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Embolism resistance as a key mechanism to understand adaptive plant strategies Introduction

According to the generally accepted cohesion-tension theory, capillary wicking of cell walls is the driving force in plants that creates a negative pressure, allowing transpiration to pull up water towards the leaves via a 3-D conduit network [START_REF] Dixon | On the ascent of sap[END_REF]. This negative pressure makes the liquid xylem sap metastable, and thus vulnerable to vaporization by cavitation [START_REF] Steudle | The cohesion-tension mechanism and the acquisition of water by plant roots[END_REF]. Cavitated conduits may become air-filled or embolized, and can no longer transport water. Extensive embolism formation in the xylem can block most of the water flow, potentially leading to branch sacrifice or even plant death [START_REF] Brodribb | Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit[END_REF][START_REF] Anderegg | The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off[END_REF]. Therefore, the resistance to drought or frost-induced embolism is an important adaptive trait for the growth and survival of plants [START_REF] Brodribb | Hydraulic failure defines the recovery and point of death in water-stressed conifers[END_REF][START_REF] Kursar | Tolerance to low leaf water potential status of tropical tree seedlings is related to drought performance and distribution[END_REF][START_REF] Choat | Global convergence in the vulnerability of forests to drought[END_REF], evolving along with other strategies including rooting depth, leaf structure, shifts in biomass allocation, CAM metabolism, water storage and/or drought and frost avoidance. This concise review describes how embolisms originate and spread into the conduit network, and highlights which mechanical properties of the xylem are involved in drought-induced embolism resistance. On the basis of original embolism measures in Arabidopsis, the mechanical-functional trade-offs may provide a novel additional explanation why some herbaceous flowering plant groups 'reinvented' wood development and turned again into the woody ancestral state (i.e. secondary woodiness).

Why and how do embolisms originate and spread into the xylem?

Vulnerable hydraulic pathway When liquid water pressure drops below its saturated vapour pressure (2.3 kPa absolute at 208C, or À99 kPa below atmospheric at sea level), it becomes metastable relative to the lower energy vapour phase [START_REF] Steudle | The cohesion-tension mechanism and the acquisition of water by plant roots[END_REF]. As such, liquid water under negative pressure is vulnerable to cavitation: the abrupt phase change to vapour (cf. boiling). Spontaneous initiation of vapour bubbles in pure metastable water (homogenous nucleation) does not seem to be responsible for cavitation in plant xylem, because it occurs at pressures far more negative (between À30 and À140 MPa based on experimental measures [START_REF] Caupin | Exploring water and other liquids at negative pressure[END_REF]) than physiological xylem pressures (often between À0.1 and À10 MPa with exceptions to >À20 MPa [START_REF] Maherali | Adaptive variation in the vulnerability of woody plants to xylem cavitation[END_REF][START_REF] Willson | Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae)[END_REF]). Instead, xylem cavitation is likely heterogeneous, triggered by nucleating sites, which are most likely either small gas bubbles in conduits or water-conduit wall boundaries experiencing weaker adhesion forces [START_REF] Cochard | Cavitation in trees[END_REF].

Drought-induced embolism

Experimental evidence points to 'air-seeding' as an important cause of embolism by drought stress [START_REF] Steudle | The cohesion-tension mechanism and the acquisition of water by plant roots[END_REF][START_REF] Cochard | Cavitation in trees[END_REF][START_REF] Zimmermann | Xylem Structure and the Ascent of Sap[END_REF]. As more negative sap pressure develops during drought, air is aspirated into the functional conduit through porous sections of the conduit wall. Once inside the conduit, these air bubbles may seed the phase change to vapour, causing the negative sap pressure to rise abruptly to near atmospheric. The gas bubble then is free to expand to fill the conduit and produce an embolism as water is drained by the surrounding transpiration stream. The evidence for air-seeding is that negative embolism pressures are usually equal and opposite to the pressure required to inject air into the intact conduits [START_REF] Cochard | Use of positive pressures to establish vulnerability curves: further support for the airseeding hypothesis and implications for pressure-volume analysis[END_REF].

Important sites for air-seeding are openings in the secondary walls of neighbouring conduits called interconduit pits (Figure 1 [START_REF] Zimmermann | Xylem Structure and the Ascent of Sap[END_REF]). These pits function to restrict the spread of air throughout the conduit network in the event of conduit damage, but at the same time allow lateral water transport via pores in the pit membranes (PMs). Conduits become damaged and air-filled not only during the course of normal development in the case of ruptured protoxylem strands, but also from abscission, breakage, herbivory, or other damage, although it remains to be explored whether there are other causes for air-filled vessels. The nano-scale pores of the interconduit PMs are narrow enough to trap the meniscus against a substantial pressure difference between an embolized and a functional conduit, thus inhibiting air entry under normal conditions. But when the pressure difference becomes too large during drought, the capillary seal can give way, causing air-seeding through interconduit PMs (Figure 1b). In this way, embolism propagates from conduit to conduit. The amount of embolized cells can be measured in terms of loss of hydraulic conductivity at various negative pressures, resulting in so-called vulnerability curves (VCs, Figure 2). Since VCs measure embolism rates, and because not all cavitation events must necessarily lead to embolism formation, 'embolism resistance' is a more correct term for the commonly used 'cavitation resistance' in plant physiology.

Frost-induced embolism

Embolism formation can also develop due to freeze-thaw cycles, and mainly depends on the diameter of the conduits [START_REF] Davis | The relationship between xylem conduit diameter and cavitation caused by freezing[END_REF][START_REF] Pittermann | Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers[END_REF]. Air is insoluble in ice, forming gas bubbles in the conduits during freezing. On thawing, these bubbles may expand when the negative pressure allows countering the bubble-collapsing force of the surface tension (thaw-expansion hypothesis). Consequently, frost-induced embolism can be amplified by drought stress [START_REF] Pittermann | Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size[END_REF][START_REF] Mayr | Freeze-thaw induced embolism in Pinus contorta: centrifuge experiments validate the 'thawexpansion hypothesis' but conflict with ultrasonic emission data[END_REF].

Fine-scale interconduit pit adaptations regulate drought-induced embolism resistance Mechanical behaviour of pit quality characters

Ultrastructural modifications of interconduit pits are good predictors to explain embolism resistance via air-seeding [START_REF] Choat | Structure and function of bordered pits: new discoveries and impacts on whole plant hydraulic function[END_REF][START_REF] Jansen | Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms[END_REF][START_REF] Delzon | Mechanism of waterstress-induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal-capillary seeding[END_REF][START_REF] Pittermann | The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function[END_REF][START_REF] Lens | Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[END_REF]. Within angiosperms, the huge variation in PM thickness (70-1900 nm) and maximum PM porosity (10-225 nm) show that species with thicker PMs have smaller PM pores and are better adapted to avoid air-seeding (Figure 1c bottom [START_REF] Jansen | Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms[END_REF]). Thicker PMs are also presumed to be mechanically stronger, causing more resistance to stretching and preventing PM pores to become larger [START_REF] Choat | Structure and function of bordered pits: new discoveries and impacts on whole plant hydraulic function[END_REF][START_REF] Sperry | Analysis of circular bordered pit function. I. Angiosperm vessels with homogeneous pit membranes[END_REF]. Likewise, narrower pit chambers [START_REF] Lens | Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[END_REF][START_REF] Hacke | Embolism resistance of three boreal conifer species varies with pit structure[END_REF] and vestured pits (Figure 1c middle [START_REF] Choat | Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits[END_REF]) prevent excessive PM deflection in some groups. The mechanical behaviour of pits and their PMs remains to be investigated thoroughly, and therefore also PM chemistry [START_REF] Herbette | Calcium is a major determinant of xylem vulnerability to cavitation[END_REF] needs special attention with reference to the pit type and developmental stage. Noncellulosic compounds, such as pectins and hemicelluloses, occur in gymnosperm PMs [START_REF] Bauch | U ¨ber die Entwicklung und stoffliche Zusammensetzung der Hoptu ¨ pfelmembranen von La ¨ngstracheiden in Coniferen[END_REF], but the chemical composition of angiosperm PMs seems to be more diverse [START_REF] Choat | Structure and function of bordered pits: new discoveries and impacts on whole plant hydraulic function[END_REF][START_REF] Gortan | Pit membrane chemistry influences the magnitude of ion-mediated enhancement of xylem hydraulic conductivity in four Lauraceae[END_REF][START_REF] Plavcova | Heterogenous distribution of pectin epitopes and calcium in different pit types of four angiosperm species[END_REF]. According to recent studies, intervessel PMs contain little or no pectic homogalacturonans and rhamnogalacturonan-I [START_REF] Plavcova | Heterogenous distribution of pectin epitopes and calcium in different pit types of four angiosperm species[END_REF][START_REF] Plavcova | Linking irradiance-induced changes in pit membrane ultrastructure with xylem vulnerability to cavitation[END_REF], which raises serious doubts about the swelling/shrinking hypothesis of interconduit PMs related to the ionic effect [START_REF] Zwieniecki | Hydrogel control of xylem hydraulic resistance in plants[END_REF][START_REF] Van Ieperen | Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction?[END_REF][START_REF] Jansen | Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of xylem across angiosperms?[END_REF][START_REF] Nardini | More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport[END_REF]. Within conifers, embolism resistance of torus-margo pits in unicellular tracheids seems most closely correlated to the size ratio of torus versus pit aperture diameter [START_REF] Delzon | Mechanism of waterstress-induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal-capillary seeding[END_REF][START_REF] Pittermann | The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function[END_REF][START_REF] Hacke | Embolism resistance of three boreal conifer species varies with pit structure[END_REF]. This suggests that the adhesion of the torus to the pit border is a major determinant of drought-induced embolism resistance (seal capillary-seeding, Figure 1c top [START_REF] Delzon | Mechanism of waterstress-induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal-capillary seeding[END_REF]), although some conifer species show plasmodesmatal pores in their tori assuming air-seeding through these tori pores [START_REF] Jansen | Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem[END_REF].

Pit quantity characters

The chance of initiating air-seeding through a single PM with large pores appears to be larger when more intervessel pits per vessel are present (rare pit hypothesis [START_REF] Christman | Testing the 'rare pit' hypothesis for xylem cavitation resistance in three species of Acer[END_REF]). However, while the link between pit quantity per vessel and vulnerability to embolism is demonstrated in some angiosperm groups [START_REF] Hacke | Scaling of angiosperm xylem structure with safety and efficiency[END_REF], it is lacking in others [START_REF] Lens | Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[END_REF]. Opponents of the rare pit hypothesis use the quantity of intervessel pits per vessel to explain why long-vesseled species usually show vulnerable embolism rates [START_REF] Hacke | Scaling of angiosperm xylem structure with safety and efficiency[END_REF][START_REF] Christman | Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species[END_REF]. The vulnerability of large vessels, however, is the subject of contradictory opinions. For instance, recent studies in grapevine based on a wide range of traditional and upto-date in vivo techniques suggest that the high embolism ratios in long-vesseled species may be a typical problem of the commonly used centrifuge technique [START_REF] Choat | Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species[END_REF][START_REF] Brodersen | The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography[END_REF][START_REF] Mcelrone | Centrifuge techniques consistently overestimates vulnerability to water stress-induced cavitation in grapevines as confirmed with high-resolution computed tomography[END_REF], while others finding no long-vessel artefact [START_REF] Jacobsen | No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesseled liana (Vitis vinifera)[END_REF].

More evidence for the mechanical-functional trade-off in xylem

Wood density and thickness-to-span ratio Embolism resistant species are often characterized by a high wood density and a high thickness-to-span ratio of water conducting cells [START_REF] Hacke | Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure[END_REF][START_REF] Jacobsen | Do xylem fibers affect vessel cavitation resistance?[END_REF][START_REF] Chave | Towards a worldwide wood economics spectrum[END_REF], and some studies have also highlighted increased fibre wall area, Modulus of Elasticity, and Modulus of Rupture as additional tradeoffs [START_REF] Jacobsen | Do xylem fibers affect vessel cavitation resistance?[END_REF]. The mechanical reinforcement in droughtinduced embolism resistant wood is often explained by the stronger negative pressures in the conduits. Nevertheless, conduit implosion due to negative pressures has never been observed in wood. Alternatively, conduit wall reinforcement might prevent microfractures in walls [START_REF] Jacobsen | Do xylem fibers affect vessel cavitation resistance?[END_REF] that in turn might trigger heterogeneous nucleation from air particles in walls or in intercellular spaces. But again, there is no experimental evidence for these microfractures, leaving the underlying mechanisms for the mechanical-functional trade-off in the xylem tissue unresolved.

A new additional evolutionary hypothesis for secondary woodiness

The existing mechanical-functional correlation in xylem can be translated into a novel hypothesis explaining why the habit shift from herbaceousness towards secondary woodiness (SW) occurs in some angiosperms. This habit shift was initially observed on islands by Charles Darwin and described as insular woodiness [START_REF] Darwin | On the Origin of Species by Means of Natural Selection[END_REF]. Today, several hypotheses are raised explaining why herbaceous lineages undergo massive convergent evolutionary shifts towards SW shrubs (summarized in [START_REF] Whittaker | Island Biogeography[END_REF]), but compelling evidence for this increased woodiness remains absent. Our Canary Island review shows that many of the SW species are native to the markedly dry coastal regions, suggesting for the first time a link between increased woodiness and embolism resistance [START_REF] Lens | Insular woodiness on the Canary Islands: remarkable cases of parallel evolution[END_REF]. However, we want to emphasize that many SW lineages also occur in very wet environments, suggesting the involvement of multiple environmental factors. For instance, lack of frost is an important criterion influencing the occurrence of SW with the shrubby A. thaliana mutant [53,54 ]. The VCs of the woody mutant stems show significantly lower embolism rates than VCs of the herbaceous accession grown under the same growth conditions (Figure 2). This is the first experimental evidence supporting increased embolism resistance in SW shrubs compared to their herbaceous relatives.

Different strategies in embolism resistance between angiosperms and gymnosperms

High risk versus safety

Angiosperms and gymnosperms have a strikingly different strategy to cope with drought-induced embolism resistance: the majority of angiosperms show a risky behaviour and operate close to their lethal hydraulic limit (i.e. pressure resulting in 70-80% loss of conductivity), while most of the gymnosperms develop a much safer hydraulic margin that is further away from their lethal 50% boundary [START_REF] Brodribb | Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit[END_REF][START_REF] Anderegg | The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off[END_REF][START_REF] Choat | Global convergence in the vulnerability of forests to drought[END_REF]. The greater ability of angiosperms versus gymnosperms to repair stem embolisms may partly explain this different strategy [55 ].

Refilling embolized conduits

Positive xylem pressures have been linked to vessel refilling in a variety of angiosperms, such as temperate woody trees [56], woody tropical plants [START_REF] Fisher | Survey of root pressure in tropical vines and woody species[END_REF], and many herbaceous species [51 ]. Refilling has also been reported under negative pressures, for instance in bay laurel [START_REF] Salleo | New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L[END_REF] and rice [START_REF] Stiller | Embolized conduits of rice (Oryza sativa, Poaceae) refill despite negative xylem pressure[END_REF], and requires pressures that need to rise close to atmospheric levels while the bulk xylem remains under negative pressure [START_REF] Zwieniecki | Confronting Maxwell's demon: biophysics of xylem embolism repair[END_REF]. This seems contradictory, but what we do know is that sugars and ions from living xylem and phloem cells are involved [START_REF] Salleo | New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L[END_REF][START_REF] Zwieniecki | Confronting Maxwell's demon: biophysics of xylem embolism repair[END_REF][START_REF] Nardini | Refilling embolized xylem conduits: is it a matter of phloem unloading?[END_REF]. This is demonstrated by amongst others girdling experiments [START_REF] Christman | Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species[END_REF][START_REF] Salleo | New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L[END_REF] and the observed transport of water and solutes between phloem and xylem [START_REF] Metzner | Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS[END_REF].

Conclusion and future prospectives

Various structure-function relationships in the xylem are known to play a role in embolism resistance. Pit membrane thickness and porosity are crucial to prevent drought-induced embolism via air-seeding, and more insights into PM composition in different cell types in the xylem of angiosperms are urgently desired to understand the interaction between the dead conduits and the living cells. Emphasis is also placed on trade-offs between mechanical wood properties and embolism resistance, and is further supported by original embolism measures showing that stems of secondarily woody Arabidopsis mutants are more embolism resistant than the ones of the herbaceous wild-type.

The self-regulation of water flow (ionic effect) and refilling of embolized conduits suggest that water transport does not entirely rely on a passive cohesion-tension process, but also requires input from living cells. Future research should focus on these refilling mechanisms, and continue to elaborate on a broad-scale integrative approach linking xylem and phloem physiology with in-depth anatomy of the hydraulic pathway [START_REF] Carlquist | How wood evolves: a new synthesis[END_REF]. Existing database projects, such as TRY [START_REF] Kattge | TRY -a global database of plant traits[END_REF] and the Xylem Functional Traits database [START_REF] Choat | Global convergence in the vulnerability of forests to drought[END_REF], are the necessary first steps to accomplish this effort. Once we know the crucial features characterizing embolism formation and refilling in plants, we can find and manipulate the genes underlying these characters using woody model species [START_REF] Secchi | Transcriptome response to embolism formation in stems of Populus trichocarpa provides insights into signaling and the biology of refilling[END_REF] and apply it to tree forest species. A global analysis on the vulnerability of forests to drought shows that many trees operate with narrow hydraulic safety margins, inferring that embolism-related research will become increasingly important under the current Climate Change predictions [START_REF] Choat | Global convergence in the vulnerability of forests to drought[END_REF]. Conifer stems have greater hydraulic safety margins than those of angiosperms. On the other hand, leaves and roots of conifers embolize and refill more frequently than those of angiosperms, which could be related to low stomatal sensitivity and/or a lesser ability of conifers to repair stem embolisms.
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