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Trees acclimation to strains induced by wind: 
from genes expression to stem structure

Mechanical signals are important factors that control plants growth and development. External
mechanical loadings, such as wind, lead to a decrease of primary growth, an increase of 
secondary growth, modifications of stems mechanical properties and biomass reallocation to 
roots. 
Biomechanical studies on tomato and poplar demonstrated that tissue strains are sensed by 
plants (1), (2). A biomechanical model was proposed, assuming that each cell produces a 
signal (dSi) whose intensity depends on strain level (ε), volume and sensitivity of the cell. At
organ or tissue level, the integrative thigmomorphogenetical signal Si can be predicted by 
integrating the longitudinal strains (Sstrains), applied to the tissue (3).
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Plants accommodation to repeated mechanical stimuli
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Experimental bending
device which allowed to 
quantify the level of 
longitudinal strains during
the stem bending.

An integrative model of mechanosensing: S 3m
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Response of secondary growth to repeated daily bending. Open circles represent growth
response to one single bending (1B). Closed circles represent growth response to 9 successive 
bendings at 1-day intervals (9B-1d). Dash squares, model of additive effects (linear time 
integration, 9x1B). Open squares, model with a sensitivity shift after 3 daily bendings (3x1B; 
accomodation).

Mechanoresponsive genes expression after repeated daily
bending.
C : control (no load). 1B : one single bending. xB-yd : x bendings
each separated by y days. PtaZFP2 : Populus tremula*alba Zinc 
Finger Protein2 gene, PtaTCH4 : Populus tremula*alba Touch4 
xyloglucan endotransglucosylase/hydrolyse gene. Significant 
differences (P < 0.05) of responses are indicated by different 
letters.

Stem anatomical modifications induced by multiple bend ings. 
(a) to (d) Control plants. (e) to (h) Plants subjected to 6 bendings, 2 successive bendings
separated by 1 day, 3 days without sollicitations between each set of bendings. (a, b, e, f) 
Toluidine blue staining. (c, d, g, f) Blue astra-safratine staining.
c: cambium, cp: cortical parenchyma, fw: flexure wood, gl: G layer, ph: phloem, pi: pith, scl: 
sclerenchyma, x: xyelm, xf: xylem fiber, xr: xylem ray, xv: xylem vessel.

Multiple mechanical stimuli affect anatomical patte rn and secondary growth rate

In nature, mechanical stimuli do not occur as a single bending. 
In this experiment, successive bendings were separated at day 
scale, mimicking the alternance between windy or quiet 
weather.
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As soon as a second bending was applied, a diminution of growth and molecular responses to 
subsequent bending were observed. Our results show that plants acclimate rapidly to mechanical 
loadings and a desensitization period of a few days occurs after a single transitory bending. This 
acclimation process provides a basis for a mechanistic analysis of response sensitivity to 
mechanical loadings such as wind (4).
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Cambial activity induced by local 
strains applied to the stem: 
experimentations and modelling.
Plants were subjected to 3 successive 
daily bendings per week during 4 
months. (a) Transversal section of a 
stimulated plant. (b) Relative 
ovalisation induced by bending. (c) 
Strain field for living tissues. (d) 
Weekly growth rate measurements
(blue lines) and growth rate modeling
(red lines).
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In response to bendings, cambium activity is impacted by the strain. Growth rate is identically stimulated according to the strain level both in the stretched part 
and in the compressed part of the stem. Wood differentiation is modulated according to the type of mechanical loading (tension and compression).
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