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Abstract

Complex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming
amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between
gene occurrence and clinical (e.g. in studies of the gut microbiota), physico-chemical (e.g. in studies of soil or water
environments), or other parameters. Observed correlations can then be used to formulate hypotheses concerning microbial
gene functions in relation to the ecosystem studied. In this context, functional metagenomics studies aim to validate these
hypotheses and to explore the mechanisms involved. One possible approach is to PCR amplify or chemically synthesize
genes of interest and to express them in a suitable host in order to study their function. For bacterial genes, Escherichia coli
is often used as the expression host but, depending on the origin and nature of the genes of interest and the test system
used to evaluate their putative function, other expression systems may be preferable. In this study, we developed a system
to evaluate the role of secreted and surface-exposed proteins from Gram-positive bacteria in the human gut microbiota in
immune modulation. We chose to use a Gram-positive host bacterium, Bacillus subtilis, and modified it to provide an
expression background that behaves neutral in a cell-based immune modulation assay, in vitro. We also adapted an E. coli –
B. subtilis shuttle expression vector for use with the Gateway high-throughput cloning system. Finally, we demonstrate the
functionality of this host-vector system through the cloning and expression of a flagellin-coding sequence, and show that
the expression-clone elicits an inflammatory response in a human intestinal epithelial cell line. The expression host can
easily be adapted to assure neutrality in other assay systems, allowing the use of the presented presentation system in
functional metagenomics of the gut and other ecosystems.
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Introduction

Metagenomics has transformed modern microbiology, allowing

us to study microorganisms that have been refractory to cultivation

in the laboratory. Through the use of metagenomic approaches

the amount of new information regarding complex ecosystems is

rapidly increasing, as exemplified by the recent publication of a

catalog of 3.3 million bacterial genes from the human gut

microbiota [1]. In parallel, there are strong indications that the gut

microbiota plays a pivotal role in human health, going far beyond

its accepted function in the digestion and energy harvesting of

alimentary components. Correlation studies of gut microbiota

composition and disease parameters strongly suggest a role of the

microbiota in (the prevention of) inflammatory bowel diseases,

obesity and other diseases [2–5], while experiments in mice

indicate a role in hitherto unsuspected processes like the

maturation and modulation of the immune system [6–8] and

even in behavior [9].

The next challenge is to move from correlations to functional

relationships, i.e. to the identification of the bacterial effectors

responsible for the observed effects, and the description of the

mechanisms involved. Important progress has been made in mice

experiments, where especially the establishment of germ-free and

genetically modified mice have been major breakthroughs,

allowing to test the effects of specific bacterial populations and

to get a hold on their mode of action. To predict effects in humans,

human cell cultures have been instrumental, notably in the field of

immune modulation. Cell-based assays not only permit to test the

effects of bacteria within the context of living human cells, but also

to study the underlying cellular mechanisms. Importantly, they

constitute a powerful and straightforward approach allowing the

parallelized functional screening of high numbers of bacterial

strains [10–12].

In the context of metagenomic studies, individual bacterial

strains are usually not available because they never have been, or

even could be, isolated and cultured in the laboratory. An
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approach to circumvent this problem consists of the generation of

metagenomic libraries with large DNA inserts in Escherichia coli

(e.g. [13,14]). Alternatively, in a directed approach genes of

potential interest may be identified by in silico analyses of

metagenomic data, amplified by PCR or chemically synthesized,

and expressed in host bacteria which can then be brought into

contact with human cell cultures. Usually E. coli, for which high-

throughput cloning systems like the Gateway system for site

specific recombination based cloning [15] have been developed, is

used as the heterologous expression host.

Genes of potential interest identified in metagenomic data may

encode surface proteins or secreted proteins from Gram-positive

bacteria, however, which constitute clear examples of proteins

where a Gram-positive expression host would be preferred over E.

coli with its Gram-negative cell envelope architecture [16]. In the

case of the study of immune modulation properties of the human

GI tract microbiota this is an important consideration, as Gram-

positive bacteria make up roughly 50% of the GI tract microbiota

[17], and a growing number of studies on probiotic bacteria

attribute immune-modulation activity to surface associated and

extracellular proteins [18].

Bacillus subtilis, a widely studied Gram-positive model bacterium,

constitutes a particularly attractive host due to its naturally high

secretory capacity [19]. B. subtilis is a genetically highly amenable

organism for which a large body of information and a variety of

genetic tools are available. The laboratory strain B. subtilis 168 can

develop natural competence [20], and therefore appears suitable

for establishing robust and straightforward high-throughput

transformation protocols.

These considerations lead us to develop a host-vector system for

high-throughput cloning and inducible expression of heterologous

genes in B. subtilis. An E. coli – B. subtilis shuttle vector which allows

conditional expression of a gene of interest was converted to a

Gateway-cloning compatible vector, and a B. subtilis host was

genetically modified to make it compatible with a cell-based in vitro

screen for immune modulation.

Materials and Methods

Bacterial Strains and Plasmids
The bacterial strains and plasmids used in this study are listed in

Table 1. E. coli and B. subtilis were grown at 37uC in Luria-Betani

(LB) broth with agitation or on the same medium solidified with

1.5% agar. Antibiotics were added where appropriate. For B.

subtilis, erythromycin was used at 30 mg/mL, tetracycline at

10 mg/mL, spectinomycin at 50 mg/mL and chloramphenicol,

kanamycin, and phleomycine at 5 mg/mL. For E. coli, spectino-

mycin was used at 100 mg/mL, ampicilin at 100 mg/mL and

kanamycin at 25 mg/mL.

Deletion of genes from the B. subtilis chromosome was achieved

through double crossing over recombination, replacing deleted

sequences with antibiotic resistance markers. For this purpose,

1.5 kb genome fragments upstream and downstream of the

interval to be deleted were amplified by PCR and joined to an

antibiotic cassette in a joining PCR reaction [21]. The resulting

PCR product was then used to transform B. subtilis competent cells

according to [22] with appropriate antibiotic resistance selection.

Chromosomal modifications were verified by PCR analysis.

pDG148-GW was constructed using E. coli DB3.1 as a host for

transformations. The Gateway reading frame cassette A (RfA,

Invitrogen) was cloned in the EcoRV site of pBluescript SK+
(Stratagene). The orientation was verified by restriction with EcoRI

and the plasmid with RfA orientated in the SacI-KpnI direction was

selected and called pSK-A. The Gateway cassette RfA was then

recovered from pSK-A after digestion with HindIII and XbaI, and

ligated to pDG148 digested with the same enzymes to yield

pDG148-GW (Fig. 1A).

Genes to be expressed in B. subtilis were amplified for cloning in

pDG148-GW as schematically represented in Fig. 1B. Full-length

coding sequences (CDS) were amplified by nested PCR using a set

of gene specific primers and a set of universal primers in a 1:4

ratio, and Phusion High Fidelity DNA polymerase (Finnzymes).

CDS-specific primers were designed using PrimerDesigner1.0 (N.

Pons, unpublished) so that the length of the CDS-specific primer

sequences was at least 18 b and if necessary longer to obtain a

theoretic annealing temperature of 55uC minimum (nearest-

neighbor method [23]), and start and stop codons were

systematically changed to ATG and TAG (amber), respectively.

The Amber stop codon was used to permit C-terminal tagging of

the protein in B. subtilis amber suppressor strains [24]. The

resulting PCR products contain the CDS preceded by an

AAAGGAGGC sequence to constitute a strong ribosome binding

site (RBS) in B. subtilis (http://partsregistry.org). Between this

sequence and the start codon, we included the TCTTCA

sequence, thus creating a SapI recognition sequence (GCTCTTC)

(Fig. 1B). This restriction site allows the direct utilization of the

pDONR-gene by restriction/ligation cloning methods. RBS and

CDS are flanked by the site specific recombination sites attB1.1

and attB2.1 [25]. The amplification products were cloned in

pDONR223 (Invitrogen) by site-specific recombination between

the attB1.1 and attB2.1 sites and the attP1 and attP2 sites,

respectively, present on the plasmid, in vitro, using BP clonase II

(Invitrogen) according to the recommendations of the supplier,

followed by transformation of OneShotR TOP10 chemically

competent E. coli (Invitrogen) with selection for spectinomycin (this

E. coli strain allowing the counter selection of pDONR223 without

insert). The resulting entry clones (25–50) were pooled and the

plasmid inserts, now flanked by attL1 and attL2, were transferred

to pDG148-GW by site-specific recombination between the attL1

and attL2 sites and the attR1 and attR2 sites, respectively, present

on the latter plasmid, in vitro, using LR clonase II (Invitrogen),

followed by transformation of E. coli TOP10 with selection for

ampicilin. After each transformation, transformant colonies were

pooled and plasmids extracted using a QIAprep Spin Miniprep

Kit (Qiagen). The presence of inserts in pDONR223 and

pDG148-GW was verified by digestion with BsrGI and EcoRI

(New England Biolabs), respectively, and PCR amplifications

using the pDONR223-specific primers 59-CCCAGTCAC-

GACGTTGTAAAACG and 59-GTAACATCAGAGATTTT-

GAGACAC. The plasmid pool obtained after LR recombination

and transformation was used to transform chemically competent

E. coli TG1, in order to generate multimeric plasmids suitable for

transformation of competent B. subtilis [26]. Resulting clones were

pooled, plasmids extracted and used to transform B. subtilis

according to [22]. Three B. subtilis clones were verified by colony

PCR using the vector-specific primers 59-CGCACCCTGAA-

GAAGATTTA and 59-GCCGACTCAAACATCAAATC. One

clone was kept for further study.

The gfp-mut2 gene, encoding a variant of green fluorescent

protein (GFP) with improved photo-stability and brightness [27],

was amplified from plasmid DNA (A. Chastanet, pers. comm.).

Genes coding for secreted and cell-wall bound forms of the E. coli

flagellin, obtained by cloning of the fliC coding sequence in pSEC

[28] or pCWA [29], respectively (A. Barinov, personal comm.),

were amplified from plasmid DNA. The nuclease encoding gene

SA0746 was amplified from Staphylococcus aureus N315 genomic

DNA.

Protein Presentation for Functional Metagenomics
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Table 1. Bacterial strains and plasmids used in this study.

Strains Genotype Relevant properties Reference

B. subtilis

168 trpC2 [45]

KA8AX 168 derivative; Depr Dwpr Dmpr DnprB D bpr DnprE Dvpr
DaprE aprX::spc

deficient in 9 proteases [42]

VI7686 168 derivative; (yvyD-yvzG-fliT-fliS-fliD-yvyC-hag)::phleo deficient in flagellin production this work

VI7692 KA8AX derivative; (yvyD-yvzG-fliT-fliS-fliD-yvyC-hag)::phleo deficient in 9 proteases and flagellin production this work

VI7695 VI7692 derivative; (tasA-sipW-yqxM-yqzG)::cm (epsA-O)::tet deficient in 9 proteases, flagellin and biofilm
matrix production

this work

E. coli

DB3.1 F- gyrA462 endA1 D(sr1-recA) mcrB mrr hsdS20(rB-, mB-) supE44
ara-14 galK2 lacY1 proA2 rpsL20(SmR) xyl-5 l– leu mtl1

mutation in the gyrase allows the propagation
of plasmids containing the ccdB gene

Invitrogen

One ShotHTOP10 F- mcrA D(mrr-hsdRMS-mcrBC) w80lacZDM15 DlacX74 recA1
araD139 D(ara-leu) 7697 galU galK rpsL (StrR)
endA1 nupG l-

host for cloning with counter selection of ccdB Invitrogen

TG1 F’ [traD36 proAB+ lacIq lacZDM15]supE thi-1 D(lac-proAB)
D(mcrB-hsdSM)5, (rK- mK-)

generation of plasmid multimers for use in
transformation of B.subtilis competent cells

Lucigen

Plasmids

pDONR223 Spcr ccdB+ Gateway entry vector Invitrogen

pDG148 Kanr Ampr Phlr E. coli – B. subtilis shuttle expression vector [31]

pBluescript SK+ Ampr Multiple cloning site plasmid with pUC origin Stratagene

pSK-A Ampr Cmr ccdB+ pBluescript SK+ with RfA Gateway cassette This work

pDG148-GW Kanr Ampr Cmr ccdB+ Gateway adapted pDG148 this work

pDGnuc Kanr Ampr pDG148-GW derivative containing the
staphylococcal nuclease gene (SA0746)

this work

pDGfliC-SEC Kanr Ampr pDG148-GW derivative containing the
E. coli fliC gene with signal peptide

this work

pDGfliC-CWA Kanr Ampr pDG148-GW derivative containing the
E. coli fliC gene with signal peptide and
cell wall anchor

this work

pDGgfp Kanr Ampr pDG148-GW derivative containing the
gfp-mut2 gene

this work

doi:10.1371/journal.pone.0065956.t001

Figure 1. Schematic representation of the high-throughput cloning strategy. A. B. subtilis Gateway expression vector pDG148-GW with an
inducible Pspac promoter. lacI, lac repressor gene; AmpR, kanR, phlR, CmR, genes providing resistance to ampicilin, kanamycin, phleomycin, or
chloramphenicol, respectively; ccdB, gene coding for the cytotoxic CcdB protein. B. Full-length coding sequences (CDS) are amplified by nested PCR
using a set of CDS-specific (primary) primers and a set of universal (secondary) primers. The resulting PCR product contains the CDS preceded by a
synthetic SD sequence (brackets) and a SapI restriction site (underlined). attB1.1 and attB2.1 sites for site-specific recombination are indicated by
braces; start and stop codons of the CDS, in italic-bold.
doi:10.1371/journal.pone.0065956.g001
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Heterologous Gene Expression in B. subtilis and Protein
(activity) Detection

The expression of genes cloned in pDG148-GW in B. subtilis

was induced by the addition of 2 mM Isopropyl b-D-1-

thiogalactopyranoside (IPTG) to exponentially growing cultures

(OD600 = 0.4), after which incubation was continued for 3 hours.

GFP expression was observed under the microscope. Nuclease

activity was measured in the culture supernatant using a

spectrophotometric assay as described in [30]. Flagellin in

bacterial cell wall fractions was detected by Western blotting:

bacteria from 2 mL of a culture in which flagellin production had

been induced were harvested by centrifugation, washed twice with

ice-cold phosphate-buffered saline (PBS), resuspended in 100 mL

of 10 mM Tris-HCl (pH 8) containing sucrose (1M), lysozyme

(Sigma, 5 mg/mL), and a protease inhibitor cocktail (Roche), and

incubated for 90 min at 37uC. The suspension was then

centrifuged at 10,000 rpm for 18 min at 4uC, and the supernatant,

corresponding to the cell-wall fraction, was subjected to SDS-

polyacrylamide gel electrophoresis (12.5% acrylamide). Proteins

were transferred to a nitrocellulose membrane, and probed with

rabbit polyclonal antibodies to E. coli flagellin (Abcam, 1:20,000

dilution). Interactions were identified using goat anti-rabbit IgG

antibodies coupled to peroxidase (Sigma, 1:10,000 dilution), and

ECL detection (GE Healthcare) according to the recommenda-

tions of the supplier.

Immune Modulation Assays
A human colon epithelial cell line HT-29 clone carrying a

chromosomally located luciferase reporter gene under the control

of an NF-kB dependent promoter (HT-29/NF-kB-luc-E, H.

Blottière, pers. comm.) was used to evaluate immune modulation

effects of B. subtilis strains and heterologously expressed flagellin.

Alternatively, HEK-BlueTM TLR5 (Invivogen), a human embry-

onic kidney cell line, HEK293, that stably co-expresses human

TLR5 and an NF-kB-inducible SEAP reporter gene, was used to

quantify the response to flagellin. HT-29/NF-kB-luc-E cells were

grown in RPMI 1640 (Lonza) and HEK- Blue TLR5 cells in

DMEM (Lonza). Both culture media were supplemented with

2 mM L-glutamine, 50 IU/mL penicillin, 50 mg/mL streptomy-

cin and 10% (or 20% for HEK-Blue TLR5) heat-inactivated fetal

calf serum (FCS, Lonza). Cells were grown in a humidified 5%

CO2 atmosphere (or 10% for HEK-Blue TLR5) at 37uC. The

HT-29 reporter cell line was seeded at 56104 cells per well in 96-

well plates (3917 assay plate, Costar, Cambridge, MA) and

incubated for 48h in 100 ml of complete RPMI. The RPMI

medium was refreshed before the immune modulation assay. For

TLR5 stimulation 156103 HEK-Blue TLR5 cells were seeded per

well. Induction of recombinant protein expression in B. subtilis was

performed as described above. An amount of bacterial culture

needed to prepare 100 mL of bacterial suspension with an

OD600nm of 0.5 was centrifuged, after which the bacterial pellet

was washed and resuspended in 100 mL of RPMI or DMEM.

10 mL (56106 bacterial cells) were then added to the HT-29/NF-

kB-luc-E (MOI = 25) or HEK-Blue TLR5 cells (MOI = 333) in a

final volume of 100 mL. Alternatively, 10 mL of filtered bacterial

culture supernatant (0.22 mm pore size filters (Millex GP,

Milipore)) was used. Tumor necrosis factor alpha (TNF-a)

(PeproTech, Rocky Hill, NJ)) and Salmonella typhimurium flagellin

(FLA-ST) (Invivogen) where used where appropriate at final

concentrations of 1 ng/mL and 10 ng/mL, respectively. For HT-

29 cells, after 6 hours 50 mL of the RPMI medium was removed

and luciferase reporter activity in the HT29 cells was measured

using the One-Glow Luciferase Assay System (Promega) according

to the manufacturer’s instructions and a Tecan Spectrafluor Plus

apparatus. Where appropriate, the removed medium was frozen at

280uC for further analysis, and 10 mL of this medium was used to

quantify the amount of secreted IL8 by enzymed-linked immuno

sorbent assay (ELISA; Biolegend, San Diego, CA) according to the

manufacturer’s recommendations. For HEK- Blue TLR5 cells,

after 24 hours of stimulation, SEAP reporter activity was measured

using the QUANTI-BlueTM SEAP detection reagent according to

the manufacturer’s recommendations. For each assay, three wells

were used and the mean result for the three wells considered as the

assay result. All assays were performed in triplicate.

Results

High-throughput Gene Cloning and Expression in Bacillus
subtilis

The development of a high-throughput system for the

presentation of proteins from Gram-positive bacteria involved

three criteria to meet the specific needs of functional metage-

nomics studies: the choice of a suitable host bacterium, a cloning

strategy, and a cloning vector.

We chose to use a Gram-positive bacterium as a host, a

prerequisite for the correct presentation of surface exposed and

secreted proteins derived from Gram-positive bacteria, selected in

metagenomic datasets. B. subtilis was chosen as the most

exhaustively studied Gram-positive model bacterium, amenable

to genetic modification to adapt it to the specific needs of a

particular functional genomics project (see below).

For gene cloning we adopted the Gateway system [15] for site-

specific recombination based cloning. We adapted the E. coli – B.

subtilis shuttle vector pDG148 for use with this high-throughput

cloning system by the introduction of the Gateway cassette. The

resulting destination vector, pDG148-GW (Fig. 1A), allows the

cloning of genes under the control of the IPTG-inducible Pspac

promoter [31] for expression in B. subtilis. The subsequent steps of

gene amplification, cloning and expression were established using

the gfp-mut2 gene as an example. The GFP coding sequence was

amplified using a nested PCR approach (Fig. 1B), adding an

attB1.1 site and a synthetic ribosome binding site to the 59 end and

an attB2.1 site to the 39 end. The amplification product was cloned

in pDONR223 (Invitrogen) by site-specific recombination between

the attB1.1 and attB2.1 sites and the attP1 and attP2 sites,

respectively, present on the plasmid. The plasmid insert from the

resulting entry clone, now flanked by attL1 and attL2, was

transferred to pDG148-GW by site-specific recombination be-

tween the attL1 and attL2 sites and the attR1 and attR2 sites,

respectively, present on the latter plasmid, and the resulting

plasmid was used to transform E. coli TG1 in order to generate

multimeric plasmids, that were subsequently used to transform

naturally competent B. subtilis (as transformation of competent B.

subtilis with multimeric plasmids is 1000 fold more efficient than

transformation with monomeric plasmids [26]). In B. subtilis 168,

GFP expression could readily be induced by the addition of IPTG

while no fluorescence was observed in the absence of IPTG (results

not shown). Together, these results validate the functionality of the

gene amplification, cloning and expression strategy.

B. subtilis Host Adaptation for Functional Metagenomics
Studies

Protein presentation systems permit to explore the activities of

individual heterologous proteins. In our case, we were interested in

the use of a presentation system for the evaluation of potential

immune modulation effects of heterologous proteins, in an assay

where expression clones or their culture supernatants are brought

into contact with human cell cultures. The assay we used monitors

Protein Presentation for Functional Metagenomics
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the activation of NF-kB, a key factor in the establishment of

inflammatory responses [32], in an intestinal epithelial cell line

[12]. B. subtilis 168 itself appeared to induce NF-kB activation in

this assay (Fig. 2A), and we hypothesized that this effect could be

ascribed to its flagellin. Flagellins of other bacteria have been

described as potent NF-kB activators, acting through the

activation of the TLR5– MyD88 signaling cascade [33,34]. We

therefore eliminated the flagellin and surrounding genes from the

B. subtilis genome, and the resulting strain, VI7686, appeared to

have lost its capacity to induce NF-kB activation (Fig. 2A). This

result showed that an adapted B. subtilis strain could fulfill the

requirement of background neutrality in the assay used.

A property of B. subtilis that is known to interfere with the

efficient production of heterologous (extracellular) proteins is the

production of a multitude of proteases. We therefore decided to

use a 168-derived strain in which eight genes coding for

extracellular proteases and one gene for an intracellular protease

have been inactivated (strain KA8AX, [35]), and to eliminate the

flagellin and surrounding genes from that background. The

resulting strain, VI7692, was verified to behave neutral in the

NF-kB activation assay (Fig. 2A), and its utility will be discussed

below (performance of the host-vector system).

Two further deletions were made in strain VI7692 that could

potentially improve the secretion and surface exposition of

heterologous proteins: deletion of the eps operon and of the tasA

gene that together have been reported to be involved in the

production of an extracellular matrix [35]. The resulting strain, B.

subtilis VI7695, still behaved neutral in the NF-kB activation assay

(Fig. 2A), but showed an pronounced filamenting phenotype

(Fig. 2B) where cells did not separate until stationary phase, and a

viscous cell pellet after centrifugation. A similar phenotype was

observed for a strain in which only the eps operon was deleted

(results not shown). The different host adaptations did not

significantly affect bacterial growth (results not shown).

In addition to their evaluation in the NF-kB activation assay,

the B. subtilis strains described above were tested for their effect on

the secretion of the chemokine IL8. IL8 plays an important role in

the recruitment and activation of neutrophils at sites of infection or

injury, and its expression is under the control of not only NF-kB,

but also of several other signaling pathways [36]. The measure-

ment of the expression of this chemotactic and inflammatory

cytokine thus provides a complementary view on the capacity of B.

subtilis to interact with gut epithelial cells. The results presented in

Fig. 2C show that where B. subtilis 168 strongly induces IL8

secretion, the flagellin deletion mutants have lost most of this IL8

modulation capacity. When brought into contact with the latter

bacteria, HT-29 cells secrete only about 15% of the quantity of

IL8 they secrete when in contact with B. subtilis 168. The strains

we present here may thus also be used in immune-modulation

assays with an IL8 readout. The remaining low-level IL8 secretion

Figure 2. Properties of B. subtilis wt and mutant strains. A. Effect
of B. subtilis strains on NF-kB activation. Bars indicate the relative
activity of a luciferase reporter gene under the control of an NF-kB
dependent promoter in an intestinal epithelial cell line (HT-29), in vitro.
Bacterial strains are indicated on the abscissa. b, live bacteria from

exponentially growing cultures; s, culture supernatant; -, HT-29 cells
only; T1, TNF-a (1 ng/ml). Mean values of three independent
experiments are presented. Error bars indicate the SEM. F-BS, presence
(+) or absence (2) of B. subtilis flagellin gene; P, presence or absence of
multiple B. subtilis protease genes; EM, presence or absence of
extracellular matrix genes (eps and tasA). B. B. subtilis phenotypes as
viewed by phase-contrast microscopy. Exponentially growing bacteria
are shown, 100X magnification. C. Effect of B. subtilis strains on IL8
secretion. Bars indicate the concentration of secreted IL8 after
incubation of HT-29 cells with the bacteria or bacterial culture
supernatants indicated on the abscissa. Abbreviations as in Fig. 2A.
The same bacterial cultures were used for the NF-kB activation assay
shown in Fig. 2A and the IL8 secretion assay shown in Fig. 2C.
doi:10.1371/journal.pone.0065956.g002

Protein Presentation for Functional Metagenomics

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e65956



may be due to the activation of other signaling pathways than the

NFkB pathway by bacterial surface molecules, or by cellular stress

[36].

Performance of the Host – Vector System
The effect of host adaptations on the production of heterologous

secreted proteins was evaluated in two ways. First, using the

strategy described above we cloned and expressed the Staphylococcus

aureus nuclease (Nuc) encoding gene, and measured the nuclease

activity in culture supernatants. The results presented in Fig. 3

show that in strain VI7686 (lacking flagellin), the nuclease activity

reached a maximum about three hours after induction and

subsequently declined to completely disappear after 5 h 30 of

induction. Roughly the same activity curve was observed in the wt

strain 168 (results not shown). In strain VI7692 (deficient in both

flagellin and 9 proteases) nuclease activity reached, after about 3

hours, a 1.5 fold higher maximum than in the first two strains, and

no decline was observed afterwards. The additional deletion of the

eps and tasA genes in strain VI7695 did not improve nuclease

production, but on the contrary retarded production while the

maximum activity was comparable to the lower level observed in

the wt strain 168. On the basis of this result and the earlier

mentioned filamenting phenotype the VI7695 background was

discarded for further experiments.

We then expressed a secreted form of the E. coli flagellin, by

cloning the fliC gene from E. coli DH10b fused in frame to the

usp45 signal sequence from the Gram-positive bacterium Lacto-

coccus lactis (A. Barinov, unpublished) in pDG148-GW. The

resulting plasmid, pDGfliC-SEC, was used to transform B. subtilis

VI7686 and VI7692 and, after induction of flagellin production,

bacteria and culture supernatants were used to study NF-kB

induction in human gut epithelial HT-29 cells, in vitro. While none

of the washed bacterial cells induced NF-kB activation (results not

shown), the supernatants of strain VI7692 (pDGfliC-SEC) in

which flagellin production had been induced during 3 hours

clearly induced NF-kB activation (Fig. 4). No activation of NF-kB

was observed when flagellin production had not been induced.

Surprisingly, when using the supernatant of induced cultures of

strain VI7686 (pDGfliC-SEC), no activation at all was observed

suggesting the complete degradation of the heterologous flagellin

by the proteases produced by this strain. In order to verify that this

result was characteristic for this host strain and not due to plasmid

rearrangements, we isolated pDGfliC-SEC from this strain and

used it to transform strain VI7692, and vice versa. Testing the

resulting strains corroborated that the NF-kB activation results

depended on the host background (results not shown). The

different behavior of nuclease and flagellin in the VI7686

background may be explained by a differential sensitivity of

nuclease and flagellin towards the various B. subtilis proteases.

The results of both nuclease and flagellin expression and the

accompanying activity assays confirmed the functionality of the

host – vector system presented in this work. Both also showed that

Figure 3. Activity of S. aureus nuclease in different B. subtilis backgrounds. Growth (OD600 nm) and nuclease relative activity in culture
supernatants (scale 1–10) are presented for three different B. subtilis backgrounds. Filled diamonds, growth; open squares, nuclease relative activity.
Time is time after the beginning of nuclease induction by addition of 2 mM IPTG. Mean values of three independent experiments are presented. Error
bars indicate the SEM.
doi:10.1371/journal.pone.0065956.g003

Figure 4. Immune modulation effect of secreted E. coli flagellin
in different B. subtilis backgrounds. Bars indicate the relative
activity of a luciferase reporter gene under the control of an NF-kB
dependent promoter in an intestinal epithelial cell line (HT-29), in vitro.
Bacterial backgrounds of which the culture supernatant was tested are
indicated on the abscissa: grey bars, supernatants of bacterial cultures
in which flagellin (if present) had been induced with IPTG; open bars,
supernatants of bacterial cultures in which flagellin had not been
induced. -, HT-29 cells only; T1, TNF-a (1 ng/ml). Mean values of three
independent experiments are presented. Error bars indicate the SEM. F-
BS, presence (+) or absence (2) of B. subtilis flagellin gene; P, presence
or absence of multiple B. subtilis protease genes; pDG, presence or
absence of pDG148 (empty vector); pF-EC, presence or absence of
pDGfliC-SEC encoding a secreted form of E. coli flagellin.
doi:10.1371/journal.pone.0065956.g004
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the protease deficient background largely improved the production

of heterologous secreted proteins, while the additional deletion of

the eps and tasA operons did not result in further improvement or

even seemed less optimal and caused a filamenting phenotype.

The results of the flagellin expression assays in VI7692 demon-

strate the utility of the system for protein presentation in screening

for immune modulation properties.

Presentation of Bacterial Surface Proteins
Bacterial surface proteins play an important role in bacteria-

host interactions. Among the different classes of Gram-positive

bacterial surface proteins (summarized in [37,38]), a specific class,

known as LP6TG proteins by the sequence motif they share, relies

on a sortase for its covalent attachment to the bacterial cell wall

[39]. B. subtilis contains two putative sortases [40] and the

functionality of one of them has recently been demonstrated [41].

We chose to take the example of an LP6TG protein to validate

the use of our system for the presentation of heterologous surface

proteins and the subsequent evaluation of their immune modu-

lation potential. For this purpose, we expressed an E. coli flagellin

which, in addition to the N-terminal USP45 signal peptide,

contained a C-terminal cell-wall anchoring LP6TG motif derived

from the Streptococcus pyogenes M6 protein. The results of Western

blotting using antibodies directed against the E. coli flagellin

showed the presence of the flagellin in the bacterial cell wall

fraction of the strain expressing the cell wall bound flagellin, while

no flagellin was detected in the cell pellet of the strain expressing

the secreted flagellin (Fig. 5A). We then studied the NF-kB

activation potential of the bacterial cell pellet, using a human

embryonic kidney HEK293 reporter cell line expressing the

flagellin–specific Toll-like receptor TLR5 (HEK-BlueTM TLR5,

Invivogen). While no NF-kB activation was observed with the

resuspended bacteria from the control strain containing pDG148

or the strain expressing the secreted form of flagellin, the bacteria

expressing the cell wall bound form of the flagellin clearly induced

NF-kB activation (Fig. 5B). No NF-kB activation was observed in

a HEK-BlueTM NF-kB reporter cell line without TLR5 (results not

shown). Together, these results show that the heterologous

LP6TG containing flagellin is expressed and at least partly

retained at the bacterial cell surface, and responsible for NF-kB

activation. They thus confirm the utility of our presentation system

for the evaluation of the immune modulation potential of bacterial

surface proteins.

Discussion

The increasing amounts of sequence data and associated results

of correlation studies generated in metagenomics projects allow

the formulation of hypotheses concerning bacterial gene functions

in relation to the ecosystem studied. The experimental validation

of these hypotheses asks for new functional genomics approaches

as the majority of bacterial species from the ecosystem-specific

microbiota have never been cultured in the laboratory, and

sequence data are mostly generated using Next Generation

Sequencing technologies (NGS) that circumvent the need of

cloning DNA fragments. As a result, specific bacterial species or

clone libraries with identified insert content are most often not

available for direct testing.

An alternative directed approach comes in sight as the increased

predictive power from large datasets (enhanced in silico analysis

capacities and accumulating a priori knowledge) will more and

more allow to focus on relatively small, but still considerable, sets

of genes (in the hundreds to thousands range) of potential interest,

of which the separate cloning and screening can be envisaged

using high-throughput methods. In this context, we realized that

surface exposed and secreted proteins from Gram-positive bacteria

constitute a category of proteins that may be hard to evaluate by

cloning in E. coli due to the different architectures of the cell

envelopes of Gram-positive and Gram-negative bacteria, and that

a Gram-positive host would thus be preferable for these proteins.

In addition, the screening for biological activity of these proteins

requires that the expression host behaves neutral in the assay

system used. We therefore set out to develop a compatible high-

throughput protein presentation system that would, in our case,

permit the evaluation of the immune modulation potential of

individual proteins from these categories.

This objective implied the development of an integrated system

comprising i) a suitable expression vector, compatible with high-

throughput cloning strategies and allowing target gene expression

in a Gram-positive host, and ii) a suitable host that would behave

Figure 5. Presence and immune modulation effect of E. coli
flagellin in B. subtilis cell wall fractions. A. Western blot detection
of E. coli flagellin in cell wall fractions of B. subtilis expressing the cell
wall attached (lane 1) or the secreted (lane 2) form of flagellin, and a
control expressing no flagellin (lane 3); Arrow points to the cell wall
attached flagellin at the expected position of approximately 63 kDa. B.
NF-kB activation capacity of washed B. subtilis VI7692 bacteria
expressing a secreted (sec) or cell wall attached (cwa) form of E. coli
flagellin. Grey bars, bacteria in which flagellin (if present) had been
induced with IPTG; open bars, bacteria in which flagellin had not been
induced. Bars indicate the relative activity of an SEAP reporter gene
under the control of an NF-kB dependent promoter in HEK-Blue TLR5
cells, in vitro. -, HEK-Blue TLR cells only; *, S. typhimurium flagellin
(10 ng/mL); pDG, presence (+) or absence (2) of pDG148 (empty
vector); pF-EC(sec), presence or absence of pDGfliC-SEC encoding a
secreted form of E. coli flagellin; pF-EC(cwa), presence or absence of
pDGfliC-CWA encoding a cell wall attached form of E. coli flagellin. One
representative experiment is shown out of two repetitions each
performed in triplicate.
doi:10.1371/journal.pone.0065956.g005
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neutral in the envisaged immune modulation assay. For this

purpose, we adapted the widely used E. coli – B. subtilis shuttle

expression vector pDG148 for use with the Gateway high-

throughput cloning system, and chose to use B. subtilis as the

expression host. We also adapted a B. subtilis strain that had earlier

been optimized for protein production through the deletion of

multiple protease coding genes [42] to make it behave neutral in

the immune modulation assay. It appeared that one chromosomal

deletion encompassing the flagellin coding gene and six surround-

ing genes sufficed to eliminate the pro-inflammatory, NF-kB

activating, behavior of the B. subtilis strain.

The expression and secretion of a heterologous flagellin capable

of eliciting an immune modulation response in human HT-29 gut

epithelial cells delivered the proof of principle of the utilization of

the newly developed host-vector system for the presentation of

secreted proteins. Moreover, we showed that the same flagellin

when equipped with a C-terminal LP6TG motif was at least in

part retained on the bacterial cell, and that the recombinant

bacterial cells acquired the capacity to elicit a pro-inflammatory

immune modulation response, thus demonstrating the utilization

of our system for the functional presentation of bacterial cell

surface proteins. This result contradicts earlier work with B. subtilis

where the authors concluded that the B. subtilis sortase, which

attaches the protein to the cell wall, does not recognize the

canonical LP6TG motif but only the LPDTS motif [41,43].

LP6TG proteins constitute only one type of surface proteins

specific to Gram-positive bacteria. Another important but often

overlooked class of proteins that can be surface exposed is

constituted by proteins that contain one or more trans-membrane

helices (TMHs) [37]. Due to the very different nature of the Gram-

positive and Gram-negative cell-envelopes, surface exposition of

this type of proteins from Gram-positive bacteria is expected to be

correctly reconstituted only in a Gram-positive expression host.

In the course of our work, the construction of two other

Gateway compatible expression vectors for use in a Gram-positive

host was reported [44] confirming the need for Gram-positive

vectors in this cloning system. These vectors are intended for the

use in L. lactis, however, a host less suited for our purpose as its

notorious acid production has a deleterious effect on the

eukaryotic cells used in the immune modulation assay.

The results presented here represent the enabling prerequisites

for a directed approach to the functional exploration of the Gram-

positive fraction of the gut microbiota, notably regarding immune

modulation. The host-vector system can easily be adapted to the

study of other functions or other ecosystems through the

adaptation of the expression host, to assure its neutrality in the

activity screen that will be employed.

Acknowledgments

We thank N. Pons for the development of primer design software used in

this study. We thank C. Santos-Rocha and A. Garnier for technical

assistance.

Author Contributions

Conceived and designed the experiments: DD MVDG EM AJ GDL.

Performed the experiments: DD GDL KT TDW RD SB JB. Analyzed the

data: DD GDL TDW RD SB JB. Contributed reagents/materials/analysis

tools: HB. Wrote the paper: DD MVDG.

References

1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut

microbial gene catalogue established by metagenomic sequencing. Nature 464:

59–65.

2. Turnbaugh PJ, Ley RE, Mahowald M a, Magrini V, Mardis ER, et al. (2006) An

obesity-associated gut microbiome with increased capacity for energy harvest.

Nature 444: 1027–1031.

3. Frank DN, St Amand AL, Feldman R a, Boedeker EC, Harpaz N, et al. (2007)

Molecular-phylogenetic characterization of microbial community imbalances in

human inflammatory bowel diseases. Proceedings of the National Academy of

Sciences of the United States of America 104: 13780–13785.

4. McGarr SE, Ridlon JM, Hylemon PB (2005) Diet, anaerobic bacterial

metabolism, and colon cancer: a review of the literature. Journal of clinical

gastroenterology 39: 98–109.

5. Penders J, Stobberingh EE, Van den Brandt P a, Thijs C (2007) The role of the
intestinal microbiota in the development of atopic disorders. Allergy 62: 1223–

1236.

6. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomod-

ulatory molecule of symbiotic bacteria directs maturation of the host immune

system. Cell 122: 107–118.

7. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, et al. (2009)

The key role of segmented filamentous bacteria in the coordinated maturation of

gut helper T cell responses. Immunity 31: 677–689.

8. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, et al. (2011)

Induction of colonic regulatory T cells by indigenous Clostridium species.

Science (New York, NY) 331: 337–341.

9. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, et al. (2011) Normal gut

microbiota modulates brain development and behavior. Proceedings of the

National Academy of Sciences of the United States of America 108: 3047–3052.

10. Santos Rocha C, Lakhdari O, Blottière HM, Blugeon S, Sokol H, et al. (2012)
Anti-inflammatory properties of dairy lactobacilli. Inflammatory bowel diseases

18: 657–666.
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