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Examples of eQTLs with two tissues
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Examples of eQTLs with two tissues
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Intuitions to analyse eQTLs in multiple tissues

Each tissue separately:

I fails to leverage
commonalities between
tissues

I seems easier to investigate
heterogeneity

All tissues jointly:

I allows to borrow information
across tissues

I seems harder to identify
tissue-specific eQTLs

Trade-off depends on the amount of tissue-specific eQTLs and noise.

Two main goals:

I detect eQTLs in any tissue (hypothesis testing)

I identify in which tissue(s) they are active (model comparison)
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Linear regression and configurations

For each gene-SNP pair, in tissue s of individual i :

I ysi = µs + βsgi + εsi with εsi ∼ N (0, σ2
s )

I errors allowed to be correlated between tissues

Configurations represent tissue consistency/specificity:

I "1" for active eQTL (βs 6= 0), "0" otherwise

I γ =[110] corresponds to an eQTL in the first two tissues

References: Wen & Stephens (2011, arXiv), Wen (2012, arXiv),
Han & Eskin (AJHG, 2011)
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Bayesian Model Averaging and hierarchical modeling

I Bayes Factor as support for an eQTL in configuration γ:

BFγ = P(data | eQTL in configuration γ)
P(data | no eQTL in any tissue)

I Measure overall evidence against the global null hypothesis:

BMA =
∑

γ ηγBFγ

I Estimate configuration proportions ηγ with a hierarchical
model which borrows information across genes (pooling).

I Posterior probability to interpret the associations:

P(SNP is in configuration γ | data, SNP is eQTL) =
ηγBFγP
γ ηγBFγ
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Simulations - power gain and borrowing of information
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Simulations - power gain and borrowing of information
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Analysis of the data set from Dimas et al. (2009)

I 3 cell types: Fibroblasts, LCLs and T-cells

I 75 unrelated individuals (GenCord project)

I ≈ 400,000 SNPs

I ≈ 5000 genes deemed expressed in all three cell types

I cis region: ± 1 Mb from the TSS
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Gain in power from the joint analysis
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Reliable inference of the proportion of tissue specificity
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Wrong tissue-specific call by the tissue-by-tissue analysis
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Example of gene ENSG00000106153 and SNP rs4948093 (MAF=0.23).
See also Ding et al. (2010, AJHG).
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Conclusions and perspectives

Our framework:

I maps eQTLs jointly across tissues and explicitly models
heterogeneity;

I has more power and gives more reliable estimates of tissue
specificity than a tissue-by-tissue analysis;

I a non-exhaustive version of our framework (BMAlite) can
handle data sets with “many” tissues (eg. more than 15-20);

I our hierarchical model can also incorporate some genomic
annotations.
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Weak, yet consistent eQTL called only by BMA
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