A statistical framework for eQTL analysis among multiple tissues

Timothée Flutre

UChicago (Human Genetics) - INRA (Plant Genetics)

November 9, 2012 (ASHG, San Francisco)

Examples of eQTLs with two tissues

Tissue–consistent eQTL ($\gamma = [11]$)

Examples of eQTLs with two tissues

Tissue-specific eQTL ($\gamma = [10]$)

Examples of eQTLs with two tissues

Each tissue separately:

- fails to leverage commonalities between tissues
- seems easier to investigate heterogeneity

Each tissue separately:

- fails to leverage commonalities between tissues
- seems easier to investigate heterogeneity

All tissues jointly:

- allows to borrow information across tissues
- seems harder to identify tissue-specific eQTLs

Each tissue separately:

- fails to leverage commonalities between tissues
- seems easier to investigate heterogeneity

All tissues jointly:

- allows to borrow information across tissues
- seems harder to identify tissue-specific eQTLs

Trade-off depends on the amount of tissue-specific eQTLs and noise.

Each tissue separately:

- fails to leverage commonalities between tissues
- seems easier to investigate heterogeneity

All tissues jointly:

- allows to borrow information across tissues
- seems harder to identify tissue-specific eQTLs

Trade-off depends on the amount of tissue-specific eQTLs and noise.

Two main goals:

- detect eQTLs in any tissue (hypothesis testing)
- identify in which tissue(s) they are active (model comparison)

Linear regression and configurations

For each gene-SNP pair, in tissue *s* of individual *i*:

•
$$y_{si} = \mu_s + \beta_s g_i + \epsilon_{si}$$
 with $\epsilon_{si} \sim \mathcal{N}(0, \sigma_s^2)$

errors allowed to be correlated between tissues

Linear regression and configurations

For each gene-SNP pair, in tissue s of individual i:

•
$$y_{si} = \mu_s + \beta_s g_i + \epsilon_{si}$$
 with $\epsilon_{si} \sim \mathcal{N}(0, \sigma_s^2)$

errors allowed to be correlated between tissues

Configurations represent tissue consistency/specificity:

- ▶ "1" for active eQTL ($\beta_s \neq 0$), "0" otherwise
- $\gamma =$ [110] corresponds to an eQTL in the first two tissues

Linear regression and configurations

For each gene-SNP pair, in tissue s of individual i:

•
$$y_{si} = \mu_s + \beta_s g_i + \epsilon_{si}$$
 with $\epsilon_{si} \sim \mathcal{N}(0, \sigma_s^2)$

errors allowed to be correlated between tissues

Configurations represent tissue consistency/specificity:

- ▶ "1" for active eQTL ($\beta_s \neq 0$), "0" otherwise
- $\gamma =$ [110] corresponds to an eQTL in the first two tissues

References: Wen & Stephens (2011, arXiv), Wen (2012, arXiv), Han & Eskin (AJHG, 2011)

• Bayes Factor as support for an eQTL in configuration γ :

 $\mathsf{BF}_{\gamma} = \frac{\mathsf{P}(\mathsf{data} \mid \mathsf{eQTL} \text{ in configuration } \gamma)}{\mathsf{P}(\mathsf{data} \mid \mathsf{no} \; \mathsf{eQTL} \text{ in any tissue})}$

Bayes Factor as support for an eQTL in configuration γ:

 $\mathsf{BF}_{\gamma} = \frac{\mathsf{P}(\mathsf{data} \mid \mathsf{eQTL} \text{ in configuration } \gamma)}{\mathsf{P}(\mathsf{data} \mid \mathsf{no} \; \mathsf{eQTL} \text{ in any tissue})}$

Measure overall evidence against the global null hypothesis:

 $\mathsf{BMA} = \sum_{\gamma} \eta_{\gamma} \mathsf{BF}_{\gamma}$

Bayes Factor as support for an eQTL in configuration γ:

 $\mathsf{BF}_{\gamma} = \frac{\mathsf{P}(\mathsf{data} \mid \mathsf{eQTL} \text{ in configuration } \gamma)}{\mathsf{P}(\mathsf{data} \mid \mathsf{no eQTL} \text{ in any tissue})}$

Measure overall evidence against the global null hypothesis:

 $\mathsf{BMA} = \sum_{\gamma} \eta_{\gamma} \mathsf{BF}_{\gamma}$

 Estimate configuration proportions η_γ with a hierarchical model which borrows information across genes (pooling).

• Bayes Factor as support for an eQTL in configuration γ :

 $\mathsf{BF}_{\gamma} = \frac{\mathsf{P}(\mathsf{data} \mid \mathsf{eQTL} \text{ in configuration } \gamma)}{\mathsf{P}(\mathsf{data} \mid \mathsf{no} \; \mathsf{eQTL} \text{ in any tissue})}$

Measure overall evidence against the global null hypothesis:

 $\mathsf{BMA} = \sum_{\gamma} \eta_{\gamma} \mathsf{BF}_{\gamma}$

- Estimate configuration proportions η_γ with a hierarchical model which borrows information across genes (pooling).
- Posterior probability to interpret the associations:

P(SNP is in configuration $\gamma \mid \text{data}$, SNP is eQTL) = $\frac{\eta_{\gamma} \text{BF}_{\gamma}}{\sum_{\alpha} \eta_{\gamma} \text{BF}_{\gamma}}$

Simulations - power gain and borrowing of information

Simulations - power gain and borrowing of information

▶ 3 cell types: Fibroblasts, LCLs and T-cells

▶ 3 cell types: Fibroblasts, LCLs and T-cells

▶ 75 unrelated individuals (GenCord project)

▶ 3 cell types: Fibroblasts, LCLs and T-cells

75 unrelated individuals (GenCord project)

▶ ≈ 400,000 SNPs

- ▶ 3 cell types: Fibroblasts, LCLs and T-cells
- 75 unrelated individuals (GenCord project)
- ▶ ≈ 400,000 SNPs
- \blacktriangleright \approx 5000 genes deemed expressed in all three cell types

- ▶ 3 cell types: Fibroblasts, LCLs and T-cells
- 75 unrelated individuals (GenCord project)
- ▶ ≈ 400,000 SNPs
- \blacktriangleright \approx 5000 genes deemed expressed in all three cell types
- *cis* region: ± 1 Mb from the TSS

Gain in power from the joint analysis

Gain in power from the joint analysis

Reliable inference of the proportion of tissue specificity

Reliable inference of the proportion of tissue specificity

Wrong tissue-specific call by the tissue-by-tissue analysis

Example of gene ENSG0000106153 and SNP rs4948093 (MAF=0.23). See also Ding *et al.* (2010, AJHG).

Wrong tissue-specific call by the tissue-by-tissue analysis

Example of gene ENSG00000106153 and SNP rs4948093 (MAF=0.23). See also Ding *et al.* (2010, AJHG).

Conclusions and perspectives

Our framework:

- maps eQTLs jointly across tissues and explicitly models heterogeneity;
- has more power and gives more reliable estimates of tissue specificity than a tissue-by-tissue analysis;

Conclusions and perspectives

Our framework:

- maps eQTLs jointly across tissues and explicitly models heterogeneity;
- has more power and gives more reliable estimates of tissue specificity than a tissue-by-tissue analysis;
- a non-exhaustive version of our framework (BMAlite) can handle data sets with "many" tissues (eg. more than 15-20);
- our hierarchical model can also incorporate some genomic annotations.

Acknowledgments

Co-authors:

- William Wen
- Matthew Stephens
- Jonathan Pritchard

Funding of T. Flutre:

- INRA
- NIH (GTEx project)

References:

- Wen & Stephens (2011, arXiv), Wen (2012, arXiv)
- Han & Eskin (2011, AJHG)
- Ding et al. (2010, AJHG)
- Lebrec et al. (2010, SAGMB)
- Veyrieras et al. (2008, PLoS Genetics)

Weak, yet consistent eQTL called only by BMA

Example of gene ENSG0000090924 and SNP rs755690.

T. Flutre UChicago-INRA

Mapping eQTLs in multiple tissues

11/9/2012 15 / 14