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Abstract

Tree mortality in tropical forests is a complex ecological process for which modelling approaches need to be improved to
better understand, and then predict, the evolution of tree mortality in response to global change. The mortality model
introduced here computes an individual probability of dying for each tree in a community. The mortality model uses the
ontogenetic stage of the tree because youngest and oldest trees are more likely to die. Functional traits are integrated as
proxies of the ecological strategies of the trees to permit generalization among all species in the community. Data used to
parametrize the model were collected at Paracou study site, a tropical rain forest in French Guiana, where 20,408 trees have
been censused for 18 years. A Bayesian framework was used to select useful covariates and to estimate the model
parameters. This framework was developed to deal with sources of uncertainty, including the complexity of the mortality
process itself and the field data, especially historical data for which taxonomic determinations were uncertain. Uncertainty
about the functional traits was also considered, to maximize the information they contain. Four functional traits were strong
predictors of tree mortality: wood density, maximum height, laminar toughness and stem and branch orientation, which
together distinguished the light-demanding, fast-growing trees from slow-growing trees with lower mortality rates. Our
modelling approach formalizes a complex ecological problem and offers a relevant mathematical framework for tropical
ecologists to process similar uncertain data at the community level.
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Introduction

The dynamics of tree populations in tropical rain forests is a

complex ecological process, involving biotic and abiotic inter-

actions between diverse tree species and their environment.

Three demographic processes are motors of tree dynamics:

recruitment, growth and mortality. Tree recruitment is often

defined as recruitment above a minimum DBH (diameter at

breast height) [1]. Recruitment depends, on the one hand, on

species characteristics related to regeneration (seed mass,

dispersal ability . . .) [2–5] and, on the other, on diverse

environmental variables such as competition for light [6] or soil

fertility [7]. Tree growth first depends on the species’ own life-

history strategy [8], from fast-growing pioneer species to light-

wooded understorey species [9]. In addition, tree growth is

mediated by climate [53], environment (light, soil moisture) and

competition [11] drivers [12]. Mortality is the least-documented

process for diverse reasons. Standing death may occur due to

intrinsic senescence [13] or extrinsic agents such as drought or

natural enemies. Trees may fall (alone or together) or die

standing but may also be broken by wind, rain, or by other

falling trees, sometimes causing cascading treefall events [14].

Finally, dominant modes of death may differ in different regions

[15]. As a result, tree mortality is a complex phenomenon that

hampers the development of robust and predictive forest

dynamics models on a large scale.

Mortality is a punctual phenomenon and, moreover, uncom-

mon (rarely exceeding 2 or 3% y{1 in tropical rain forests all over

the world [13,16]). Like any phenomenon of this kind, difficulty in

observing the event renders problematic the understanding of its

determinants and, ultimately, its modelling. In this context,

mortality modelling has often focused on mortality rates and

contrasted these rates between DBH (diameter at breast height)

classes [17,18] or between species groups [1]. However, recent

studies suggest that mortality rates are very hard to accurately

estimate [19], their value being particularly sensitive to the time

between forest censuses [20,21]. For example, an inaccurate

modelling of mortality processes prevents accurate simulation of

the spatial variations in above-ground biomass [22]. An alternative

strategy is to model the probability of dying at the individual tree

level [23], taking species’ ecological strategies into account, in

addition to local environmental factors affecting each individual.

Such models take advantage of individual tree characteristics, such

as past tree growth, neighbouring basal area or current DBH

[6,23], and of the local environment, including competition,

climatic variables or soil characteristics. To date, the ecological

strategy of each species and the individual vigour of each tree has

not been integrated in these approaches. As a starting point, we
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can suppose that each species has its own ecological strategy,

resulting in a unique determinism of the mortality behavior of

each species. But the parameterization of such mortality models in

mega-diverse communities such as tropical forests poses several

problems. First, assuming that it is technically feasible, what

interpretation is ecologically meaningful without making the effort

to link these behaviours to their biological determinism, i.e. to

their functional traits? A second problem is model surparameter-

ization. Indeed, if one wishes to estimate as many model

parameters as species, the amount of data to be acquired to

obtain robust species estimators is prohibitive. A promising way to

solve these two problems simultaneously is to integrate the tree

ecological strategy into mortality models through the explicit

inclusion of functional traits in the model core, a goal recently

achieved for growth models of tropical trees [24,25].

A central goal of ecology is to understand how variation in the

biological properties, i.e. functional traits, of species relates to

differences in population dynamics, which, in turn, shape the

spatial distribution and temporal fluctuation of communities [26].

Among community ecologists, a consensus is emerging on the

existence of different orthogonal axes related to the characteristics

of the leaves, wood, seeds and life-history [27,28]. The leaf

economics spectrum opposes inexpensive, short-lived leaves with

rapid returns on investments to long-lived leaves with delayed

payback times [29]. Wood density is emerging as a core plant

functional trait for woody species [30], because it is related to stem

construction costs, biomechanics and hydraulic constraints. Seed

mass, although not directly related to rates of population

dynamics, is an important indicator of the life-history strategy of

species, with fast-growing species tending to have small seeds that

are easily dispersed [2]. Given that large trait databases on tropical

trees are now emerging [30,31], demonstrating the ability of

functional traits to accurately predict mortality behaviour could

have important implications for developing robust mortality

models in tropical forests.

The paper has three objectives: (i) to present a new community

mortality model based on functional traits, (ii) to present an

original statistical method used to select the variables and to

parameterize the model in a Bayesian framework and (iii) to

highlight how species functional traits shape individual tree

mortality.

Materials and Methods

Data Collection
The study was conducted using data from the Paracou

experimental site (5u189N, 52u559W), a lowland tropical rain

forest near Sinnamary, in French Guiana. The forest is typical of

Guianan rain forests, with dominant tree families including

Fabaceae, Chrysobalanaceae, Lecythidaceae and Sapotaceae,

and with more than 500 woody species attaining 10 cm DBH

found at the site. Mean annual precipitation averages 2980 mm

(30-y period) with a long dry season from mid-August to mid-

November and a short dry season in March [32]. Soils are mostly

acrisols, limited in depth by a transformed loamy saprolite (ƒ 1 m

deep), which has a low permeability and leads to lateral drainage

during heavy rains [7].

Two data sets are used in the study. The first data set is an

inventory of all trees w10 cm DBH in 6 natural forest plots of

6.25 ha. Forest inventories were conducted since 1991. Censuses

of mortality, recruitment and diameter growth have been

conducted every year until 1995 and every 2 years thereafter.

We used mortality inventories between 1992 and 2010. The whole

data set contained 20,408 individual trees, among which 17,450

were alive in 2010. For each tree in each year, we know the

location, DBH, vernacular name and status (dead or alive). The

vernacular name is the name used by local treespotters. Botanical

determination of the trees was completed in 2012, following

extensive inventories with voucher collection and determination at

regional and international herbaria. Hence, a large part of the

trees that died during the period studied (1992–2010) have no

botanical determination, but only a vernacular name.

The second data set is a collection of 15 functional traits of 335

Guianan tree species that occur at the Paracou site. Traits are

related to leaf economics, stem economics and life history (Table 1)

and are extracted from a large database [24,28,31,33].

Addressing Uncertainties in Botanical Determination
The traits data set is complete for 51% of individuals, and our

goal was to attribute functional traits to all trees in the database.

This is not feasible directly for three cases: (i) the tree species is

known but some trait values of the species are not available; (ii) the

tree species is not determined at the species level, but only at the

family or genus level; (iii) the tree is dead before being identified

and only its vernacular name is available. The trees falling in this

third case cannot be excluded because they represent 85% of dead

trees.

An intuitive approach is to use a weighted mean of the traits for

the missing data. But this approach has some disadvantages. First,

some traits are qualitative; attributing a mean value to these traits

is not feasible. Most importantly, it could be dangerous to use

mean traits. As shown in Figure 1, using means instead of the true

values may create an artificial signal in the process we want to

model. For instance, if trees of species A and B are well determined

but trees of species C and D are not and share the same vernacular

name. Using a standard ‘mean-trait’ approach, the mean trait

value will be associated with individuals of species C and D, and a

false signal may be detected. A final reason for using our method is

the uncertainty. If mean traits are used, their values will not be

permitted to vary. Then, it will be impossible to propagate the

inherent uncertainty of the trait values when observing the

uncertainty of the model outputs. Results of the covariates

selection using weighted means of the traits and using our method

are compared in Figure 2. These results clearly show that using a

weighted mean approach would have led to a false trait-based

mortality model.

We addressed the cases (i) and (ii) with one relationship model

and the case (iii) with a second relationship model (Figure 3). We

describe below these relationship models for a single trait T , but

the same relationship models were used independently for all

traits.

The starting point was a set of nT species fs1, . . . ,snT
g for which

we have the associated set of values ft1, . . . ,tnT
g for the trait T .

For any tree of a species s[fs1, . . . ,snT
g, the trait value was set to

ts. For the other trees, the value of the trait was modelled by a

multinomial distribution on the values ft1, . . . ,tnT
g with the

associated probabilities computed differently according to the

cases (i), (ii) and (iii). The different attribution rules of the trait

value are described in the following sections.

Attributing trait values to trees of species without known

trait values or to trees determined at genus/family levels:

cases (i) and (ii). The studied functional traits are phylogenet-

ically conserved within many families, so taxonomic substitution

can be used [34]. This information can be used to fill the gaps of

the functional trait data set. For any tree of a species

s 6 [fs1, . . . ,snT
g or any tree determined only at the genus/family

level, the distribution of trait values was assumed as a multinomial

distribution M((~tt1, . . . ,~ttgT
),(n1, . . . ,ngT

)). Where (~tt1, . . . ,~ttgT
) is a

Trait-Based Mortality Models
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subset of ft1, . . . ,tnT
g for which the associated species have the

same family/genus as the tree; ni~
Ni

N
, Ni number of trees which

have the same family/genus as the tree and have the trait ~tti; N

total number of tree which have the same family/genus as the tree.

Attributing trait values to trees having only vernacular

names: case (iii). For any tree with a vernacular name v, the

distribution of trait values was assumed as a multinomial

distribution M((t1, . . . ,tnT
),(a1, . . . ,anT

)). Determination of the

probabilities av~(a1, . . . ,anT
) was made using the Bayesian

relationship model between the vernacular names and the species

determination.

The vernacular name of all trees is known, and therefore can be

used as a basis for attributing species. We collected two types of

information linking vernacular names to species determination:

expert field botanist knowledge linking qualitatively vernacular

names to species determination; and field data from the recent

inventories, from which we could calculate the frequency with

which pairs of vernacular and species names occurred. We then

used a Bayesian framework to include these two types of

information in the relationship model. The expert knowledge

was included as prior information; it informs on which vernacular

names are used for which species. For a vernacular name v, this

information can be summed up by a vector lv~(l1, . . . ,lnT
)

where li~
1

mv

if the link between the species si and the vernacular

name v is established by the experts, with mv being the number of

species linked by the experts with the vernacular name v; and

li~
e

nT{mv

if the link between the species si and the vernacular

name v is not established by the experts, with e allowing for a small

background noise, and nT the total number of species in the

inventory data.

The field data was included to update the prior information.

Trees (alive or dead) for which both the vernacular name and the

species name are known allowed us to build for each vernacular

name the vector of frequencies belonging to each species. In

particular, for the vernacular name v, f v~(f1, . . . ,fnT
) where fi is

the number of times a tree with the vernacular name v was

determinate of species i.

With these data, lv and f v, a Multinomial-Dirichlet scheme was

used [35]. The expert knowledge, lv, was used as hyperparameters

for the prior distribution on hv: ½av�~Dirichlet(lv). We assumed a

multinomial distribution for f v conditionally to av. As Multinomial

and Dirichlet are conjugate distributions [44], the posterior

distribution of av was a Dirichlet distribution

½avDf v,lv�~Dirichlet(f vzlv).

Modelling Tree Mortality
We modelled tree mortality with a generalized linear model

(GLM) using a logit link function [36]. Tree mortality is a binary

variable equal to 0 if the tree remained alive between 1992 and

2010, else equal to 1. The probability of dying for each tree is the

logit of a linear combination of a set of covariates: 15 functional

trait covariates and 2 ontogenetic covariates
DBH

DBHmax

and

Table 1. The 15 functional traits used in the study: variable names, units, % of species for which the value of this trait is known in
our data set, % of individuals for which the value of this trait is known in our data set, range of the value and results of the Kuo-
Mallick (KM) algorithm for variable selection.

Variable Units % known % known Range KM

species indiv.

Leaf economics

Foliar d13C composition (d13C) 0=00
75% 79% [236.13 226.2] 0.044

Foliar C:N (CN) {1cg g 75% 79% [10.8 46.7] 0.38

Foliar Km (K ) {1mg g 47% 70% [0.00122 0.223] 0.47

Foliar Nm (N) {1cg g 75% 79% [0.108 0.0451] 0.25

Foliar Pm (P) {1mg g 47% 70% [0.00029 0.00216] 0.34

Leaf tissue density (LTD) {3g cm 80% 79% [1.6 10-5 1.4 10-4] 0.31

Laminar total chlorophyll (chloro) {2mg mm 80% 79% [20.8 149] 0.13

Laminar toughness (tough) N 79% 79% [0.22 11.4] 1

Specific leaf area (SLA) {1cm2 g 81% 79% [4.01 37.6] 0.28

Life history

Maximum height (Hmax) m 66% 77% [8 56] 1

Maximum diameter (DBHmax) mm 69% 79% [132 1110] 0.29

Seed mass (seed) g 42% 64% [0.01 20] 0.14

Stem and branch orthotropic (1) 46% 64% 0/1 0.91

orientation (ortho) plagiotropic (0)

Stem economics

Trunk wood moisture content 72% 75% [0.26 1.8] 0.37

(WM)

Trunk xylem density (WD) {3g cm 80% 79% [0.28 0.91] 1

We chose to use a value of 90% as threshold for accepting the trait for inclusion in the final model.
doi:10.1371/journal.pone.0063678.t001

Trait-Based Mortality Models
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DBH

DBHmax

� �2

. DBH is the diameter of the tree at breast height

and DBHmax is computed as the 95the percentile of the observed

DBH for each species. The ratio
DBH

DBHmax

is then used as a proxy

of the ontogenetic stage of the tree. As it is well-known that the

curve linking mortality probability to ontogenetic stage is U-

shaped, we also introduced
DBH

DBHmax

� �2

as a covariate. The

originality of the model is that the trait covariates are uncertain for

some trees and certain for the other trees. We used the method

proposed by Kuo-Mallick [37] to select the trait covariates useful

to explain mortality. The method consists in multiplying each trait

covariate by an indicator. This indicator can be 0 if its covariate is

not included in the model or 1 if its covariate is included in the

model. We developed a Gibbs algorithm to attribute either 1 or 0

to the indicators and a Metropolis-Hastings within Gibbs

algorithm to estimate the coefficients of the covariates. We

included a trait covariate in the final model if the expectation of its

indicator, given by the Kuo-Mallick method, was between 0.9 and

1 (Figure 4). We chose the threshold 0.9 after considering the

histogram of the expectations of the trait covariate indicators

(Figure 4). Once the final model was defined, the coefficients of the

covariates selected were estimated using the Metropolis-Hastings

algorithm. To test the convergence of the chain, we run several

chains from diverse initial values and inspect the chains to verify

they all converge on the same value after some iterations. The

autocorrelation is computed to ensure the chain is mixing

adequately. The autocorrelation must decrease to zero when we

increase the lag value. The methodology of model building is

shown in Figure 3. See Supporting Information S1 and S2 for

further information.

All of the algorithms and statistical treatments were implement-

ed with R software [38].

Model Validation
To validate our mortality model, we split our data into a

calibration data set, which contains data between 1992 and 2001,

and a validation data set, which contains data between 2001 and

2010. The calibration data set was used to estimate the model

parameters. Next, we predicted mortality rates for the validation

data set. These rates were computed for different classes of trees

binned across the distribution of each functional trait.

Results

The probability of dying showed a U-shaped pattern, i.e.

(
DBH

DBHmax

)2 is positively linked and
DBH

DBHmax

is negatively linked

with the mortality probability. This means that the probability of

dying first decreased with DBH, was minimum for a DBH ratio

close to 0.15 and, then, increased sharply (Figure 5).

The histogram resulting from the Kuo-Mallick selection

procedure showed a large break with no values between 0.5 and

0.9 (Figure 4). Predictive functional traits having values above the

0.9 threshold were thus included in the final mortality model

(Figure 4): maximum height (Hmax), orthotropic orientation

(ortho), wood density (WD) and laminar toughness (tough). Trees

with orthotropic orientation had a lower probability of dying and

the other three traits were negatively correlated with the individual

probability of dying (Table 2). This means that the probability of

dying is even higher when the tree is small, it has orthotropic

branches, it has a low density of wood, or it has fragile leaves

(Figure 6). Note that functional traits do not modify the shape of

the curve linking DBHi to the dying probability, but functional

traits drive the value of this probability in the way that they induce

a translation of the curve (Figure 6).

Results of the model validation procedure are presented in

Figure 7. For the five covariables, we plotted the predicted rates of

tree mortality versus the observed rates of tree mortality. The

model, overall, overpredicts the probability of dying (7.6% of

observed dead trees versus 8.1% of predicted dead trees) in the

prediction data set. The ontogenetic signal has the best fit,

especially for high values of
DBH

DBHmax

. Predictions for Hmax and

tough are correct. For WD, the variability over the observed

mortality rates is only slightly represented in the simulated rates.

Quite the opposite, for ortho, the variability is higher in the

predicted rates than in the observation.

Figure 1. The use of mean traits may produce false signals.
Trees of species A and B are botanically well-determined. Trees of
species C and D are not, but share the same vernacular name. Using a
standard ‘mean-trait’ approach, the mean trait value will be associated
with individuals of species C and D, and a false signal may be detected.
doi:10.1371/journal.pone.0063678.g001

Figure 2. The use of mean traits may produce false signals.
Results of the Kuo-Mallick algorithm for parameter selection using
weighted means of trait vales are different from what we obtain when
we correctly propagate uncertainty.
doi:10.1371/journal.pone.0063678.g002

Trait-Based Mortality Models
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Discussion

This study introduces a new method to design mortality models

in tropical forests. Tree ontogenetic stage had an obvious effect on

tree mortality, resulting in a somewhat typical U-shaped mortality

curve [39,40]. In other words, young trees and old trees die more

frequently [41], probably because of intense competition among

the youngest and due to senescence for the oldest. We used

functional traits as uncertain covariates of a generalized linear

model to predict tree mortality in a tropical rain forest in French

Guiana. The results of our study showed that some functional

traits are very useful covariates to compute the individual

probability of dying for each tree in the forest community. Other

parameters, mostly environmental or edaphic, have also been

demonstrated to explain the probability of dying [41–43]. Our

study provides a foundation for coupling both individual

characteristics and environmental variables, which we believe will

be a promising way to better understand tree mortality and model

the consequences of global change on tropical forests.

Functional Traits
We used an original selection procedure to evaluate which tree

functional traits shape the mortality curves. In doing so, we

formally incorporated tree functional diversity into forest dynamics

modelling without the necessity to build any functional groups. All

in all, only four functional traits were robust predictors of the

mortality probability. Most of the numerous measured traits

related to leaf economics (d13C, K…) were not included in the

final model, instead traits related to life history or stem economics

were largely selected.

First, wood density was expected to be a good predictor of

mortality rates, since [44,45] reported a robust negative correla-

tion between wood density and tree mortality in Amazonian

forests. Moreover, [46] also highlighted the importance of wood

density in the trade-off between resource acquisition and

investment in survival. In a nutshell, trees with low density are

light-demanding trees with rapid bole expansion, leading to a

higher mortality probability. High wood density is known to shape

resistance to water-stress embolism [47], mechanical breakage or

Figure 3. Two steps of model construction. a: The functional traits are uncertain variables. The contingency matrix F and the prior information l
are used in the Dirichlet law to compute the trait variables T for each tree. b: Parameters h of the model are estimated using a Metropolis-Hastings
algorithm with proposal law hprop*N (m,t). Parameters h and traits T are then used in the final model to compute the mortality measure y for each
tree.
doi:10.1371/journal.pone.0063678.g003

Figure 4. Results of the Kuo-Mallick algorithm for parameter selection. a: Mean of the distribution for each variable; variables are included
in the final model if the mean value exceeds 90%. Variables included in the final models are: stem and branch orientation (ortho), maximum height
(Hmax), wood density (WD) and laminar toughness (tough). b: Histogram of the results of the Kuo-Mallick algorithm for parameter selection.
Acceptance rates showed a gap from 0.5 to 0.9, and variables with results above 0.9 were selected for the final model.
doi:10.1371/journal.pone.0063678.g004

Trait-Based Mortality Models
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attack by pathogens [30,48]. This finding is in line with Chao’s

hypothesis that species with high mortality rates would create

more canopy gaps that, in turn, favor low wood-density species

and vice-versa. This means that the mortality regime in tropical

forests may be both a cause and an effect of floristic composition

[44].

Hmax was predicted to be negatively linked to mortality

probability (Figure 5), as reported by [9]. We know that Hmax

captures a major variation in functional traits found among

tropical rain forest tree species, and in combination with light-

demand, it provides a rough but straightforward model to

understand niche differentiation in tropical forests [49]. Hmax is

predicted to be small for light-demanding species with rapid

growth and mortality and large for shade-tolerant species with

slow growth and mortality [9].

Light-demanding tropical trees are characterized by orthotropic

stems and branches, large leaves, and a monolayer leaf arrange-

ment [49]. They are known to realize an efficient height growth

through formation of narrow, shallow crowns [49]. Species with

orthotropic architecture are therefore expected to be fast-growing

and light demanding [50] and, thus, to have higher mortality rates

then plagiotropic species. Surprisingly, our model parameters

suggest that orthotropic trees have lower mortality rates than

plagiotropic trees. We believe this is due to the combined effect of

wood density and maximum height, that over-estimated the effect

of both traits on mortality. In other words, orthotropic species

indeed have higher mortality rates than plagiotropic trees, but the

trait model over-predicts this rate for individuals that are small or

have a low wood density.

Finally, shade-tolerant plant species have tough leaves because

of the high cost of leaf replacement in shade relative to potential

carbon gain [51]. Leaf toughness (resistance to fracture per unit

fracture area) was the only trait from the leaf economic spectrum

to be retained in the mortality model. Leaf toughness was a good

candidate because, for some tree saplings, [52] showed that

fracture toughness correlated positively with leaf lifespan and

survival. Recently, [51] also showed that mortality rates of

individuals 1–10 cm in stem diameter were negatively correlated

with material toughness and lamina density but were independent

of structural toughness and cell-wall fiber content. We extend this

finding to adult trees, highlighting the importance of plant-defense

traits in shaping individual tree survival.

Figure 5. Effects of ontogenetic stage and functional traits on mortality rates. Mortality rates were computed for each class of tree based
on distribution deciles and plotted in the form of a histogram. In most cases, trait values are not evenly distributed, and this explains why the size of
the bins is not regular. On the top-left histogram, we can see the U-shaped pattern for the ontogenetic variable.
doi:10.1371/journal.pone.0063678.g005
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Toward New Community Models of Population
Dynamics?

In a context of global change, the long-term response of tropical

forests to climate change cannot be predicted without using forest

simulators or Dynamic Vegetation Models that incorporate both

growth and mortality processes. Although tropical forests are

known to have very different dynamics regimes, it has been shown

that past tree growth is an accurate predictor of tree mortality

[44]. The problem with such a result is that it is difficult to use past

tree growth per se in a predictive model. Indeed, it only postpones

the prediction problem, as it restricts one to predicting events of

low growth in the life of a given tree, a goal very hard to achieve

across the forest community for at least two reasons. First, most

ecological works have focused on the average growth rates [9], as

predicting outliers is something extremely complicated in statistical

modelling. Second, a tree’s death linked to a decline in vigour

appears predictable by its growth pattern before mortality, but tree

death caused by disturbance, such as wind, is far from predictable

[44]. In this context, we choose to decouple, at first, the growth

determinants [24] from the mortality determinants and, then, we

hope to find the right ways to combine both processes into a single

modelling framework.

The community growth model developed in [24] is based on

individual growth computed with the functional traits of trees as

covariates. We used the same strategies to build a mortality model,

but in our study, we also have to deal with uncertainty of the

process of death on the one hand, and with incomplete species

information on the other. The strategy of using functional traits

does add some uncertainty to the model. The methodology

developed in this study handles the uncertainty of the covariates,

due both to missing information about the functional traits and to

different levels of botanical identification. This kind of incomplete

information is common in many tropical forest inventory data sets

with high variability in the levels of botanical determination of the

trees [53].We used the maximum available information about the

trees (species, vernacular name, family/genus) to attribute trait

values, under the assumption that functional traits are strongly

conserved between species of the same genus and/or the same

vernacular name. Although there is some support for this

assumption in French Guianan trees [34], the method necessarily

involves a loss of some trait information.

Variable selection in nonlinear models remains a complex issue.

In our study, the unconventional uncertainties about trait

covariates complicated the issue even further. To select the

covariates, usual frequentist criteria based on the penalized

likelihood, like AIC, BIC, . . ., were unusable. Bayesian methods

were better adapted because they naturally support different

sources of uncertainties in the models. However, using the

Bayesian versions of penalized likelihood criteria, such DIC,

AICm, . . ., over all combinations of the trait covariates would

have required too much computation time. Therefore, we

developed a Bayesian algorithm that explores all combinations

of trait covariates while calibrating the parameters. There were

two possible approaches: Kuo and Mallick [37] or the reversible

jump [54]. We chose the Kuo and Mallick approach because it

performs better in cases of correlated covariates. Furthermore, its

interpretation and implementation are more intuitive because the

dimension of the model is not variable, as in the reversible jump

approach.

Conclusion
Our aim in this study was to model tree mortality in a tropical

rain forest using functional traits. Considering first the complexity

of the mortality process, and second the uncertainty due to the

data, the model needed to be developed with particular attention

Table 2. Results of the Metropolis-Hastings algorithm for
parameter estimation.

Variable Estimates 90% credibility intervals

DBH

DBHmax

20 23 [20.71; 0.26]

(
DBH

DBHmax

)2 0 78 [0.44; 1.1]

Hmax 20 028 [20.035; 20.022]

ortho 20 19 [20.33; 20.045]

WD 20 87 [21.1; 20.55]

tough 20 15 [20.21; 20.078]

Median and 90% credibility intervals of the posterior distribution for the
selected parameters.
doi:10.1371/journal.pone.0063678.t002

Figure 6. The probability of dying depends on the individual
ontogenetic stage and on tree functional traits: the maximum
height, Hmax; the wood density, WD; and the laminar
toughness, tough. Simulation of the probability of dying versus the

ontogenetic stage (
DBH

DBHmax

) of the tree, with variation of the three

continuous functional traits selected in the final model: A the maximum

height, B the wood density and C the laminar toughness. Marginal

densities are plotted for each trait and for
DBH

DBHmax

, with a bandwidth

equal to 10% of the amplitude. Density for laminar toughness (C) shows
that maximal values (above 3) are rare; variation of mortality due to this
trait is not as strong as the variation due to the maximal height.
doi:10.1371/journal.pone.0063678.g006
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to the methodology. We used a Bayesian framework, on the one

hand to use all data about the tree and functional traits at our

disposal, and on the other hand, to build the most accurate model

using this data. This approach can be generalized to many similar

studies about tropical forest dynamics, because more and more

data are collected about tree dynamics, but frameworks are

missing to correctly process this data. Indeed, ecologists are often

limited in their research when working with data from old

inventories. Our method should permit increased use of data from

old inventories to examine tree mortality. This is particularly

interesting for conducting meta-analyses, which are generally

based on data with widely varying levels of accuracy.

Tree mortality plays a key-role in the carbon cycle [55,56] and is

intimately linked to forest productivity (e.g. [42]). Global changes, and

associated increases in the frequency, duration and/or severity of

drought events and heat stress already could have amplified natural

tree mortality and potentially will continue to in the future [16,57,58],

altering tropical forest dynamics and other ecosystem services [59–61].

Based on a long-term forest data set, in this study, we developed

mortality models suitable for species-rich tropical forest communities,

using functional traits as surrogates for taxon-level models. Methods

used in this study allow us to model the tree community as a

continuum, connecting functional traits to the mortality probability

without collapsing species into functional groups.

Figure 7. Model validation: the model was calibrated using data from 1992 to 2001 and applied to a validation data set (2001–
2010). For each covariate of the mortality model, we binned individuals into ten bins of equal size, corresponding to the deciles of the covariate
distribution. Mortality rates were then computed for each bin using the validation data set (2001–2010). Predictions were plotted against observed
rates. Moreover, the size of the blue circle is proportional to the value of the median of each bin.
doi:10.1371/journal.pone.0063678.g007
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