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Gravity  perception  and  gravitropic  response  are  essential  for  plant  development.  In  herbaceous  species,
it is  widely  accepted  that  one  of  the  primary  events  in gravity  perception  involves  the  displacement  of
amyloplasts  within  specialized  cells.  However,  the  early  signaling  events  leading  to  stem  reorientation
are  not  fully  known,  especially  in  woody  species  in which  primary  and  secondary  growth  occur.  Thirty-six
percent  of  the  identified  proteins  that were  differentially  expressed  after  gravistimulation  were  estab-
vailable online 5 March 2013
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lished as  potential  Thioredoxin  targets.  In addition,  Thioredoxin  h expression  was  induced  following
gravistimulation.  In  situ  immunolocalization  indicated  that  Thioredoxin  h  protein  co-localized  with  the
amyloplasts  located  in  the  endodermal  cells.  These  investigations  suggest  the  involvement  of  Thioredoxin
h  in  the  first  events  of signal  transduction  in inclined  poplar  stems,  leading  to  reaction  wood  formation.
ravitropism
oplar

ntroduction

It is widely accepted that one of the primary events in gravity
ensing in vascular plants involves the displacement or settling of
ense starch-containing amyloplasts, which can occur in seconds
o minutes depending on the plant tissue (Blancaflor and Masson,
003). Studies with herbaceous plants (Kiss et al., 1997; Fukaki
t al., 1998) provide evidence that perception of gravity in younger
tems is mediated by sedimentable amyloplasts located in the
ndodermal starch sheath cells along the stem axis. In trees, sed-
mentable amyloplasts in the endodermal cells may  play a role in
ravity perception, leading to secondary xylem formation, eccen-
ric growth and reaction wood formation in gravi-stimulated tree
tems (Nakamura et al., 2001). How the displacement of amylo-
lasts might trigger a signaling cascade is still a matter of debate
Perera et al., 2006). Several different second messengers and pro-
eins have been suggested to be involved in signal transduction
f gravitropism (Chang et al., 2003; Perera et al., 2006; Azri et al.,

009). Reactive oxygen species (ROS) are possible second mes-
engers, since Joo et al. (2001) have reported that production of
OS is essential for auxin-induced gravitropic signaling in maize
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roots. Redox-dependent regulators are central and flexible mech-
anisms to control metabolic and developmental activities of the
cells. Thioredoxins (Trxs) are 12 kDa proteins that contribute to
the redox control by dithiol/disulfide exchange. In plants, a large
number of genes encode Trxs, and 19 different isoforms have
been identified in Arabidopsis thaliana and were grouped in six
subfamilies: the Trxs f, h, m,  o, x and y (Buchanan and Luan,
2005). Recently, plastidial thioredoxins from the z-type have been
described (Chibani et al., 2011). Trxs f, m, x and y are localized
in chloroplasts, whereas Trxs o are found in mitochondria. Trx
m was  detected in amyloplasts from wheat starchy endosperm
(Balmer et al., 2006). Thioredoxins h were first found in the
cytoplasm compartment, then some isoforms were purified from
mitochondria and endoplasmic reticulum, and nuclear localiza-
tion has also been reported (Buchanan and Balmer, 2005). Trxs
h are encoded by a multigenic family of 8 genes in A. thaliana,
and at least five in Populus sp. (Gelhaye et al., 2004). Trxs h are
involved in multiple processes, such as reserve breakdown that
sustains early seedling growth of germinating cereal seeds (Wong
et al., 2002), or self-incompatibility (Cabrillac et al., 2001), in car-
bon and nitrogen metabolism (Wong et al., 2003). They are also

implicated in the cellular protection against oxidative stress, in
particular during seed desiccation and germination (Serrato and
Cejudo, 2003). Furthermore, Trxs h are electron donors to several
enzymes involved in the protection against oxidative stress such as
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Table 1
Putative or established Thioredoxin targets among differentially expressed proteins expressed in poplar stems after gravi-stimulation.

Putative or established Thioredoxin targets

40S ribosomal protein S12 2 GSH-dependent dehydroascorbate reductase 1 (EC 1.8.5.1) 1
Actin  3 1 HSP90 co-chaperone p23 2
Adenosine kinase 2 Malate dehydrogenase, NAD-dependent (EC 1.1.1.37) 1
ATP  synthase, beta subunit (EC 3.6.3.14) 1 Molecular chaperones HSP70 superfamily 1
Tubulin alpha-5 chain 1 Nucleoside-diphosphate kinase 1 (EC 2.7.4.6) 1
Beta  tubulin 1 Oxygen Evolving Enhancer 1 1
Calreticulin 1 2 Oxygen Evolving Enhancer 2 2
Chaperonin, Cpn60/Hsp60p (3.6.4.9) 1 Pyruvate dehydrogenase E1 Beta subunit isoforme 1 (EC 1.2.4.1) 1
Chlorophyll A/B binding protein precursor 2 RuBisCO large subunit (EC 4.1.1.39) 1
CuZn-superoxide dismutase (EC 1.15.1.1) 1 S-adenosylmethionine synthetase (EC 2.5.1.6) 1
Elongation factor 1-alpha 1 Translationally controlled tumor protein 1
Gluthatione s-transferase (EC 2.5.1.18) 1 Triosephosphate isomerase (EC 5.3.1.1) 1
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and the Periodic acid/Schiff (PAS) reaction was used to detect starch
and polysaccharides (Jensen, 1962). Stained sections were dried,
mounted in Eukitt (Kindler GmbH & Co, Freiburg, Germany) and
examined under a Zeiss Axioplan 2 microscope. Data were recorded

Fig. 1. Time course accumulation of Trx h after gravitational stimulus. Total RNAs
were extracted from basal internodes of inclined plants for 0 (control), 10, 20, 30,
45  min, 1 h, 3 h and 6 h. The accumulation of relative transcripts was  determined by
he complete list of differentially expressed proteins following gravistimulation o
utative or established Thioredoxin targets according to Buchanan and Balmer (200

eroxiredoxin, methionine sulfoxide reductase, and glutathione
eductase (Rouhier et al., 2001; Gelhaye et al., 2003; Jung et al.,
002). In addition to their role as antioxidant, Trxs h was proposed
o be involved in modulating redox-dependent signaling cascades
Dietz, 2003).

Starting from the observation that many proteins involved in
ravitropic response are potential Thioredoxins targets, we inves-
igated the expression and localization of thioredoxin h in the early
esponse to gravitropic stimulation in poplar stems.

aterials and methods

lant material and culture conditions

Hybrid poplar (Populus tremula x Populus alba), clone INRA no.
17-1-B4 was multiplied clonally in vitro on Murashige and Skoog
edium (Murashige and Skoog, 1962), acclimatized in hydropony

Herbette et al., 2004), and grown in a controlled environment
rowth chamber (16 h photoperiod at 60 �mol  m−2 s−1, 22 ◦C/18 ◦C
day/night) and 70% of relative humidity). At the 14 internodes
tage, the poplars showing straight stems were transferred on a
ew device for tilting (Azri et al., 2009).

After one week on the device in a straight position, poplars
howing 20 developed internodes were inclined at 35◦ from the
ertical axis for 0, 10, 20, 30, 45 min, 1 h, 3 h, and 6 h as described
arlier by Azri et al. (2009).  Starting from the base, internodes 1–5
showing preponderant secondary growth) were harvested from
nclined and non-inclined plants, frozen in liquid nitrogen and
tored at −80 ◦C until RNA extraction.

NA extraction and real-time RT-PCR experiments

For each time of the kinetics, the basal portions of two
tems were used. Total RNA was extracted according to the
ethod of Chang et al. (1993) and then treated with RNAse-

ree RQ1 DNase (Promega, Charbonnières-les-Bains, France).
NA concentration and quality were determined at 260 and
80 nm using the NanoDrop1000TM spectrophotometer (Thermo
isher Scientific, Wilmington, U.S.A.) and checked by agarose gel
lectrophoresis.

The real-time RT-PCR amplifications were performed according
o Mai  et al. (2009).  Trx h transcripts were detected by amplifying
78 bp with primers TrxF 5′-AGGGAAAAGGGTCTCAGAAA-
′ and TrxR 5′-ATTGCCTCCACATTCCACTC-3′. These primers

etected transcripts corresponding to the Trx h protein that
as upregulated in basal internodes of Populus tremula X

lba after 1 week inclination (Azri et al., 2009) and similar
o POPTR 0005s25420.1 (Phytozome http://www.phytozome.
lar stems was  presented by Azri et al. (2009).  Among these proteins, some were
 and/or Montrichard et al. (2009) [2].

Net - JGI v2.2). The reference genes 18S RNA and Ubiquitin
transcripts (POPTR 0012s01250, Phytozome) were amplified
using the primers 18SF 5′-CTTCGGGATCGGAGTAATGA-3′, 18SR 5′-
GCGGAGTCCTAGAAGCAACA-3′, and UbiF 5′-CCCGGCTCTAACCATA
TCCA-3′, UbiR 5′-GGGTCCAGCTTCTTGCAGTC-3′, respectively. The
reference genes were combined into an index using the BestKeeper
software tool (http://www.wzw.tum.de/gene-quantifaccation/
bestkeeper.html) (Pfaffl et al., 2004). Target gene abundance was
conventionally normalized using this BestKeeper Index (I) using
the delta-delta method mathematical model (McMaugh and Lyon,
2003).

Histochemical and immunolocalization analyses

After 45 min  inclination, basal stem portions were prepared for
histochemical analysis as described previously (Azri et al., 2009).
Briefly, stems portions were fixed in a solution containing 3.7%
(v/v) formaldehyde, 5% (v/v) acetic acid, 50% (v/v) ethanol, for 4 h
at 4 ◦C. The samples were then dehydrated and embedded in L.R.-
White resin (Sigma–Aldrich). Semi-thin sections were performed
RT-qPCR. Mean values (+SE) of three technical replicates are shown. For each time of
the  kinetics, one plant is analyzed. Similar results were obtained on a second series
of  plants (data not shown). Data were analyzed using ANOVA (Stagraphics Plus,
version 5.1). Different letters indicate significant differences (P < 0.05) for Fisher’s
LSD  pairwise comparisons.

http://www.phytozome/
http://www.wzw.tum.de/gene-quantifaccation/bestkeeper.html
http://www.wzw.tum.de/gene-quantifaccation/bestkeeper.html
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sing a digital camera (AxioCam HR, Zeiss) with AxioVision digital
maging software.

Samples embedded in L.R.-White resin for histochemical anal-
sis were also used for in situ immunolocalization as described
y Dusotoit-Coucaud et al. (2010).  The primary antibody directed
gainst the protein Trx h1 (Rouhier et al., 2001) from Populus
remula X Populus tremuloïdes (similar to POPTR 0005s25420.1)
as provided by Dr. Rouhier at the University Henry Poincaré,
ancy, France. The goat anti-rabbit antibody conjugated to alka-

ine phosphatase (Sigma, Saint-Quentin Fallavier, France) was
sed as secondary antibody. For the revelation, sections were

ncubated with chromogenic substrates nitroblue tetrazolium
nd 5-bromo-4-chloro-3-indolyl phosphate (Bio-Rad, Marnes-la-

oquette, France). Color development was stopped by washing in
2O. Sections were then mounted onto microscope slides, air dried
nd covered with cover slips for microscopy using Eukitt mounting
edium.

ig. 2. Sections of poplar stem (4th internode) inclined during 45 min. Longitudinal sectio
eaction to detect starch and polysaccharides. Photographs C and D are respectively enla
ere  probed with the antibody anti-Trx h1 (E) or incubated without primary antibody as
siology 170 (2013) 707– 711 709

Results and discussion

The data presented here suggest a role of Trxs h in the early
response to gravistimulation of poplar stems, in relation with the
amyloplast-linked mechanism of gravity sensing.

Earlier expression studies carried out at the proteomic level on
proteins from control and inclined poplar stems showed that about
40% of the proteins analyzed undergo significant changes following
gravi-stimulation (Azri et al., 2009). The development of proteomic
tools led to the identification of many Trxs h potential targets (Yano
et al., 2001; Maeda et al., 2003; Marx et al., 2003; Yamazaki et al.,
2004).

Here, we  observed that among 60 spots that were success-

fully identified, 36 spots were potential targets of Trxs, according
to the listings established by Buchanan and Balmer (2005) and
Montrichard et al. (2009).  These 36 spots represented 24 proteins
(Table 1). Among the 24 proteins listed, 5 are plastidial proteins.

ns (A, C) or transversal sections (B, D) were stained using Periodic acid/Schiff (PAS)
rged views of the photographs A and B (black rectangle area). Transversal sections

 a negative control (F).
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revious reports have listed chloroplastic proteins as cytosolic
hioredoxin targets. Yamazaki et al. (2004),  investigating possi-
le cytosolic thioredoxin targets in A. thaliana cells, found some
hloroplast proteins and suggested that they came from plastid
ontaminants. The observation that most proteins regulated after
ravi-stimulation are probable Trxs h targets was also made in
opulus euphratica Oliv. upon heat stress (Ferreira et al., 2006).
he proteins, potentially regulated both by gravi-stimulation and
hioredoxins, are involved in various processes (Table 1, Azri et al.,
009), among which are cytoskeleton organization and biogenesis
actin-3, Tubulin-alpha-5-chain, Beta-tubulin). The displacement
f amyloplasts following gravi-stimulation may  modify the cell
all-plasma membrane-cytoskeleton structural continuum and

rigger signaling cascades (Perera et al., 2006). We  assume that Trx
 may  have a particular role in signal transduction after amyloplast
isplacement in the cytosolic compartment.

Trx h expression was induced by gravitropic stimulation. Indeed,
he real-time quantitative RT-PCR analysis showed two  significant
ncreases of Trx h mRNAs: from 20 to 30–45 min, and 3 h after
ravistimulation, in basal internodes (Fig. 1). An increase in Trx h
RNA expression levels has also been observed following salt treat-
ent of rice seedlings (Zhang et al., 2011). Such regulation of Trxs

uggests that redox balance is affected in the early step of gravi-
timulation. We  previously observed that Thioredoxin h was  also
xpressed one week after stem inclination (Azri et al., 2009). This
s in agreement with the finding that production of ROS is essential
or auxin-induced gravitropic signaling in maize roots (Joo et al.,
001, 2005).

Using the Periodic acid/Schiff (PAS) reaction to detect starch
nd polysaccharides, we observed amyloplast sedimentation at the
ase of starch sheath cells of poplar stems (Fig. 2A and C). In agree-
ent with our observations, Nakamura et al. (2001) found that the

pright reorientation of woody stems of Japanese Cherry was cor-
elated with the sedimentation of the amyloplasts at the base of
ndodermal cells. Using an in situ immunolocalization approach,
rx h1 co-localized with the amyloplasts of endoderm cells of the
tem (Fig. 2E). A control section incubated without primary anti-
ody (Fig. 2F) confirmed the specificity of the signal. The endoderm,
hich contains the amyloplasts, has been suggested as essential for

hoot gravitropism (Fukaki et al., 1998). Since Trx h are expected
n the cytoplasm compartment, the co-localization of Trx h1 with
he amyloplasts might indicate that Trx h targets are found in the
uter membrane of the amyloplats envelope. These targets may  be
ssential for transduction of the gravitropic signal. Isolation and
haracterization of proteins from this outer envelope that interact
ith Trx h could aid in understanding the signaling cascade follow-

ng amyloplast displacement. We  cannot exclude the possibility
hat the antibody anti-Trx h1 detected the presence of Trx h inside
he amyloplasts. To date, only Trx m has been detected in isolated
myloplasts from wheat endosperm (Balmer et al., 2006). Thus,
rxs could act as regulatory links between the redox signal gen-
rated by gravitropic stimulation (Joo et al., 2001) and metabolic
rocesses in amyloplasts. For example, Kolbe et al. (2005) have
hown that cytoplasmic trehalose metabolism and sugar utiliza-
ion in amyloplasts are linked via Thioredoxin-mediated redox
ransfer.

In conclusion, our results support the involvement of Thiore-
oxin h in the early response to gravitropic stimulus leading to
eaction wood formation and poplar stem reorientation. Further
tudies need to be done to discriminate among the Thioredoxin h
soforms involved. Indeed, Trxs h form a large and diverse group
f protein disulfide reductases, but the function of each isoform

s still unclear (Gelhaye et al., 2004). The next step would be to
dentify the components interacting with amyloplast associated-
hioredoxin in order to dissect the events linked to gravity
ensing.
siology 170 (2013) 707– 711
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