
HAL Id: hal-01190379
https://hal.science/hal-01190379v1

Submitted on 1 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Message-Passing and Adaptive Implementation of the
Randomized Test-and-Set Object

Emmanuelle Anceaume, François Castella, Achour Mostefaoui, Bruno Sericola

To cite this version:
Emmanuelle Anceaume, François Castella, Achour Mostefaoui, Bruno Sericola. A Message-Passing
and Adaptive Implementation of the Randomized Test-and-Set Object. International Symposium
on Network Computing and Applications (NCA), Sep 2015, Boston, United States. pp.167-175,
�10.1109/NCA.2015.27�. �hal-01190379�

https://hal.science/hal-01190379v1
https://hal.archives-ouvertes.fr

A Message-Passing and Adaptive Implementation of the
Randomized Test-and-Set Object

Emmanuelle Anceaume∗, François Castella†, Achour Mostéfaoui‡ and Bruno Sericola§
∗IRISA / CNRS (France), emmanuelle.anceaume@irisa.fr

†IRMAR / Université de Rennes 1 (France), francois.castella@univ-rennes1.fr
‡LINA / Université de Nantes (France), achour.mostefaoui@univ-nantes.fr

§INRIA Rennes Atlantique (France), bruno.sericola@inria.fr

Abstract—This paper presents a solution to the well-known
Test-and-Set operation in asynchronous systems prone to
process crashes. Test-and-Set is a synchronization operation
that, when invoked by a set of processes, returns “yes” to a
unique process and returns “no” to all the others. Recently
many advances in implementing Test and Set objects have
been achieved, however all of them uniquely target the shared
memory model. In this paper we propose an implementation of
a Test-and-Set object for message passing distributed systems.
This implementation can be invoked by any number p of
processes. It has an expected step complexity in O(p) and an
expected message complexity in O(np), where n is the total
number of processes in the system. The proposed Test and Set
object is built atop a new basic building block that allows to
select a winning group among two groups of processes.

Keywords-Test&Set, synchronization, asynchronous message-
passing system, crash failures, randomized algorithm.

I. INTRODUCTION

The Test&Set problem is a classical synchronization
service in shared-memory centralized systems classically
provided by a unique hardware atomic instruction. It allows
to solve competition problems. When invoked by a set of
processes, it returns yes to a unique process (the winner)
and returns no to all the others (the losers). According to
the hierarchy of agreement problems based on consensus
numbers given by Herlihy in [13], consensus1 is harder to
solve than Test&Set, that is a solution to Test&Set does not
allow to solve consensus, but Test&Set is still too hard to be
solved in a pure asynchronous system [6]. Indeed, Test&Set
has a consensus number equal to two, just like renaming
and queues for example, whereas the consensus number
of the consensus problem is infinite [13]. For instance,
a simple way to solve the Test&Set problem is to use
a multivalued consensus service, such that each process
proposes its identity to the consensus and decides a value.
If the decided identity is its own identity it returns yes
otherwise, it returns no.

This work was partially funded by the French ANR project AMORES
(ANR-11-INSE-010).

1In the consensus problem, each process proposes a value and every
correct processes eventually decides a value, such that a unique value is
decided and this value has been proposed by at least one process.

Contributions: In this paper we propose a random-
ized and distributed message-passing implementation of the
Test&Set operation. Regarding randomization, Herlihy [13]
has shown that Test&Set does not have a deterministic
implementation as soon as one crash may occur, and thus
in order to implement it in an asynchronous system, it
is necessary to add synchrony assumptions or to use ran-
domization. We focus on the latter option. For randomized
solutions, the relations between random decisions and the
scheduling of processes (i.e., read/write operations in the
shared memory model, and send/receive operations in the
message passing model) are taken into account through the
definition of the adversary. In this paper we consider the
oblivious adversary model, that is the model in which the
adversary makes all its scheduling decisions at the beginning
of the execution independently of the random values tossed
by the processes in the course of the execution. In contrast,
the adaptive adversary model supposes that the adversary
makes its decisions based on the full history of the events.
The adaptive adversary is stronger than the oblivious one
and has led to space expensive known implementations [3]
or non adaptive ones [1] in the shared memory model.
Regarding communication, all the efficient solutions have,
so far, been implemented with shared registered [1]–[3], [11]
arguing that one can automatically transform shared-memory
based algorithms to message-passing ones [5]. Of course,
this automatic transformation does not necessarily keep the
efficiency property of the shared-memory based algorithms.
Table I proposes a summary of the important results of
the Test&Set object implemented in the shared memory
model. The first column gives the step complexity. For shared
memory systems, it represents the maximum number of steps
(read/write) needed by any process in expectation to com-
plete its execution. The step complexity, for message-passing
systems, is the size of the longest causal sequence of mes-
sages that is needed for a process to complete its execution.
A shared register can be implemented in a message-passing
system [5]. A read/write operation on a shared register needs
Ω(n) messages and a constant number of communication
steps. The step complexity is thus the same for both systems.
In Table I, the space complexity refers to the number of

shared multi-writer/multi-reader atomic registers used in the
implementation of the Test&Set object. It is interesting to
notice that all the best solutions [1]–[3], [11] implemented
in the shared memory model require at least a number of
atomic registers linear in the total number of processes
n in the system. Actually Giakkoupis and Woelfel [11]
have proven that at least log n atomic registers are needed
for any randomized register-based Test&Set implementation.
The message complexity column represents the number of
messages needed in expectation to complete the execution
of all none crashed processes. Note that it is possible to give
the message complexity for the shared-memory solutions as-
suming the shared registers are implemented over a message-
passing system [5]. To obtain this message complexity, we
need the total number of read/write operations executed in
expectation (the column ”total step complexity”) knowing
that each read/write operation needs O(n) messages.

In this work, and in contrast to the aforementioned so-
lutions, we propose a message-passing implementation of
the Test&Set operation. Our implementation can be invoked
by any number p ≤ n of processes. It has an expected step
complexity in O(log p) and an expected message complexity
in O(np) against an oblivious adversary. These complexities
assume the scheduling of the worst adversary taken from the
oblivious family. Having a step complexity that depends on p
and not on the number of processes n of the system makes
our solution adaptive. The implementation we propose of
the Test&Set object goes through a series of calls to a
basic building block that we call in the following selector.
A selector is a distributed service, invoked by a set of
processes, that allows to select a winning group among at
most two competing ones. We propose a message-passing
implementation of the selector in presence of an oblivious
adversary. The step complexity of the selector implementa-
tion is constant. A variant of the GroupElect object proposed
by Woelfel and Giakouppis [11] would provide a shared
memory implementation of the selector object in presence
of an oblivious adversary.

Road map: In the remaining of the paper, Section II
presents the underlying model and specifies the Test&Set
problem. Section III presents the selector object, proposes
a randomized implementation of this object whose correct-
ness is demonstrated, and derives its message complex-
ity. Section IV presents a randomized implementation of
the Test&Set object, demonstrates the correctness of this
implementation, and presents both its message and step
complexity. Finally Section V concludes.

II. COMPUTATION MODEL AND PROBLEM DEFINITION

A. Computation Model

We consider an asynchronous system consisting of a
set Π of n processes, namely, Π = {p1, p2, . . . , pn}. A
process can fail prematurely by crashing. A process behaves
according to its specification until it (possibly) crashes. After

it has crashed a process executes no step. A process that
never crashes is said to be correct; otherwise it is faulty.
Let t denote the maximum number of processes that may
crash. We assume that a majority of processes is correct,
namely t < n/2. We focus on a message-passing solution,
that is processes communicate and synchronize by sending
and receiving messages through reliable but not necessarily
FIFO channels. As the system is asynchronous, there are no
assumption regarding the relative speed of processes nor the
message transfer delays. The communication system offers
two types of communication primitives. A point-to-point
communication primitive send, and a broadcast primitive
bcast that allows a process to send a same message to
all the processes. This operation is not atomic, it can be
implemented as a multi-send statement; if the sender of a
message is faulty some processes can receive it and others
not. Finally, we consider the oblivious adversary model, that
is the model in which the adversary makes all its scheduling
decisions at the beginning of the execution independently of
the random values tossed by the processes in the course of
the execution.

B. The Randomized Test&Set Problem

Test&Set is usually a hardware operation offered by the
processor. In the case of distributed computing, the Test&Set
problem is a coordination problem where a set of processes
invoke Test&Set and return a binary value yes or no such
that exactly one returns yes (the winner) and all the others
return no (the losers). From an operational point of view,
the Test&Set operation is attached to distributed objects. Let
o be a Test&Set object that can be accessed through the
method Test&Set, which can be invoked by any process pi
using o.Test&Set(). An invocation returns a binary result
yes or no. A protocol that solves the randomized Test&Set
problem must satisfy the following four properties:
• TS-Validity: A process, invoking the o.Test&Set

primitive, that returns a value must return either yes
or no.

• TS-Obligation: If no process crashes then, exactly one
process returns yes.

• TS-Agreement: At most one process returns yes and
in this case, all the other returning processes return no.

• TS-Termination: An invocation by a correct process
of the o.Test&Set primitive terminates with proba-
bility 1.

Moreover, the different calls to the Test&Set operations
need to be linearizable. It has been proved in [12] that
any object that satisfies the properties cited above can be
used together to implement a linearizable Test&Set object.
Consequently, we will not worry about linearizability.

III. A NEW CONSTRUCTION: THE SELECTOR OBJECT

The key technical idea of our work relies on the selector,
a new distributed structure that is used as a building block

Test&Set Protocol Step Total step Message Space Adversary Adaptive
complexity complexity complexity complexity step space

Afek et al. 1992 [1] O(logn) O(n logn) O(n2 logn) O(n) registers adaptive no no
Alistarh et al. 2010 [3] O(log p) O(p log2 p) O(np log2 p) Θ(n3) registers adaptive yes no
Giakkoupis and Woelfel 2012 [11] O(log p) O(p log2 p) O(np log2 p) O(n) registers adaptive yes no
Alistarh and Aspnes 2011 [2] O(log logn) O(n) O(n2) Θ(n3) registers oblivious no no
Giakkoupis and Woelfel 2012 [11] O(log∗ p) O(p log∗ p) O(np log∗ p) O(n) registers oblivious yes no
This paper O(log p) O(p) O(np) messages - oblivious yes -

Table I
COMPLEXITIES OF TEST&SET OBJECTS IN BOTH SHARED MEMORY AND MESSAGE-PASSING MODELS

for the implementation of the randomized Test&Set object.
As will be shown in the sequel, the message complexity of
the selector object invoked by p processes requires O(np)
messages, and has a constant step complexity, i.e., in average
the number of round executed by each competing process is
2. The following section presents this new construction.

A. Specification of the Selector Object

The selector object proposes a unique access primitive
play(), which is invoked with a Boolean parameter g
(g = 0 or g = 1). Each of the two binary values represents
a group, i.e., group 0 or 1. A process randomly chooses
its group 0 or 1 each time it invokes primitive play().
This basic object is in charge of selecting the winning
group g′, and the winning process within this group, if
any. Consequently the primitive play() returns two Boolean
values to each invoking process. The first one says if the
group of the invoking process is the winning group, and
the second one indicates whether the invoking process is
also the winner in the group. Table II shows the four
possible responses process pi can receive upon invocation of
primitive play. More formally, let s be a selector object,
invoked by any process pi using s.play(g) with g equal
to 0 or 1. A protocol that implements such an object must
satisfy the following five properties.

• S-Validity: If a process invokes the s.play primi-
tive and returns then, it returns either (yes,yes),
(yes,no) or (no,no).

• S-Obligation-solo: If a correct process invokes s.play
alone (solo execution) then, it returns (yes,yes).

• S-Obligation: If no process crashes then, at least one
process returns (yes,-).

• S-Agreement: At most one process returns
(yes,yes), and in this case, all the other returning
processes return (no,no).

• S-Exclusion: If an invocation of s.play with pa-
rameter g returns (yes,-) then, no invocation with
parameter ¬g can return (yes,-).

• S-Termination: An invocation of s.play by a correct
process terminates with probability 1.

B. A Message-Passing Implementation of the Selector

The implementation of the selector object falls under
the impossibility result of many agreement problems in the
context of asynchronous distributed systems prone to process
failures [10]. We thus consider an asynchronous message-
passing distributed system augmented with a random oracle
to circumvent the impossibility result. Specifically, pro-
cesses have access to a function common_coin(), which
provides to all the invoking processes the same value (0
or 1) with probability 1/2. Each process invokes function
common_coin() at the beginning of each round of the
protocol, and thus all the processes get the same value. Our
solution is an adaptation of Ben-Or consensus algorithm [7]
and can be seen as a variant of the commit/abort mechanism
introduced in the message-passing model in [14] coupled
with a random generator to circumvent the impossibility
result. The same approach has also been followed in the
Test&Set algorithm by Tromp and Vitany [16] in the context
of shared memory systems, except that their algorithm can
be invoked by at most two processes. Woelfel and Giak-
ouppis [11] propose the GroupElect object in the context of
shared-memory. Similarly to our solution, the GroupElect
object supposes an oblivious adversary and uses random
numbers, however, and in contrast to our solution, a process
can never know whether it is the only winner of the election
or not.

Operationally, the selector is attached to distributed ob-
jects. Let us consider a selector s. As previously described,
selector s can be concurrently invoked by p processes,
1 ≤ p ≤ n, however all the n processes of the system
have to participate. Indeed, as there is no shared memory
and processes may fail by crashing, the participation of all
processes is required to serve as arbiters and as collective
memory [6].

The algorithm is round based. It is presented in Figure 1.
It goes through a series of rounds each one composed
of two communication phases. The algorithm is divided
into two parts. The first one is executed by the invoking
processes (that is the processes that have invoked method
play on object s), while the second part (called Relay
Task in Figure 1) is executed by all processes including the

invoking ones. This is done for generality since the messages
sent by a process to itself are directly delivered to it. The
Relay Task serves as a relay to the messages sent by the
competing processes and implements some kind of collective
memory [6]. We will respectively call these two groups of
processes the invoking processes and the relaying processes.

The goal of the method play is to determine the winning
value among the proposed ones and the winner of the
competition, if any. A process pi wins the competition if
either pi is the only process that invoked the primitive play
or pi has invoked the primitive play with the winning
boolean value g′ and pi has no evidence that another process
did the same. If none of both conditions hold, then all
the processes that have proposed the winning value will
compete in a new execution of primitive play, while
all the other ones stop the competition. This is achieved
as follows. Each invoking process pi handles a variable
g esti representing its estimation of the winning group (0
or 1). Variable g esti is initially set to the value gi that
pi proposed when it invoked the method play. Then, this
estimate will evolve according to what pi will learn during
the protocol. Similarly each invoking process pi manages a
variable id esti representing its estimation of the possible
winning process inside the winning group (initially id esti
is set to pi).

At the beginning of each round, each invoking process pi
tosses a common coin c. During the first phase of the current
round, pi broadcasts its estimates g esti and id esti in a
PHASE message to all processes, and waits for their echo
(Line 5 in Figure 1). As several processes may play during
a same round, some relaying processes may first receive the
PHASE message from some invoking process pi and thus
will only echo pi estimate while other relaying processes
may first receive a PHASE message from another invoking
process pj possibly endorsing the group ¬g and will echo
pj estimate. Each relaying process manages two variables
g[r, x], id[r, x] for each of the two phases x of each round r.
They are used to store the estimates (g and id) received in the
PHASE message. Thereafter, these same estimates are echoed
to all invoking processes from which a PHASE message was
received for the same phase of the same round.

Each invoking process pi collects in set Gi the echoed
values received from a majority of processes including itself.
Upon receipt of a majority of echoes, if Gi contains a single
value then pi keeps this value in g auxi otherwise, it knows
that there is contention between two groups of processes
each one championing for the two possible groups (0 and
1). Process pi sets variable g auxi to a value ⊥ reflecting
such a contention. Process pi applies the same argument for
the echoed identifiers.

To summarize, the first phase ensures that for any pair
of invoking processes pi and pj , if g auxi and g auxj are
both different from ⊥ then they necessarily contain the same
value g and if id auxi and id auxj are both different from

Output Meaning
(yes,yes) pi’s group wins and pi is the winner in the group
(yes,no) pi’s group wins and there is no winner in the

group
(no,no) either the group of pi looses or there is a winner

in pi’s group but the winner is not pi
(no,yes) Impossible, pi cannot be a winner if its group

does not win

Table II
THE POSSIBLE OUTPUTS OF A SELECTOR OBJECT INVOKED BY A SET OF

p ≥ 1 PROCESSES, pi BELONGS TO.

Function s.play(gi)
(1)ri ← 0; g esti ← gi; id esti ← pi;
(2)while true do // Sequence of rounds //
(3) ri ← ri + 1; c← common_coin();

———————— Phase 1 of round ri ——————————–
(4) bcast PHASE(ri, 1, g esti, id esti);
(5) wait until (PHASE(ri, 1, g est, id est) messages were received

from a majority of processes);
(6) let Gi be the set of g est values received at Line 5;
(7) let Idi be the set of id est values received at Line 5;
(8) if (Gi = {g} then g auxi ← g else g auxi ← ⊥;
(9) if (Idi = {id} then id auxi ← id else id auxi ← ⊥;

———————— Phase 2 of round ri ——————————–
(10) bcast PHASE(ri, 2, g auxi, id auxi);
(11) wait until (PHASE(ri, 2, g aux, id aux) messages were received

from a majority of processes);
(12) let Gi be the set of g aux values received at Line 11;
(13) let Idi be the set of id aux values received at Line 11;
(14) case
(15) (Gi = {⊥}): g esti ← c; id esti ← ⊥;
(16) (Gi = {g}) ∧ (Idi = {id}): if (id = pi) then
(17) return (yes,yes);
(18) (Gi = {g}) ∧ (Idi = {⊥}): if (g = gi) then
(19) return (yes,no)
(20) else return (no,no);
(21) (Gi = {g}) ∧ (Idi = {id,⊥}): if (id = pi) then
(22) g esti ← g; id esti ← ⊥;
(23) else return (no,no);
(24) (Gi = {g,⊥}) ∧ (Idi = {id,⊥}): if (id = pi) then
(25) g esti ← g; id esti ← ⊥;
(26) else return (no,no);
(27) (Gi = {g,⊥}) ∧ (Idi = {⊥}) : g esti ← ⊥; id esti ← ⊥;
(28) endcase;
(29)endwhile

—————————— Relay Task ——————————–
Task s.relay // Launched by any process pi, 1 ≤ i ≤ n. pi maintains

four variables g[r, 1], g[r, 2], id[r, 1] and id[r, 2] per round r,
Initially initialized to ⊥ //

(30)upon receipt of PHASE(r, x, g, id) message from pj
(31) if (g[r, x] = ⊥ and id[r, x] = ⊥) then
(32) g[r, x]← g; id[r, x]← id;
(33) send PHASE(r, x, g[r, x], id[r, x]) to pj ;

Figure 1. A randomized protocol implementing the selector object run by
process pi (t < n/2)

⊥ then they necessarily contain the same process identity
id.

During the second phase of the round, pi broadcasts both
g auxi and id auxi and collects in Gi and Idi the echoes
from a majority of processes. By construction of the first
phase, if Gi contains a value g and possibly ⊥ then pi is

sure that any other invoking process pj will receive either g
or ⊥ values. Moreover, if Gi contains a unique value, pi is
certain that any other invoking process pj will receive at least
this value (two majorities always intersect). In particular, if
Gi contains only the ⊥ value, pi knows that no winning
values has been exhibited during the round, thus pi triggers
a new round by setting its estimate to the random value
c picked at the beginning of the round, and id esti to ⊥
(Line 15). Now, if Gi only contains a non bottom value g
then g is the winning value of the round. Process pi must
then determine whether the echoed values it has received
reflect a contention among the potential winners or not.
Such a contention exists if Idi contains at least the bottom
value. If pi does not observe such a contention and if pi is
actually the winner of the competition (i.e., Idi = {pi})
then it successfully leaves the competition by returning
(yes,yes), see Line 17. Meanwhile, for any other process
pj , if pj suspects that pi may have won the competition
(Lines 21 and 24) then pj abandons the competition by
returning (no,no) (Lines 23 and 26). Now, if pi observes a
contention among the potential winners but there is no hint
of the potential winner, i.e., Idi = {⊥} (Line 18), then if
pi is among the processes that initially proposed g it starts
a new competition by returning (yes,no), see Line 19.
It abandons the competition otherwise, see Line 20. If, on
the other hand, pi knows that a majority of processes have
seen its estimate in the first Phase (id = pi at Line 24)
but not necessarily in the second Phase (⊥ ∈ Idi), then pi
triggers a new round by specifying that there is a winning
group value, but there is no hint on the potential winner.
This will allow all the processes involved in this new round
to return (yes,no). The last possible scenario occurs when
pi sees a contention on the group value (i.e., ⊥ ∈ Gi) but
one group g has nevertheless been seen by a majority of
processes (Line 24 and 27). If pi knows that a majority of
processes have seen its estimate in the first Phase (id = pi
at Line 24) but not necessarily in the second Phase, then it
triggers a new round by specifying that there is a winning
group value, but there is no hint on the potential winner.
This will allow all the processes involved in the new round
to return (yes,no). On the other hand, in Line 27, there is
no hint on the potential winning process thus pi triggers a
new round with g esti and id esti both equal to ⊥. Finally,
it is easy to see that if there is a unique invoking pi during
some round r, pi will return (yes,yes) at line 17 of round
r as pi can only received echoes from its own value.

C. Correctness of the Selector Implementation

We now show that the randomized implementation of
the selector object presented in Figure 1 is correct, that is
guarantees the properties given in Section III-A. Let s be a
selector object.

Lemma 1 (Non-blocking): No correct process blocks
forever in a round.

Proof: Let us first note that no relaying process can
block forever at line 31 and will respond to any message
sent by any invoking process. By assumption, there is a
majority of correct processes. Thus any invoking process
that broadcasts a message at lines 4 or 10 will receive at
least a majority of associated echo (i.e., PHASE messages).
Consequently, no invoking process can remain blocked for-
ever at lines 5 or 11.

Lemma 2: If all the invoking processes start a round r
with the same estimate g then, all the invoking processes
that do not crash return either in round r or in round r+ 1.

Proof: Let g be the estimate proposed by all invoking
processes at the beginning of round r. The invoking pro-
cesses will broadcast the same value g at line 4, and thus
will get only value g in their buffer G. Consequently, each
invoking process pi executes line 8 by affecting g auxi to
g and will receive (a majority of) PHASE messages with
g aux = g. Thus each of the three cases at Lines 16, 18,
and 21 need to be considered. Let us examine the two
former ones: pi returns (yes,yes) if it is the only
invoking process seen by a majority of processes and, returns
(yes,no) if the contention between the invoking processes
has been detected (that is not all the relaying processes have
received the same estimations). Now consider the case at
Line 21. If pi is not the invoking process seen by a majority
of relays during the first phase of the current round, then pi
returns (no,no), otherwise pi triggers round r + 1 with
g esti = g and id est = ⊥, and will exclusively execute
Line 18. Consequently, pi will return (yes,no) in Phase
2 (of round r + 1).

Lemma 3 (S-Validity): A process, invoking the s.play
primitive, that returns a value, must return (yes,yes),
(yes,no) or (no,no).

Proof: Straightforward from Lines 16, 18, 23, and 26.

Lemma 4 (S-Obligation-solo): If a process invokes the
s.play primitive alone and does not crash then, it returns
(yes,yes).

Proof: If an invoking process pi executes alone a
given round then necessarily the echoes it will receive at
lines 5 and 11 contain a single value g and its identifier pi.
Consequently, Gi will always contains a single non-⊥ value
leading process pi to decide (yes,yes).

Lemma 5 (S-Agreement): At most one process returns
(yes,yes), and in this case, all the other returning pro-
cesses return (no,no).

Proof: Let pi be the first process that returns
(yes,yes) at round r. By construction of the algorithm,
this can only occur at Line 17, that is Gi = {g} and Idi =
{id}, with id = pi. Thus, by the majority argument, for any
other process pk, variables Gk and Idk must respectively
contain at least g and id at round r. Consequently, process
pk necessarily executes one of the two cases at Lines 21
and 24, and in both cases pk returns (no,no) at round r.

Lemma 6 (S-Exclusion): If an invocation of s.play
with parameter g returns (yes,-) then, no invocation with
parameter ¬g can return (yes,-).

Proof: Let r be the smallest round at which some
invoking process pi returns (yes,-). By construction it
can only happens at Line 17 or 19. If pi returns (yes,yes)
(Line 17) then by Lemma 5 all the other processes, that
return a value, return (no,no). Now, suppose that pi
returns (yes,no) at Line 19, and gi = g. By construction,
this means that for any other processes pk, Gk must contain
at least g at round r (two majority always intersect). Thus, if
pk returns (yes,no) then necessarily gk = g and thus the
lemma holds. Now, if pk does not abandon the execution,
then pk triggers round r + 1 with g estk = g. This applies
for all processes executing round r + 1. By Lemma 2, for
all these processes that return a value, they return, at round
r + 1, (yes,-) only if gk = g.

Lemma 7 (S-Obligation): If no process crashes then, at
least one process returns (yes,-).

Proof: For space reasons, proof of the lemma is pre-
sented in the companion paper [4].

Lemma 8 (S-Termination): An invocation of s.play
by a correct process terminates with probability 1.

Proof: Suppose by contradiction that some correct
process pi does not terminate. It must be the case that either
pi blocks forever in an execution or pi never stops from
triggering new rounds. By Lemma 1, pi cannot block forever.
Now, by Lemma 2, if all the competing processes in a given
execution start a round r with the same estimate g, all the
invoking processes that do not crash return either in round r
or in round r+1. By the proof of Lemma 5, if some process
wins the competition at round r, that is returns (yes,yes),
then all the other processes stop the execution, by returning
(no,no), at round r. By Lemma 7 if all processes are
correct then at least one returns (yes,-). Thus it must be
the case that pi and possibly some other processes end Phase
2 of some round r by either executing Lines 15, 21, 24 or 27.
Once again, by Lemma 2, if Line 15 is executed and c = g
then all processes return either in round r or in round r+ 1.
Thus let p′ be the number of processes that trigger round
r+ 1, such that some of them propose g and the other ones
propose ¬g. In this last case, there is a probability p = 1/2
that the value kept by the process that executes Line 3 is
equal to g. So, there is a probability p` ≥ 1− 1/2` that all
none crashed processes have the same estimate after at most
` rounds. As lim`→∞ p` = 1, it follows that, with probability
1, both invoking processes will start a round with the same
estimate. Then, according to Lemma 2, they will return.

D. Complexity Analysis of the Selector Implementation

Theorem 1 (Message complexity of play()): The to-
tal number of messages exchanged by the randomized imple-
mentation of the selector object when concurrently invoked

by p processes is O(np).
Proof: If there is a unique process that invokes the

selector, it will return within a unique round. The number
of messages needed is at most 2(n + 1) (n + 1 messages
for each phase). If p processes invoke the selector, they will
go through a constant number of rounds as it is the case
for randomized consensus [8], [9]. During a phase, each
invoking process broadcasts a message and each process
responds once to each of the invoking processes. Thus,
during a phase a maximum of p(n + 1) messages are
exchanged. As there are two phases per round and the total
number of rounds is constant, message complexity is O(np).

IV. A MESSAGE-PASSING IMPLEMENTATION OF THE
RANDOMIZED TEST&SET OBJECT

We now present the implementation of the Test&Set
object. Recall that it can be invoked by any number p ≤ n of
competing processes. As aforementioned, implementation of
the Test&Set object relies on instances of the selector object
as illustrated in Figure 2(a). Correctness of the implemen-
tation is presented in Section IV-B, and its complexity is
derived in Section IV-C.

Test&Set() play(a=rnd(0,1))
selector[1] selector[2] selector[..]

play(a=rnd(0,1)) play(a=rnd(0,1))

(no,no)

no

(yes,yes)

(no,no) (no,no)

(yes,yes) (yes,yes)

yes

(yes,no) (yes,no)

(a) Randomized Test&Set object using selector objects as building blocks

Function o.Test&Set()
(1)stepi = 1;
(2)repeat forever
(3) (b1, b2)← selector[stepi].play(rnd(0, 1));
(4) if (b1 = yes ∧ b2 = yes) ∨ (b1 = no) then
(5) return(b1 = yes ∧ b2 = yes)
(6) endif;
(7) stepi ← stepi + 1;
(8)endrepeat;

(b) Randomized Test&Set Object Algorithm

Figure 2. Randomized Test&Set Object

A. The Randomized Test&Set Algorithm

Pseudo-code of the Test&Set algorithm, given in Fig-
ure 2(b), can be seen as a process elimination by dichotomy.
At the first step, each of the p competing processes pi flips
a local coin (we suppose that each process uses an unbiased
coin) and invokes the first instance of the selector object
with this coin as parameter. This parameter represents pi
group for this instance of the selector object. The selector
object selects the winning group (set of processes) allowed
to continue the competition, and eliminates all the processes

of the other group (if any). Specifically, any process pi
that exits with (yes,no) from the current instance of the
selector object triggers a new step of the Test&Set algorithm
by invoking the next instance of the selector object by
flipping again a local coin. On the other hand, any process pi
that exits from the current instance of the selector object with
(no,no) also exits from the Test&Set invocation with no.
The last step of the Test&Set algorithm occurs when one of
the remaining competing processes pi exits from the selector
object invocation with (yes,yes). This winning process
exits with yes from the Test&Set invocation. As it will be
proven in the sequel, any invocation by a process that does
not crash terminates with probability 1. As said above, our
algorithm does not need to know how many processes access
the Test&Set object. Remaining of the paper will clarify all
these points.

B. Correctness of the Test&Set Implementation

This section proves the correction of the algorithm of Fig-
ure 2(b) by proving the four properties of a Test&Set object,
namely the TS-Validity, TS-Obligation, TS-Agreement
and TS-Termination properties and then shows the com-
plexity both in terms of steps and messages of the algorithm.

The TS-Validity property is a direct consequence of line
4 of the algorithm, while the TS-Obligation property is a
consequence of the S-Obligation of the selector underly-
ing object. Indeed, if none of the processes that execute
o.Test&Set() crash, then necessarily they execute line
3 of the algorithm. By the S-Obligation property of the
selector, at least some process will exit with (yes,-).
If only (yes,no) is returned, then all these processes
will execute a new instance of the selector until possibly
exactly one process execute a solo execution in which case
it will return (yes,yes). To prove the TS-Agreement
property, let us consider the first process that exits with
yes at line 5 at some step stepi. Necessarily this process
invoked selector[stepi].play() and this invocation returned
(yes,yes). Consequently, by the S-Agreement property
of a selector, all the other processes that invoke the selector
will exit with (no,no) and consequently, these processes
will return no at line 5 at the same step stepi. Property TS-
Termination is more tricky to prove. By the S-Validity of a
selector, returned values are pairs of boolean, consequently,
the Test&Set algorithm is properly executed (no type errors).
Moreover, by the S-Termination property of a selector, a
correct process terminates the call of line 3 with probability
1. Saying this, we conclude that if the Test&Set algorithm
does not terminate, it will execute an infinity of times the
repeat loop. Section IV-C proves that this loop terminates
after no more than 2 log2(p) invocations of the selector
object in expectation for large values of the contention p
of the Test&Set execution (see Theorem 2). Moreover, the
average number of selector invocations done by any of the
competing processes during a Test&Set execution is constant

(2 invocations per process as shown in Corollary 1).

C. Complexity Analysis of the Test&Set Implementation

We now analyze the complexity of our implementation
with respect to both the number of execution steps and the
number of exchanged messages.

To carry out the step complexity analysis, we consider
the worst-case execution, namely that the Test&Set protocol
terminates at the latest when there is only one process
executing the protocol. Indeed, the protocol may terminate
before, that is, as soon as a process succeeds in being
the winner of the winning group. However the analysis
supposes the worst case execution, where the Test&Set
protocol executes until there is a unique competing process.
Consequently, for the purpose of this worst case analysis,
only the first boolean returned by the selector object is
relevant. Recall that this boolean indicates if the invoking
process belongs to the winning group or not.

When competing processes invoke a selector instance,
each one chooses a group at random (line 3 of Figure 2(b)).
By the S-Exclusion property of a selector, only one group
will win. The identity of the winning group (0 or 1) depends
on the actual scheduling and the adversary. Hence, as the
choice of the group is done at random, we assume that
the two events ”group 0 wins” and ”group 1 wins” occur
with the same probability 1/2 and that the behaviors of the
processes at each instant are independent of each other.

We suppose that p ≤ n processes concurrently access
the Test&Set object. The behavior of the algorithm can be
modeled by a Markov chain X = {X`, ` ≥ 1}, where X`

represents the number of processes in competition at the `-
th transition, i.e., the number of processes that execute the
`-th step. Hence, the state of the Markov chain is an integer
value i (1 ≤ i ≤ p). The initial state of X is state p, with
probability 1, that is P{X0 = p} = 1 and we denote by P
the transition probability matrix of X . The probability Pi,j
to go from state i to state j in one transition is equal to 0
if i < j. Indeed, a process that returns b1=no cannot any
more continue the competition (see line 5 in Figure 2(b)).
Now, when all the i competing processes choose the same
group (either 0 or 1) then they all restart the competition in
the same state. It follows that, for i = 1, . . . , p,

Pi,i =
1

2i
+

1

2i
=

1

2i−1
.

Finally, for 1 ≤ j < i ≤ p, Pi,j is the probability that exactly
j processes among i choose the same group and that this
group wins. We thus have, in this case,

Pi,j =
1

2

[
1

2i

(
i

j

)
+

1

2i

(
i

i− j

)]
=

1

2i

(
i

j

)
.

The states 2, 3 . . . , p are thus transient states and state 1 is
absorbing since P1,1 = 1.

In the following we evaluate the average number of
steps to reach state 1, and the average total contention

before termination, i.e., before reaching state 1. By total
contention we mean the following: Let us consider the
sequence n1, n2, . . . , np−1 where n` represents the number
of processes that execute step ` of the Test&Set protocol
(contention on step `). By assumption n1 = p. We call
the total contention on the whole selector objects the sum
n1 + n2 + · · · + np−1. We show that the average total
contention is linear in p.

When p processes are initially competing, the worst case
time needed by the Test&Set protocol to terminate is the
hitting time of state 1 by Markov chain X . If we denote by
Tp this time, we have

Tp = inf{` ≥ 0 | X` = 1}.

It is well-known, see for instance [15], that the expected
value of Tp is given by

E{Tp} = α(I −Q)−11,

where Q is the matrix of dimension p − 1 obtained from
P by deleting the row and the column corresponding to
absorbing state 1, α is the row vector containing the initial
probabilities of the transient states, that is αp = 1 and
αi = 0 for i = 2, . . . , p− 1, and 1 is the column vector of
dimension p−1 with all its entries equal to 1. The expected
value E{Tp | X0 = p} can also be evaluated using the
well-known recurrence relation, see for instance [15],

E{Tp | X0 = p} = 1 +

p∑
k=2

Pp,kE{Tk | X0 = k}. (1)

Theorem 2 (Step Complexity of Test&Set()): The ex-
pected time E{Tp | X0 = p} needed to terminate the
Test&Set protocol when p processors are initially competing
satisfies

E{Tp | X0 = p} = O(log(p)).

More precisely, there exists an integer p0 > 0 such that, for
all p ≥ p0, we have

E{Tp | X0 = p} ≤ 2 log(p),

where log denotes the logarithm function to the base 2.
Proof: Sketch of the proof. For space reasons the full

proof appears in the companion paper [4]. Introducing the
notation up = E{Tp | X0 = p} and replacing Pp,k by its
value, Formula 1 can be written as

up = 1 +

p−1∑
k=2

2−p
(
p

k

)
uk +O(2−p).

The key idea lies in the fact that
(
p
k

)
is maximal when k =

p/2, and decreases rapidly away from the value k = p/2,
so that the above recursion formula for up very roughly
asserts that up ≈ 1 + up/2. Would this simplified recursion
formula hold true exactly, the bound up = O(log(p)) would

be obvious. Based on this rough idea, the proof is split into
three main steps.
First, given a small α > 0, Stirling formula implies
2−p

(
p
k

)
= O(exp(−2p2α)) uniformly in k whenever |k −

p/2| ≥ p1/2+α. This provides the simplified recursion

up = 1 +
∑

k: |k−p/2|≤p1/2+α
2−p

(
p

k

)
uk +O(2−2p

α

).

The second step consists in introducing a dyadic partition,
so we define Uj = max2≤k≤2j uk. A detailed analysis of
the above recursion formula provides,

Uj+1 ≤ 1 +
Uj + Uj+1

2
+O(2−2p

α

),

where p = 2j . The last argument consists in proving that
the above bound provides Uj ≤ 2j + C, for some constant
C that does not depend on j. This completes the proof.

Using this result and the Markov inequality, we obtain,
for the positive integer p0 of Theorem 2, for every m ≥ 1
and p ≥ p0, P{Tp > 2m log(p)} ≤ 1/m.

We consider now the total contention before termination.
For ` ≥ 0, we denote by W`(p) the number of processes
that executed step ` of the protocol when p processes are
initially competing. This random variable is defined by
W`(p) =

∑p
i=2 i1{X`=i}. Since the initial state is state p,

we have W0(p) = p with probability 1. W0(p) represents
the contention of the Test&Set and also the contention
of the first invocation of the selector object. The total
contention before termination is denoted by N(p) and given
by N(p) =

∑∞
`=0W`(p). Note that N(p) is also the total

contention of the whole invocations of the selector object.
The next theorem gives the expectation of N(p).

Theorem 3 (Total Contention): For every p ≥ 2 and
` ≥ 0, we have

E{W`(p)} = p/2` and E{N(p)} = 2p.

Proof: Since X0 = p, we have, for ` ≥ 0,

E{W`(p)} =

p∑
i=2

iP{X` = i | X0 = p} =

p∑
i=2

i
(
Q`
)
p,i
.

For ` = 0, we have E{W0(p)} = p. For ` ≥ 1,

E{W`(p)} =

p∑
i=2

i

p∑
j=i

Qp,j
(
Q`−1

)
j,i

=

n∑
j=2

Qp,jE{W`−1(j)}.

We pursue by recurrence over index `. The result being
true for ` = 0, suppose that for every j ≥ 2, we have

E{W`−1(j)} = j/2`−1. Then, for every p ≥ 2,

E{W`(p)} = Qp,pE{W`−1(p)}+

p−1∑
j=2

Qp,jE{W`−1(j)}

=
1

2p−1
p

2`−1
+

1

2p

p−1∑
j=2

(
p

j

)
j

2`−1

=
p

2p2`−1

p∑
j=1

(
p− 1

j − 1

)
=

p

2`
.

We then have E{N(p)} =
∑∞
`=0E{W`(p)} = 2p, which

completes the proof.
Corollary 1: Each process competing for the Test&Set

object invokes 2 instances of the selector object in expecta-
tion.

Proof: Directly from Theorem 3 as E{N(p)}/p = 2.

Theorem 4 (Message complexity of Test&Set()): The
total number of messages exchanged by the randomized
implementation of the Test&Set object when concurrently
invoked by p ≤ n processes is O(np).

Proof: Consider a Test&Set execution with contention
p. By Theorem 1, the message complexity of each invocation
of the selector object requires O(np) messages. By Corol-
lary 1, each competing process invokes the selector object
twice in expectation. The expected total number of messages
exchanged by the Test&Set algorithm with contention p is
thus O(np), and O(n) messages are needed per competing
process.

V. CONCLUSION

In this paper we have presented a randomized solution to
the Test&Set operation in fully asynchronous systems prone
to crash failures. This solution is built using a new building
block, called selector. This solution has an adaptive step
complexity. From a practical point of view, this property is
very important as it guarantees that the Test&Set operation
on the attached distributed object solely depends on the
number of processes p that concurrently want to access
this object, and not on the size n of the system. Finally,
the total number of messages involved by this operation
is O(np), which improves upon all the existing adaptive
implementations.

REFERENCES

[1] Y. Afek, E. Gafni, J. Tromp, and P. Vitnyi. Wait-free test-
and-set. In Proceedings of the International Workshop on
Distributed Algorithms (WDAG, now DISC), pages 85–94,
1992.

[2] D. Alistarh and J. Aspnes. Sub-logarithmic test-and-set
against a weak adversary. In Proceedings of the International
Symposium on Distributed Computing (DISC), 2011.

[3] D. Alistarh, H. Attiya, S. Gilbert, A. Giurgiu, and R. Guer-
raoui. Fast randomized test-and-set and renaming. In
Proceedings of the International Symposium on Distributed
Computing (DISC), 2010.

[4] E. Anceaume, F. Castella, A. Mostefaoui, and B. Sericola. A
message-passing and adaptive implementation of the random-
ized test-and-set object. https://hal.archives-ouvertes.fr/hal-
01075650, 2015.

[5] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory
robustly in message-passing systems. Journal of the ACM,
42(1):124–142, 1995.

[6] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk.
Renaming in an asynchronous environment. Journal of the
ACM, 37(3):524–548, 1990.

[7] M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In Proceedings of the
ACM Symposium on Principles of Distributed Computing
(PODC), pages 27–30, 1983.

[8] R. Canetti and T. Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), pages 42–51,
1993.

[9] B. Chor, M. Merritt, and D.B. Shmoys. Simple constant-time
consensus protocols in realistic failure models. Journal of the
ACM, 36(3):591–614, 1989.

[10] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed commit with one faulty process. Journal of the
ACM, 32(5):374–382, 1985.

[11] G. Giakkoupis and P. Woelfel. On the time and space
complexity of randomized test-and-set. In Proceedings of
the ACM Symposium on Principles of Distributed Computing
(PODC), pages 19–28, 2012.

[12] W.M. Golab, D. Hendler, and P. Woelfel. An o(1) rmrs leader
election algorithm. SIAM Journal on Computing, 39(7):2726–
2760, 2010.

[13] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124–149, 1991.

[14] A. Mostéfaoui and M. Raynal. Solving consensus us-
ing chandra-toueg’s unreliable failure detectors: a general
quorum-based approach. In Proceedings of the International
Symposium on Distributed Computing (DISC), pages 49–63,
1999.

[15] B. Sericola. Markov Chains: Theory, Algorithms and Appli-
cations. Iste Series, Wiley, 2013.

[16] J. Tromp and P. Vitanyi. A protocol for randomized anony-
mous two-process wait-free test-and-set with finite-state veri-
fication. In Proceedings of the ACM International Colloquium
on Structural Information and Communication Complexity
(SIROCCO), pages 275–291, 2002.

