factor (BF, [27]):

BFc~
P(dataDtrue configuration is c)

P(dataDH0)
: ð2Þ

Specifying these likelihoods requires assumptions about P(bDc),
the distribution of the effect sizes b for each possible

configuration c (as well as less crucial assumptions about

nuisance parameters such as m and ss). Of course, if cs~0
then bs~0 by definition, but for the tissues where cs~1
various assumptions are possible – for example, one could

assume that the effect bs is the same in all these tissues, or

allow it to vary among tissues. Here we use a flexible family

of distributions, P(bDc,h) (see Methods), where the hyper-

parameters h can be varied to control both the typical effect

size, and the heterogeneity of effects across tissues (see below).

The value of BFc measures the support in the data for one

specific alternative configuration c, compared against the null

hypothesis H0. To account for the fact that there are many

possible alternatives, the overall strength of evidence against H0 at

the candidate SNP is obtained by ‘‘Bayesian Model Averaging’’

(BMA), which involves averaging BFc over the possible alternative

configurations c, weighting each by its prior probability,

gc~P(cDH0 false):

BFBMA~
P(dataDH0 false)

P(dataDH0 true)
~

X
c=(0,...,0)

gc BFc: ð3Þ

Further, under an assumption of at most one eQTL per gene, the

overall evidence against H0 for the entire gene (i.e. that the gene

contains no eQTL in any tissue) is given by averaging BFBMA

across all candidate SNPs [28]. In either case, at either the SNP or

gene level, large values of BFBMA constitute strong evidence

against H0. BFBMA has a direct Bayesian interpretation as the

strength of the evidence against H0, but here we also use it as a

frequentist test statistic ([28,29]), assessing significance by permu-

tation or simulation. The latter has the advantage that p{values
and q{values obtained in this way are ‘‘valid’’ even if not all the

prior assumptions are exactly correct.

Note that BFBMA depends on the choice of (h,g), and the power

of BFBMA as a test statistic is expected to depend on how well this

choice of these hyper-parameters captures the range of alternative

scenarios present in the data. Here we make use of three different

choices:

N A ‘‘data-driven’’ choice, where the hyper-parameters are

estimated from the data using a hierarchical model (HM, [30])

that combines information across all genes. We use BFHM
BMA to

denote this choice.

N A ‘‘default’’ choice, which chooses g to cover a wide range of

different possible alternative configurations, and h is set to

allow modest heterogeneity. We use BFBMA to denote this

choice.

N A ‘‘lite’’ choice, which puts weight only on the most extreme

configurations (where the eQTL is active in only one tissue, or

in all tissues), but compensates by setting h to allow for more

heterogeneity. We use BFBMAlite to denote this choice.

Each of these choices has something to recommend it. The first,

being data driven, is the most attractive in principle, but also the

most complex to implement. The default choice is simpler to

implement, and is included partly to demonstrate that one does

not have to get the hyper-parameter values exactly ‘‘right’’ for

BFBMA to be a powerful test statistic. Finally, BFBMAlite has the

advantage that it is easily applied to large numbers of tissues;

neither of the other methods scales well, either computationally or

statistically, with the number of tissues, because the number of

terms in the sum in equation (3) is 2S{1.

When there is strong evidence against H0, the Bayes Factors can

also be used to assess which alternative configurations c are

consistent with the data. Specifically the posterior probability on

each configuration is:

P(true configuration is c Ddata, H0 false)~
gc BFcP

c=(0,...,0)

gc BFc
, ð4Þ

and the posterior probability that the SNP is an eQTL in tissue s is

obtained by summing the probabilities over configurations in

which cs~1:

P(eQTL in tissue sjdata, H0 false)~X
c:cs~1

P(true configuration is c jdata, H0 false): ð5Þ

The second of these is particularly helpful when the data are

informative for an eQTL in tissue s, but ambiguous in other

tissues: in such a case the probability () will be close to 1, even

though the ‘‘true’’ configuration will be uncertain (so none of the

probabilities (4) will be close to 1). Because both (4) and (5) are

sensitive to choice of hyper-parameters, we compute them using

BFHM
BMA (where the hyper-parameters are estimated from the data).

Further details of methods used are provided in the Methods

section.

Simulations
Power to detect eQTLs. We begin by comparing the ability

of different methods to reject the global null hypothesis H0; i.e. to

detect eQTLs that occur in any tissues. We expect that a tissue-by-

tissue analysis, which analyzes each tissue separately, will perform

well for detecting eQTLs that are present in a single tissue.

Conversely, we expect joint analysis of all tissues to perform well

for detecting eQTLs that are present in all tissues. Our Bayesian

model averaging (BMA) approach attempts, by averaging over

different possible eQTL configurations, to combine the advantages

of both types of analysis, and thus aims to perform well across all

scenarios.

To assess this we performed a series of simulations, with five

tissues measured in 100 individuals (and no intra-individual

correlations). Each simulation consisted of 2,000 gene-SNP pairs

(i.e. one candidate SNP per gene), half of which were ‘‘null’’ (i.e.

the SNP was not an eQTL in any tissue), and the other half

following an alternative hypothesis where the SNP was an eQTL

in exactly k tissues, with k varying from 1 to 5. Thus, for example,

the simulations with k~1 assess power to detect eQTLs that are

active in just one tissue, whereas the simulations with k~5 assess

power to detect eQTLs that are active in all five tissues. When

simulating eQTLs that are active in multiple tissues we assumed

their effects to be similar, but not identical, across tissues (see

Methods). We applied four analysis methods to these data: 1)

BFBMA, being our Bayesian Model Averaging approach with

default weights described above; 2) BFBMAlite, being the compu-

tationally-scalable version of BMA described above; 3) ANOVA/

linear regression (ANOVA/LR) (c.f. [15] and see Methods), which

jointly analyzes all tissues in a regression model, and compares the

general alternative model (which allows a different genetic effect in

Analyzing eQTLs Jointly in Multiple Tissues
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each tissue) with the null model (no effect in all tissues); and 4) a

‘‘tissue-by-tissue’’ analysis (c.f. [12]), where we use linear regression

to test for an eQTL separately in each tissue, and take the

minimum p{value across tissues as a test statistic. For simplicity

we defer consideration of the more sophisticated of our

approaches, BFHM
BMA, to slightly more complex simulations

described later. Each of these methods produces a test statistic

for each SNP-gene pair, testing the global null hypothesis H0. For

each test statistic, we found the threshold that yielded a False

Discovery Rate of 0.05 (based on the known null/alternative status

of each SNP-gene pair), and assessed the effectiveness of each

method by the number of discoveries it made at that FDR.

The results of these comparisons are shown in Figure 1A. As

expected, for eQTLs that occur in just one tissue, the tissue-by-

tissue analysis performs best. However, it is only slightly more

effective than the joint analysis approaches in this setting.

Conversely, the joint analysis approaches outperform the tissue-

by-tissue analysis for eQTLs that occur in more than one tissue,

with the gains becoming larger as the number of tissues sharing the

eQTL increases. The BMA analyses generally perform similarly to

one another, and outperform ANOVA/LR. This is presumably

because our simulations involved eQTLs that have similar effects

in each tissue, and our prior distribution p(bDc,h) explicitly up-

weights eQTLs with this feature.

This first set of simulations assumed error variances to be equal

among tissues. This assumption is made by ANOVA/LR, but not

by the other methods, and is likely often to be violated in practice.

To assess the effects of this we repeated the simulations, but with

error variances differing among tissues. The results (Figure 1B)

confirm that, relative to other methods, ANOVA/LR performs

less well when error variances vary among tissues.

To assess performance in larger numbers of tissues we repeated

the simulations above, but with 20 tissues (so k~1, . . . ,20). For

this many tissues computing BFBMA involves averaging over all

220
w106 possible eQTL configurations, which is computationally

inconvenient, so we omitted BFBMA from this comparison. The

results (Figure 1C) show that BFBMAlite performs similarly to the

tissue-by-tissue analysis for eQTLs that occur in just one or two

tissues, and outperforms it substantially for eQTLs occurring in

many tissues. As expected, ANOVA/LR outperforms tissue-by-

tissue analysis for eQTLs occurring in many tissues, but is

noticeably less effective for eQTLs occurring in only one tissue,

and performs consistently less well than BFBMAlite.

In summary, these simulations illustrate the benefits of Bayesian

Model Averaging as a general strategy for producing powerful test

statistics: by explicitly averaging over a range of alternative

models, these test statistics are able to achieve good power to

detect a wide range of different types of eQTL.

Identifying eQTLs in particular tissues: borrowing

information among tissues. Next we consider the benefits

of jointly analyzing multiple tissues, even when the main goal is to

identify eQTLs in a particular tissue of interest. For intuition,

suppose for a moment that every eQTL is shared among all

tissues. Then, from the simulation results above, we know that a

joint analysis will identify more eQTLs overall, and hence more

eQTLs in the tissue of interest. Of course, not all eQTLs are

shared among all tissues, but some are, and some tissues may share

eQTLs more than others. To allow for this, our hierarchical model

attempts to infer the extent of such sharing (by estimating the

configuration weights gc), and exploits any sharing that does occur

to increase power to detect eQTLs in each tissue. By estimating

sharing from the data, rather than assuming that all tissues share

equally with one another (as do the simpler test statistics BFBMA

and BFBMAlite used above), we expect BFHM
BMA to make more

effective use of sharing in the data to further improve power to

identify eQTLs.

To illustrate this, we simulated eQTL data for five tissues. Some

eQTLs were shared by all tissues, some were specific to each

tissue, some were shared by Tissues 1 and 2 only, and some were

shared by Tissues 3, 4 and 5. To show how the benefits of sharing

can change with sample size, we simulated 60 samples for Tissue

1, and 100 samples for the others. This mimics a setting where

Tissue 1 is harder to obtain than the other tissues, with Tissue 2

being the best proxy for Tissue 1.

We applied our Bayesian methods and a tissue-by-tissue analysis

to these data, and assessed their ability to identify eQTLs in each

tissue. For the tissue-by-tissue analysis the test statistic in each

tissue is simply the linear regression p{value in that tissue. For

our Bayesian methods, the test statistic in each tissue is the

posterior probability of the SNP being an active eQTL in that

tissue (5). Note that this posterior probability is computed from

joint analysis of all tissues, and takes account of sharing of eQTLs

among tissues. For example, consider a SNP showing modest

association with expression in Tissue 1. If this SNP also shows

strong association in the other tissues, then it will be assigned a

higher probability of being an active eQTL in Tissue 1 than it

would if it showed no association in the other tissues. For each

method, separately in each tissue, we identified the threshold of the

test statistic value that yields a FDR of 0.05 in that tissue, based on

the true active/inactive status of each SNP in that tissue (known

since this is simulated data). (A SNP that is an eQTL in some

tissues but not others counts as a ‘‘false discovery’’ if it is called as

an eQTL in a tissue where it is inactive.) For the Bayesian methods

we obtained results both using ‘‘default’’ weights on configurations

(BFBMA), and using weights estimated from the data by the

hierarchical model (BFHM
BMA). The latter is expected to be more

effective as it should learn, for example, that Tissue 1 shares more

eQTLs with Tissue 2 than with other tissues.

The results (Figure 2) show that, for all tissues, our joint analyses

outperform the tissue-by-tissue analysis. Further, BFHM
BMA outper-

forms BFBMA, demonstrating the benefits of learning patterns of

sharing from the data. Finally, the gain of BFHM
BMA is greater for

Tissue 1 than for Tissue 2, illustrating that benefits of sharing

information are greater for tissues with small sample sizes.

Furthermore, using the hierarchical model which pools all genes

together, we can estimate the configuration proportions, i.e. gc. In

the setting described above, we simulated one thousand eQTLs in

each of 8 different configurations, as well as one thousand genes

with no eQTLs. Averaged over replicates, the proportions are

estimated to be in ½0:124{0:127� for each of the 8 active

configurations (negligible differences between replicates). These

estimates are fairly accurate knowing that the true proportion is

1=8~0:125 for each configuration.

Analysis of eQTL Data in Three Cell Types from Dimas et
al.

We now analyze data from [12], consisting of gene expression

levels measured in fibroblasts, LCLs and T-cells from 75 unrelated

individuals genotyped at approximately 400,000 SNPs. The data

were pre-processed similarly to the original publication, as

described in the Methods section. Throughout we focus on testing

SNPs that lie within 1 Mb of the transcription start site of each

gene (the ‘‘cis candidate region’’), and on a subset of 5012 genes

robustly expressed in all three cell-types.

Gain in power from joint analysis. First we assess the gain

in power from mapping eQTLs in all three cell types jointly, using

BFBMA, compared with a ‘‘tissue-by-tissue’’ analysis similar to that

Analyzing eQTLs Jointly in Multiple Tissues
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in [12]. For each method we compute a test statistic for each gene,

combining information across SNPs, to assess the overall support

for any eQTL in that gene in any tissue. For our Bayesian

approach the test statistic is the average value of BFBMA over all

SNPs in the cis candidate region; for the tissue-by-tissue analysis

the test statistic is the minimum p{value from linear regressions

performed separately in each tissue for each SNP in the cis

candidate region. We translate each of these test statistics into a

p{value for each gene by comparing observed values with

simulated values obtained under H0 (by permutation of individual

labels). Finally we computed, for each method, the number of

genes identified as having an eQTL at an FDR of 0.05 (using the

qvalue package [31]).

Joint mapping, via BFBMA, substantially increased power to

identify eQTLs compared with tissue-by-tissue analysis. For

example, BFBMA identified 1022 eQTLs at FDR = 0.05, which

is 63% more than the 627 eQTLs identified by the tissue-by-tissue

analysis at the same FDR (Figure 3A, 3B, and 3C). Further, the

vast majority of eQTLs identified by the tissue-by-tissue analysis

(94%) are also detected by BFBMA (Figure 3C).

In many cases, the eQTLs detected by BFBMA but not by the

tissue-by-tissue analysis have modest effects that are consistent

across tissues. Because their effects are modest in each tissue, they

fail to reach the threshold for statistical significance in any single

tissue, and so the tissue-by-tissue analysis misses them. But because

their effects are consistent across tissues, the joint analysis is able to

detect them. Figure 4 shows an example illustrating this (gene

ASCC1, Ensembl id ENSG00000138303, with SNP rs1678614).

The PC-corrected phenotypes already indicate that this gene-SNP

pair looks like a consistent eQTL (Figure 4A), and its effect size

estimates are highly concordant across tissues (Figure 4B).

However, as indicated by the q{values on the forest plot, this

eQTL is not called by the tissue-by-tissue analysis in any tissue (all

the q{values exceed :14). In contrast, the joint analysis pools

Figure 1. The BFBMA joint analysis has more power across a range of alternatives. A. Five tissues are simulated, each with the error
variance equal to 1. B. Five tissues are simulated, with error variances being 1, 1.5 or 2. C. Twenty tissues are simulated, each with the error variance
equal to 1.
doi:10.1371/journal.pgen.1003486.g001
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information across tissues to conclude that there is strong evidence

for an eQTL (q~0:001), and that it is likely an eQTL in all three

tissues (probability 1 assigned to the consistent configuration

c~(1,1,1), conditional on it being an eQTL).

Many eQTLs are consistent among tissues. The original

analyses of these data concluded that 69% to 80% of eQTLs

operate in a cell-type specific manner ([12]). These results were

obtained by mapping eQTLs separately in each tissue, and then

examining which of the eQTLs identified in each tissue also

showed some signal (e.g. at a relaxed significance threshold of

p~0:05), in another tissue. However, as noted by [14], due to

incomplete power, eQTLs that are actually shared between tissues

may appear ‘‘tissue-specific’’ in this type of analysis. Our

hierarchical model has the potential to help overcome this

difficulty by estimating the proportion of eQTLs that follow each

configuration type as a parameter of the model, combining

information across all genes, and without setting specific signifi-

cance thresholds (thus sidestepping the problems of incomplete

power).

Applying the hierarchical model to these data produced an

estimate of just 8% of eQTLs being specific to a single tissue, with

an estimated 88% of eQTLs being common to all three tissues

(95% CI = 84%–93%; Table 1). Among eQTLs shared between

just two tissues, many more are shared between LCLs and T-cells

(Figure S1 shows such an example), than between these cell types

and fibroblasts. This is consistent with results from [12], and

perhaps expected since LCLs and T-cells are more similar to one

another than to fibroblasts.

We obtained qualitatively similar patterns when we varied some

of the assumptions in the hierarchical model - specifically, whether

or not we allow for intra-individual correlations, whether or not we

assume at most one eQTL per gene, whether or not we remove

PCs to account for confounders, and whether or not we analyze

all genes or only those genes robustly expressed in all tissues

(Text S1). Nonetheless, we caution against putting too much

weight on any particular number to quantify tissue specificity,

not least because the definition of a tissue-specific eQTL is

somewhat delicate: for example, it is unclear how to classify a

SNP that is very strong eQTL in one tissue, and much weaker in

the others. Further, our estimates necessarily reflect patterns of

sharing only for moderately strong eQTLs, strong enough to be

detected in the modest sample sizes available here: patterns of

sharing could be different among weaker eQTLs. Nonetheless,

these results do suggest that there is substantial sharing of

Figure 2. The BFHM
BMA joint analysis efficiently borrows information across genes. Five tissues are simulated. Some eQTLs were shared by all

tissues, some were specific to each tissue, and, as depicted by the cladogram, some were shared by Tissues 1 and 2 only, while others were shared by
Tissues 3, 4 and 5. Each tissue has 100 samples, except tissue 1 which has only 60.
doi:10.1371/journal.pgen.1003486.g002
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eQTLs among these three tissue types, considerably higher than

the original analysis suggested.

To illustrate the potential pitfalls of investigating heterogeneity

in a tissue-by-tissue analyses, we also ran a tissue-by-tissue analysis

on these data. Specifically, we called eQTLs separately in each

tissue (at an FDR of 0.05), and then examined the overlap in the

genes identified in each tissue. Using this procedure, in strong

contrast with results from the joint analysis, 65% of eQTLs are

called in only one tissue, with fewer than 15% called in all three

tissues (Table 1). Qualitatively similar results are obtained for

different FDR thresholds. However, these results cannot be taken

as reliable indications of tissue specificity, because the procedure

fails to take account of incomplete power to detect eQTLs at any

given threshold, and therefore tends to over-estimate tissue

specificity. Figure 5 shows an eQTL that illustrates this behavior

(gene CHPT1, Ensembl id ENSG00000111666, with SNP

rs10860794). Visual examination of the expression levels in each

genotype class (Figure 5A), suggest that this SNP is an eQTL in all

three tissues, with similar effects in each tissue (Figure 5B). This is

supported by the joint analysis, which shows strong evidence for an

eQTL q~0:001, and assigns probability effectively 1 to the

consistent configuration c~(1,1,1). However, as shown by the

Figure 3. The BFBMA joint analysis is more powerful on the data set from Dimas et al. A and B. Histograms of gene p{values obtained by
the tissue-by-tissue analysis and the joint analysis. C. Scatter plot of the p{values from the joint analysis versus the p{values of the tissue-by-tissue
analysis. D. Numbers of eQTLs called by both methods or either one of them.
doi:10.1371/journal.pgen.1003486.g003
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q{values, at an FDR of 0.05, the tissue-by-tissue analysis calls the

eQTL only in fibroblasts.

Given the disagreement between the results from our novel

framework and the original analyses of these data, we checked the

plausibility of our results by applying a previously-used method for

examining pairs of tissues to these data ([13]). This analysis takes

the best eQTL in each gene identified in one tissue, and then

estimates the proportion of these (p1) that are also eQTLs in a

second tissue (by applying Storey’s method [31] to their nominal

p{values in that second tissue, uncorrected for multiple

comparisons). Unlike the tissue-by-tissue analysis above, this

approach avoids thresholding of p{values, and makes some

allowance for incomplete power. However, unlike our framework,

this approach can only be applied to compare pairs of tissues.

Applying this approach to each pair yielded a mean estimate of

p1&88% (range 77% to 94%), broadly consistent with our

qualitative conclusion that a substantial proportion of eQTLs are

shared among tissues.

Discussion

In this work, we have presented a statistical framework for

analyzing and identifying eQTLs, combining data from multiple

tissues. Our approach considers a range of alternative models,

one for each possible configuration of eQTL sharing among

tissues. We compute Bayes Factors that quantify the support in

the data for each possible configuration, and these are used both

to develop powerful test statistics for detecting genes that have

an eQTL in at least one tissue (by Bayesian model averaging

across configurations), and to identify the tissue(s) in which these

eQTLs are active (by comparing the Bayes factors for different

configurations against one another). Our framework allows for

heterogeneity of eQTL effects among tissues in which the eQTL

is active, for different variances of gene expression measure-

ments in each tissue, and for intra-individual correlations that

may exist due to samples being obtained from the same

individuals. For eQTL detection, our framework provides

consistent, and sometimes substantial, gains in power compared

to a tissue-by-tissue analysis and ANOVA or simple linear

regression. Concerning the tissue specificity of eQTLs, our

framework efficiently borrows information across genes to

estimate configuration proportions, and then uses these

estimates to assess the evidence for each possible configuration.

When re-analyzing the gene expression levels in three cell types

from 75 individuals ([12]), we found that there appears to be a

substantial amount of sharing of eQTLs among tissues,

substantially more than suggested by the original analysis.

In the next few years, we expect that expression data will be

available on large numbers of diverse tissue types in sufficient

Figure 4. Example of an eQTL with weak, yet consistent effects. A. Boxplots of the PC-corrected expression levels from gene ASCC1 (Ensembl
id ENSG00000138303) in all three cell types, color-coded by genotype class at SNP rs1678614. B. Forest plot of estimated standardized effect sizes of
this eQTL. Note that none of the q{values from the tissue-by-tissue analysis are significant at FDR = 0.05.
doi:10.1371/journal.pgen.1003486.g004

Table 1. Inference of the proportion of tissue specificity.

Configuration Hierarchical model Tissue-by-tissue

F-L-T 0.882 [0.840, 0.925] 0.187

L-T 0.051 [0.025, 0.085] 0.080

F-L 0.005 [0.000, 0.018] 0.050

F-T 0.002 [0.000, 0.011] 0.047

F 0.033 [0.014, 0.065] 0.246

L 0.015 [0.000, 0.039] 0.165

T 0.011 [0.000, 0.033] 0.224

The configurations are denoted here using the first letter of each tissue, e.g. ‘‘F-
L-T’’ corresponds to the consistent configuration c~(1,1,1). The results for the
hierarchical model were obtained with the multivariate Bayes Factors allowing
correlated residuals and the EM algorithm. The results for the tissue-by-tissue
analysis were obtained by calling eQTLs at an FDR of 0.05 after performing
permutations in each tissue separately, and calculating the overlaps among
tissues.
doi:10.1371/journal.pgen.1003486.t001
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sample sizes to allow eQTLs to be mapped effectively (for

example, the NIH GTEx project aims to collect such data). The

methods presented here represent a substantive step towards

improved analyses that fully exploit the richness of these kinds of

data. However, we also see several directions for potential

extensions and improvements. First, our current framework can

only partially deal with the challenges of large numbers of tissues.

Specifically, because with S tissues, there are 2S possible

configurations of eQTL sharing among tissues, some of our

current methods, which consider all possible configurations, will

become impractical for moderate S (speculatively, above about 10,

perhaps). Our test statistic BFBMAlite partially addresses this

problem, by allowing for heterogeneity while averaging over only

Sz1 configurations, which is practical for very large S. Our

simulation results suggest that BFBMAlite is a powerful test statistic

for identifying SNPs that are an eQTL in at least one tissue.

However our preferred approach for identifying which tissues such

SNPs are active in involves a hierarchical model that estimates the

frequency of different patterns of sharing from the data, and this

hierarchical model scales poorly with S. In particular, having a

separate parameter for each possible configuration is unattractive

(both statistically and computationally) for large S, and alternative

approaches will likely be required. There are several possible ways

forward here: for example, one would be to reduce the number of

distinct configurations by clustering ‘‘similar’’ configurations

together; another would be to focus less on the discrete

configurations, and instead to focus on modeling heterogeneity

in effect sizes in a continuous way - perhaps using a mixtures of

multivariate normal distributions with more complex covariance

structures than we allow here. We expect this to remain an area of

active research in the coming years, especially since these types of

issues will likely arise in many genomics applications involving

multiple cell types, and not only in eQTL mapping.

Another important issue to address is that most future

expression data sets will likely be collected by RNA-seq, which

provides count data that are not normally distributed. Previous

eQTL analyses of RNA-seq (e.g. [32]) have nonetheless performed

eQTL mapping using a normal model, by first transforming

(normalized) count data at each gene to the quantiles of a standard

normal distribution. Although this approach would not be

attractive in experiments with small sample sizes, with the

moderate to large sample sizes typically used in eQTL mapping

experiments this approach works well. As a first step, this approach

could also be used to apply our methods to count data. However,

ultimately it would seem preferable to replace the normal model

with a model that is better adapted to count-based data, perhaps a

quasi-Poisson generalized linear model ([33]); Bayes Factors under

these models could be approximated using Laplace approxima-

tions, similar to the approximations used here for the normal

model [21]. The quasi-Poisson model has the advantage over the

normal transformation approach that it preserves the fact that

there is more information about eQTL effects in tissues where a

gene is high expressed than in tissues where it is low expressed.

This information is lost by normal transformation. In our primary

analyses here we addressed this by analyzing only genes that were

robustly expressed in all tissues, but this is sub-optimal, and will

become increasingly unattractive as the number of tissues grows.

Our analyses here assess (cis) eQTL sharing among tissues by

performing association testing at the level of individual SNPs. A

different approach to investigating eQTL sharing among tissues is

to study the ‘‘cross-heritability’’ of expression levels among tissues

(e.g. [34,35]). These methods are based on polygenic models, and

attempt to estimate the combined influence of all shared eQTLs;

this contrasts with our analysis, where the focus is on sharing of

individually-identifiable eQTLs of moderate-to-large effect. Both

[34] and [35] estimate cross-tissue heritability to be low. [34],

Figure 5. Example of an eQTL wrongly called as tissue-specific by the tissue-by-tissue analysis. A. Boxplots of the PC-corrected
expression levels from gene CHPT1 (Ensembl id ENSG00000111666) in all three cell types, color-coded by genotype class at SNP rs10860794. B. Forest
plot of estimated standardized effect sizes of this eQTL. Note that, from the q{values of the tissue-by-tissue analysis, the eQTL is significant at
FDR = 0.05 only in fibroblasts.
doi:10.1371/journal.pgen.1003486.g005
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studying expression in Blood and Adipose tissues from Icelanders,

estimated cross-tissue heritability as j2&3%; [35] obtained an

estimate of mean genetic correlation close to zero for Blood and

LCLs in monozygotic twins (̂rrG~{0:031). These results may

appear to conflict with our results (both from our model-based

approach, and the less-model-based pairwise analysis approach

from [13]), which suggest that most large-effect cis eQTLs are

shared among fibroblasts, LCLs and T cells. However, these low

estimates of cross-tissue heritability reflect not only the extent of

sharing of eQTLs, but also the absolute size of the eQTL effects. If

eQTL effects are small, explaining only a small proportion of the

total variance in gene expression, then cross-tissue heritability will

be also small, even if all eQTLs have exactly the same effect in all

tissues. Thus, to assess eQTL sharing in the heritability-based

approaches, it is helpful to contrast cross-tissue heritability, j2,

with within-tissue heritability, h2, (which is also affected by eQTL

effect size, but not by sharing). Specifically, within the polygenic

model it can be shown that the correlation coefficient r of the

eQTL effects in two tissues a and b is: r : ~j2=
ffiffiffiffiffiffiffiffiffi
h2

ah2
b

q
. Applying

this to the cis estimates of j2 and h2
a,h2

b from [34], for adipose and

blood, yields r~0:03=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(0:055)(0:057)

p
~0:53. Although this

estimate of effect correlation within a polygenic model, is not

directly comparable with our estimate of sharing of eQTLs in a

decidedly non-polygenic model (and for different cell types!), this

result suggests that the two analyses may be less in conflict than

they initially appear.

Methods

Software implementing our methods are available on the

website http://stephenslab.uchicago.edu/software.html.

Bayesian Methods for Mapping Multiple-Tissue eQTLs
Models for multiple-tissue eQTLs. For each tissue, we

model the potential genetic association between a target SNP and

the expression levels of a target gene by the simple linear

regression model (1). In vector form, this model is represented by

ys~ms1zbsgszes, es*N (0,s2
s I), ð6Þ

where s indexes one of the S tissue types examined and the vectors

ys,gs and es denote the expression levels, the genotypes of the

samples and the residual errors respectively for the sth tissue type.

The intercept term, ms, and the residual error variance, s2
s are

allowed to vary with tissue type. The regression coefficient bs

denotes the effect of the eQTL in tissue s, but we follow [21,28] in

using the (unitless) standardized regression coefficient bs : ~bs=ss,

as the main measure of effect size. As a result, inference is

invariant to scale transformations of the response variables (ys)

within each tissue.

When the tissue samples are taken from the same individuals we

allow that the observations on the same individual may be

correlated with one another. Specifically, let E: ~(1� � �s) denote

the N|S matrix of residual errors, we assume it to follow a

matrix-variate normal (MN) distribution, i.e.,

E*MN(0,I ,S): ð7Þ

That is, the vectors (e1i, . . . ,eSi) are independent and identically

distributed as N (0,S). The (unknown) S|S covariance matrix S
quantifies the correlations between the S tissues; it can vary from

gene to gene and is estimated from the data (see below). [When the

tissue samples are collected from different individuals then we

assume their error terms are independent; methods for this case

are given in [21].

Prior on effect sizes. A key component of our Bayesian

model is the distribution p(Dc,h), where h denotes hyper-

parameters that are to be specified or estimated from the data.

(In the main text we used p(bDc,h) to simplify exposition, but we

actually work with the standardized effects b.) Of course, if cs~0
then bs~0 by definition. So it remains to specify the distribution of

the remaining bs values for which cs~1.

We use the distribution from [21] (see also [19,20]), which

provides a flexible way to model the heterogeneity of genetic

effects of an eQTL in multiple tissues. Specifically, [21] consider a

distribution p(Dw,v,c), with two hyper-parameters, w,v, in which

the non-zero effects are normally distributed about some mean �bb,

which itself is normally distributed:

bsD�bb,cs~1*N (�bb,w2), ð8Þ

and

�bb*N (0,v2): ð9Þ

Note that w2zv2 controls the variance (and hence the expected

absolute size) of bs, and w2=(w2zv2) controls the heterogeneity

(indeed, v2=(w2zv2) is the correlation of bs,bs’ for different

subgroups s=s’). If w2~0 then this model corresponds to the

‘‘fixed effects’’ model in which the effects in all subgroups are

equal (e.g. [23]).

To allow for different levels of effect size and heterogeneity, [21]

use a fixed grid of values f(wi,vi) : i~1, . . . ,Lg, with the ith grid

point having weight wi. Thus

p(bDc,h)~
X

i

wip(bDwi,vi,c): ð10Þ

In all our applications here we consider the grid of values fixed,

and treat the weights w1, . . . ,wL as hyper-parameters (so

h~(w1, . . . ,wL)), which can be either fixed or estimated.

Choice of grid for (w,v). We define a grid of values for (w,v)

by specifying a set A of values for the average effect size, v2zw2
,

and a set H of values for the heterogeneity w2=(w2zv2), and then

taking the grid to be all L~DAD|DH D possible combinations of

values. For all methods we use A~f0:12,0:22,0:42,0:82,1:62g,
which is designed to span a wide range of eQTL effect sizes (see

Text S1 as well as Figure S2). For BFBMA and BFHM
BMA we allow

for only a limited range of heterogeneity: H~f0,0:25g. In this

way we assume that when the eQTL is present in multiple tissues,

it has a similar (but not necessarily identical) effect in each tissue.

For BFBMAlite we allow a much wider range of heterogeneity:

H~f0,0:25,0:5,0:75,1g. The rationale here is that the large

heterogeneity values will help capture eQTLs that are present in

only a subset of tissues, a feature that is not otherwise captured by

BFBMAlite as it averages over a small number of configurations.

Choice of weights w and g. Let DcD : ~
P

s cs denote the

number of elements of c that are equal to 1 (i.e. the number of

tissues in which the eQTL is active in configuration c), and recall

that gc~P(cDH0 false).

For BFBMA we fix the weights g so that they put weight 1=S on

all S possible non-zero values for DcD ([f1, . . . ,Sg), and, conditional

on DcD, put equal weight on all
S

DcD

� �
configurations with that
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value for DcD. Thus gc~(1=S)
S

DcD

� �{1

. In addition we fix the grid

weights w to be equal on all grid values.

For BFBMAlite we put non-zero weights g on only the

consistent configuration (DcD~S) and configurations with an

eQTL in a single tissue (DcD~1). We set g so that it puts weight

0.5 on each of DcD~1 and DcD~S. Conditional on DcD~1 we

assume all S possibilities are equally likely. Thus gc~0:5 if

c~(1,1,1, . . . ,1) and 0.5/S if DcD~1. Again, we fix the grid

weights to be equal on all grid values (but with the larger grid

for heterogeneity described above).

For BFHM
BMA we estimate the weights, g from the data using a

hierarchical model to combine information across genes, as

described below.

Bayes Factor computation. To complete model specifica-

tion, we use (limiting, diffuse) prior distributions for the nuisance

parameters ms and S, as in [36]. Under these priors we can

compute the Bayes Factor BFc in (2) using

BFc~
XM
j~1

wjBFc(wj ,vj) ð11Þ

where M is the total number of grid points and BFc(wj ,vj) is given

by

BFc(w,v)~
p(Y jG,w,v,c)

p(Y jG,H0)

~

Ð
p(Y jG,m,b,S)p(m,S)p(bjc,w,v)db dm dSÐ

p(Y jG,m,b~0,S)p(m,S)dm dS

ð12Þ

where Y and G denote the collection of expression levels and

genotypes for a target gene-SNP pair across all tissue types

respectively. We use analytic approximations for these Bayes

Factors based on Laplace approximation, given in [21,36]. In

particular, we use the approximation which in functional forms is

connected to Frequentist’s score statistic.

Bayesian Hierarchical Model
For BFHM

BMA we use a hierarchical model, similar to [24,25],

which combines information across genes, to estimate the grid

weights g’s and configuration weights g’s. Following both [25,26]

we make the simplifying assumption that each gene has at most

one eQTL (which may be active in multiple tissues), and that each

SNP is equally likely to be the eQTL. Let mk be the number of

SNPs in the cis-region for gene k. Then, if BFk,v
c (w,v) denotes the

Bayes Factor (12) computed for SNP v in gene k, the ‘‘overall

Bayes Factor’’ measuring the evidence for an eQTL in gene k,

BFk, is obtained by averaging over the possible eQTL SNPs, the

possible configurations c, and the grid of values for w,v, weighting

by their probabilities:

BFk(g,w)~
p(data at gene kjgene contains eQTL)

p(data at gene kjgene contains no eQTL)

~(1=mk)
Xmk

v~1

X
j

X
c

gcwjBFk,v
c (wj ,vj):

ð13Þ

Furthermore, if we let p0 denote the probability that each gene

follows the null (i.e. contains no eQTL) then the likelihood for

gene k, as a function of p0,g,w, is given by

Lk(p0,g,w)~(1{p0)p(data at gene kjgene contains eQTL)

zp0p(data at gene kjgene contains no eQTL)
ð14Þ

!(1{p0)BFkzp0 ð15Þ

The overall likelihood for our hierarchical model is obtained by

multiplying these likelihoods across genes:

L(p0,g,w)~P
k

Lk(p0,g, w): ð16Þ

Note that although the expression levels for different genes are not

independent, because the SNPs being tested in different genes are

mostly independent this independence assumption for the

likelihoods across genes is a reasonable starting point. We have

developed an EM algorithm to estimate the parameters (p0,g,w)
by maximum likelihood (see Supplementary information).

Relaxation of ‘‘one cis-eQTL per gene’’ assumption. To

relax the ‘‘one cis-eQTL per gene’’ assumption we adopt the

following procedure. First we compute the posterior probability of

each SNP being the sole eQTL for each gene (i.e. only allowing

one cis-eQTL per gene) with a set of default parameters, and use

these to identify the top SNP for each gene (i.e. the one with the

largest posterior probability of being the eQTL).

For each gene, separately in each tissue, we compute the

residuals of its expression level after regressing out the effect of the

top SNP. If these residuals are strongly associated with a SNP then

this is evidence for that SNP being a second independent eQTL

for that gene. Therefore, to allow for potentially more than one

eQTL per gene we treat these residuals as defining a second set of

‘‘artificial’’ expression data for each gene and each tissue, and fit

the hierarchical model using both the original and the artificial

expression data.

Simulation Procedures
For our simulations, when simulating SNP-gene pairs, the

genotypes at each SNP in each individual were simulated as

Binomial(2,0.3): that is, with minor allele frequency 30% and

assuming Hardy-Weinberg equilibrium. Phenotypes with eQTLs

were simulated, with effect size based on an expected proportion

of variance explained (PVE) of 20%; (see Text S1). For Figure 1A

and 1B the error variances (one per tissue) were all equal to 1. For

Figure 1C the error variances were randomly drawn from

f1,1:5,2g, all equally likely.

The ANOVA/LR Method
The ANOVA/LR method uses the same linear model as our

Bayesian methods (1), except that the residual errors ss are

assumed to be equal across tissues s. Within this model we tested

the global null hypothesis (bs~0 for all s) using an F test

comparing the null model with the unconstrained alternative (bs

unconstrained). See Text S1.

Preprocessing of the Dataset from Dimas et al.
The phenotypes from Dimas et al. ([12]) were retrieved from the

Gene Expression Omnibus (GSE17080). We mapped the 22,651

non-redundant probes to the hg19 human genome reference

sequence (only the autosomes) using BWA ([37]), kept 19,965

probes mapping uniquely with at most one mismatch, and

removed the probes overlapping several genes from Ensembl.

This gave us 12,046 genes overlapped by 16,453 probes. For genes
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overlapped by multiple probes, we chose a single probe at random.

In our analyses we considered only genes that were robustly

expressed in all tissues. A gene was considered robustly expressed

in a given tissue if its mean expression level across individuals in

this tissue was larger than or equal to the median expression level

of all genes across all individuals in this tissue. As a result, we

focused on 5012 genes.

Genotypes were obtained from the European Genome-

phenome Archive (EGAD00000000027). We extracted the geno-

types corresponding to the 85 individuals for which we had

phenotypes and converted the SNP coordinates to the hg19

reference using liftOver ([38]). To detect outliers, we performed a

PCA of these genotypes using individuals from the CEU, CHB,

JPT and YRI populations of the HapMap project using

EIGENSOFT ([39]). As in the original study, we identified 10

outliers and removed them from all further analyses, which were

therefore performed on 75 individuals.

Gene expression measurements suffer from various confound-

ers, many of which may be unmeasured ([40]), but which can be

corrected for using methods such as principal components analysis

(PCA). Following [32], we applied PCA in each tissue separately

on the 5012|75 matrix of expression levels of each gene in each

individual. We sorted principal components (PCs) according to the

proportion of variation in the original matrix they explain, and

selected PCs so that adding another PC would explain less than

0.0025% of the variation. As a result, this procedure identified 16

PCs in Fibroblasts, 7 in LCLs and 15 in T-cells. We then regressed

out these PCs from the original matrix of gene expression levels,

and used the residuals as phenotypes for all analyses.

All methods we compared assume that the errors are distributed

according to a Normal distribution. Before analysis we therefore

rank-transformed the expression levels at each gene to the

quantiles of a standard Normal distribution ([28]).

Permutation Procedures
On the data set from Dimas et al., we assessed the performance

of two methods, the tissue-by-tissue analysis and the BMA joint

analysis, by comparing the number of genes identified as having at

least one eQTL in any tissue, at a given FDR. For each method,

we defined a test statistic, which was computed for each gene. For

the tissue-by-tissue analysis, the test statistic is the minimum

p{value of the linear regressions between the given gene and

each cis SNP in each tissue (so the minimum is taken across all

SNPs and all tissues). For the BMA joint analysis, the test statistic is

the average of the Bayes Factors for the given gene and each cis

SNP. (When applying the tissue-by-tissue analysis to test for

eQTLs in a single tissue, the test statistic is the minimum p{value
of the linear regressions between the given gene and each cis SNP

in that tissue.)

In each case we converted the test statistic to a p{value for

each gene, testing the null hypothesis that the gene contains no

eQTL in any tissue, by comparing the observed test statistic with

the value of the test statistic obtained on permuted data obtained

by permuting the individuals labels (using the same permutations

in each tissue to preserve any intra-individual correlations between

gene expression in different tissues). Specifically, let P denote the

total number of permutations (we used P~104), Tg the value of

the test statistic for gene g on the non-permuted data, and T (i)
g the

value of the test statistic on the ith-permuted data. The p{value
for gene g from the tissue-by-tissue analysis is:

(1z
PP

i~1 1
T

(i)
g ƒTg

)=(1zP). For the BMA joint analysis, the

p{value is: (1z
PP

i~1 1
T

(i)
g §Tg

)=(1zP). Note that permutations

were performed for each gene, since the null distribution of the test

statistic will vary across genes (not least because the genes have

different numbers of SNPs in their cis candidate region; see Figure

S3).

From the p{value calculated for each gene we estimate

q{values using the qvalue package ([31]), and determine the

number of genes having at least one eQTL in any tissue at an FDR

of a by computing the number of genes with qƒa.

When performing the tissue-by-tissue analysis on a single tissue,

we performed the permutations in each tissue separately.

Supporting Information

Figure S1 Example of a strong, tissue-specific eQTL. A.

Boxplots of the PC-corrected expression levels from gene

ANKDD1A (Ensembl id ENSG00000166839) in all three cell

types, color-coded by genotype class at SNP rs1628955. B. Forest

plot of estimated standardized effect sizes of this eQTL. The

posterior probability for configuration (0,1,1) is above 0.95,

indicating that this eQTL is very likely to be active in LCLs and

T-cells but not in fibroblasts.

(PDF)

Figure S2 Histogram of effect sizes when simulated according to

the grid A.

(PDF)

Figure S3 Histogram of the number of SNPs in the cis region of

each gene for the data set from Dimas et al.

(PDF)

Text S1 Supplementary methods and results.

(PDF)
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