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Abstract
Despite its economic importance and recent genome release, the need for
molecular tools for Hevea brasiliensis is high. In the frame of a disease
resistance study, EST sequences were retrieved from public database or
generated by sequencing SSH libraries. Sequences were trimmed and mi-
crosatellite motifs searched using an ad hoc bioinformatic pipeline, and
pairs of primers for the amplification of candidate markers were gener-
ated. We found a total of 10 499 unigenes from both sources of
sequences, and 673 microsatellites motifs were detected using the default
parameters of the pipeline. Two hundred sixty-four primer pairs were
tested and 226 (85.6%) successfully amplified. Out of the amplified can-
didate markers, 164 exhibited polymorphism. Relationships based on
dendrograms using simple matching index and diversity statistics based
on EST-SSRs were compared with Genomic SSRs, showing the potenti-
alities of EST-derived microsatellites for resistance studies but also for
population genetics approaches.
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Hevea brasiliensis (Willd. ex A. Juss.) M€ull. Arg. (rubber tree)
is the main source of natural rubber in the world, counting
11.3 million tons in 2012 (www.rubberstudy.com). It is a peren-
nial cross-pollinating and monoecious plant of the Euphorbiaceae
family. Genetic breeding of H. brasiliensis is difficult given its
low rate of success for controlled pollinations and its long life
cycle. Propagation of a new cultivar requires at least 20–
25 years of breeding experiments (Le Guen et al. 2009).
Molecular tools are useful for the characterization of geno-

types and can improve and speed up the breeding scheme. They
have been extensively used for the last two decades to study
genetic diversity and genetic mapping in H. brasiliensis (Besse
et al. 1994, Lespinasse et al. 2000, Seguin et al. 2003). Molecu-
lar markers used in Hevea encompass isozymes, randomly
amplified polymorphic DNA (RAPD), restriction fragment length
polymorphism (RFLP), amplified fragment length polymorphism
(AFLPTM) and, more recently, microsatellites and single-nucleo-
tide polymorphism (SNP) (Triwitayakorn et al. 2011, Li et al.
2012).
Microsatellite markers, also known as simple sequence repeats

(SSR), are particularly interesting as they are codominant, rela-
tively cheap to use, repeatable and highly polymorphic. Despite

the growing availability of SNP markers, SSRs are still the most
used molecular markers by small and intermediate breeding com-
panies that might not have access to expensive SNP-genotyping
platforms (Tyrka et al. 2008).
However, development of SSR-enriched libraries for genomic

SSRs (gSSR) is still costly and time consuming. More than 450
gSSR markers have already been published (Seguin et al. 2003,
Le Guen et al. 2011). Souza et al. (2009) and Pootakham et al.
(2012) published additional sets of 27 and 90 polymorphic
gSSRs, respectively.
Expressed sequence tag (EST)-derived microsatellites (EST-

SSRs) are developed from expressed sequences and therefore
can be found in genes involved in agronomically important
traits. EST-SSRs are less polymorphic and more transferable
across taxa than gSSRs (Varshney et al. 2005, Ellis and Burke
2007). They can be used for genetic mapping, functional diver-
sity and comparative mapping. The development of EST-SSRs is
mainly based on the study of genomic sequences that are not
specifically obtained for SSR research (e.g. publicly available
EST sequences, construction of cDNA libraries). This develop-
ment is rapid and cost effective (Ellis and Burke 2007). SSR
markers are becoming more important for breeding purposes
when they are closely linked or diagnostic to important traits
such as Sbm1 in wheat (Perovic et al. 2009), and EST-SSRs
should fall into this class.
Sets of polymorphic EST-SSRs from rubber tree have been

published (Feng et al. 2009, Triwitayakorn et al. 2011), but none
has been specifically developed to study resistance to biotic
stresses. H. brasiliensis is susceptible to the Ascomycota Micro-
cyclus ulei (Henn.) Arx 1962, the pathogen causing the South
American leaf blight (SALB), a devastating disease affecting
most of the currently cultivated varieties. Despite its economic
impact, few molecular tools are available to study the sources of
resistance of H. brasiliensis to M. ulei.
The objective of this study was to develop a new set of EST-

SSRs from disease-related candidate genes that could be used in
resistance studies. These markers will also help saturating exist-
ing genetic maps, as this saturation with different types of
molecular markers is highly important for genetic studies and
breeding purposes (Gupta et al. 2013). We chose to address two
kinds of EST sources: (i) disease resistance and defence-related
genes from publicly available EST databases and (ii) sequences
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obtained from suppression subtractive hybridization (SSH)
libraries built as part of a global team project to study resistance
genetics (Garcia et al. 2011).

Materials and Methods
Plant material: A set of 19 Hevea accessions (Table 1) was chosen to
assess the polymorphism and diversity of newly developed primers to
amplify microsatellites detected in EST sequences.

Sampling of individuals: We first used genotyping data from previous
studies (Le Guen 2008, Le Guen et al. 2009) to sample a set of nine
genotypes encompassing the whole known diversity of the H. brasilien-
sis species. We chose the genotypes using the ‘max-length subtree’ heu-
ristic procedure (Perrier et al. 2003) implemented in DARWIN 5.0 software
(Perrier and Jacquemoud-Collet 2006). This stepwise procedure searches
for a subset of units while pruning redundant units and limiting diversity
loss. Starting from a dendrogram, distances between units in the tree are
calculated, the pair of units of minimal distance is selected, and the unit
with the smallest external edge is removed, until the sample size chosen
by the user is reached (Perrier et al. 2003). For our sampling, we used a
neighbour-joining dendrogram based on a dissimilarity matrix for 264
genotypes and 18 genomic microsatellite markers, and a final sample size
of nine genotypes.

In addition to this diversity set, we selected nine genotypes of particu-
lar interest to breeders (stated as improved material) or involved in pres-
ent or future mapping progeny (complete list Table 1). We also included
as outgroup, a Hevea benthamiana accession (F4542).

Sixteen of the 19 selected genotypes had already been used in a previ-
ous diversity study (Le Guen et al. 2009). Genotyping data for 18 geno-
mic microsatellite markers derived from enriched libraries were retrieved
for comparison purposes.

DNA extraction: DNA extraction was carried out from either ground
fresh or frozen leaves according to the procedure by Le Guen et al.
(2009). DNA concentration was evaluated using a Nanoquant plate read
with an Infinite� 200 PRO NanoQuant device (Tecan Group Ltd.,
M€annedorf, Switzerland), then standardized at 5 ng/ll as working
solution.

EST sequence retrieving, microsatellite motif detection, primer
design: We used two different sources of EST sequences: 1) SSH
libraries built from infected leaves developed in a resistance study
(Garcia et al. 2011, Berger et al. in prep) and 2) latex EST sequences of

H. brasiliensis retrieved from public databases (GenBank). Both EST
sources were analysed separately through the ESTtik pipeline (Argout
et al. 2008).

SSH libraries: For SSH sequences, Sanger chromatograms were included
in the pipeline. Base calling and vector trimming were carried out, and
sequence quality was evaluated. Low-quality sequences were discarded,
and clustering was achieved using default parameters of the ESTtik pipe-
line (Argout et al. 2008). An automated search for SSR motifs using
MISA programme was carried out following the default parameters for
the minimal number of repeats used in ESTtik pipeline (six for dinucleo-
tide and five for tri-, tetra-, penta- and hexanucleotide). Primer design
was performed with PRIMER3 software (Rozen and Skaletsky 2000) with
default parameters for PCR amplification. We summarized the results of
the detection by computing frequencies concerning the microsatellite
motif classes. We also analysed the motif types for di- and trinucleotide
microsatellites.

H. brasiliensis cDNA public libraries: We retrieved all H. brasiliensis
cDNA sequences from EMBL/GenBank databases. Nearly all of the
available sequences were from cDNA libraries built from latex, the cyto-
plasm of laticiferous cells. All the sequences were imported in ESTtik
pipeline, but primer design was performed only for resistance- or
defence-related genes. The putative function of the genes was established
by ontology using Blast2GO (Conesa et al. 2005). Evaluation of
sequence quality was carried out on the basis of sequence lengths
because no chromatograms or sequence quality scores were available.
We retained only sequences of more than 100 base pairs length. Cluster-
ing was performed, and the same procedure as above was applied for
SSR motif search and primer design. For these latex EST sequences, we
also performed an extra MISA search of microsatellite motifs using less
stringent parameters (minimal number of repeats in the extended SSR
search from latex sequences: five for dinucleotide, four for trinucleotide
and three for tetra-, penta- and hexanucleotide). The results for both sets
were summarized following the same procedure as above.

Genotyping experiments: PCRs were performed in a volume of 10 ll,
composed of 25 ng of total DNA, 0.2 lM of each dNTP, 0.08 lM of
forward primer tailed with an M13 sequence, 0.1 lM of reverse primer,
0.1 lM of a fluorescently labelled M13 primer, 10 mM Tris, 50 mM
KCl and 2 mM MgCl2. PCR amplifications were performed with an
Eppendorf MasterCycler device (Eppendorf AG, Hamburg, Germany) as
follows: an initial denaturation step of 5 min at 95°C, followed by a
touch-down step of 15 cycles (95°C for 45-s denaturation, 59°C for

Table 1: List of the genotypes used in the study

Code Species Set
Inferred diversity group according to Le Guen et al. 2009
& Seguin et al. 2003

PB260 Hevea brasiliensis Mapping progeny parent Wickham
RRIM600 H. brasiliensis Mapping progeny parent Wickham
IRCA109 H. brasiliensis Mapping progeny parent Wickham
MDF180 H. brasiliensis Mapping progeny parent East Acre – Madre de Dios (MDF)
RO38 H. brasiliensis 9

H. benthamiana
Mapping progeny parent Interspecific hybrid

FX2784 H. brasiliensis Improved material Intraspecific Wickham 9 Amazonian hybrid
FDR5597 H. brasiliensis Improved material Intraspecific Wickham 9 Amazonian hybrid
FDR5788 H. brasiliensis Improved material Interspecific Wickham 9 H. non-brasiliensis hybrid
PFB5 H. brasiliensis Improved material Interspecific H. brasiliensis 9 H. non-brasiliensis hybrid
MT/IT/16/24 H. brasiliensis Diversity set Mato Grosso – Rondonia/Pimenta Bueno (RO/PB)
AC/B/15/25 H. brasiliensis Diversity set East Acre – Madre de Dios (MDF)
AC/S/12/86 H. brasiliensis Diversity set East Acre – Madre de Dios (MDF
AC/B/19/46 H. brasiliensis Diversity set East Acre – Madre de Dios (MDF)
RO/C/9/27 H. brasiliensis Diversity set Rondonia – Mato Grosso/Villa Bella (MT/VB)
RO/JP/3/37 H. brasiliensis Diversity set Rondonia – Mato Grosso/Villa Bella (MT/VB)
MT/C/2/46 H. brasiliensis Diversity set Mato Grosso – Rondonia/Pimenta Bueno (RO/PB)
RO/I/0/89 H. brasiliensis Diversity set Rondonia – Mato Grosso/Villa Bella (MT/VB)
Wickham seedling H. brasiliensis Diversity set Wickham
F4542 H. benthamiana Outgroup H. non-brasiliensis species
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1-min hybridization (� 0.5°C per cycle), 72°C for 1 min 30 elongation);
this touch-down step was followed by 25 cycles without touch-down
(95°C for 45-s denaturation, 52°C for 1-min hybridization, 72°C for
1 min 30 elongation) and a final elongation step (72°C for 5 min).
Primer pairs that gave bad amplification or no product were tested again
with the following PCR programme: 95°C for 5 min as initial
denaturation step, 10 cycles of touch-down cycles (95°C for 45-s
denaturation, 55°C for 1-min hybridization (�0.5°C per cycle), 72°C for
1 min 30 elongation), followed by 25 cycles without temperature
decrement (95°C for 45-s denaturation, 50°C for 1-min hybridization,
72°C for 1 min 30 elongation) and a final elongation step (72°C for
5 min).

PCR products were denatured at 95°C for 3 min before being sepa-
rated and revealed onto a 6.5% polyacrylamide gel on an automated
Li-Cor 4300 DNA analyzer (Li-Cor Biosciences, Lincoln, Nebraska,
USA). Gel images were retrieved into dedicated SAGA

GT software (Li-Cor
Biosciences, Lincoln, Nebraska, USA), and allele calling was carried out
manually. Results were then exported into MS EXCEL

� software and
formatted for the various softwares used.

Statistical analysis:
Diversity and polymorphism description: Polymorphism scoring of
successfully amplified products was performed manually. Allele number,
gene diversity (unbiased Nei’s statistic), observed heterozygosity (Ho)
and polymorphism information content (PIC) were computed with
POWERMARKER 3.25 software (Liu and Muse 2005). A dissimilarity
matrix was computed with DARWIN 5.0 and a simple matching distance
measure:

dij ¼ 1� 1
L

XL

l¼ 1

ml

p
;

where dij is the dissimilarity between individuals i and j, L the number
of loci, p the ploidy [here = 2, H. brasiliensis and H. benthamiana being
diploid species, (Lespinasse et al. 2000)] and ml the number of matching
alleles for locus l. This dissimilarity matrix serves as a basis for comput-
ing a dendrogram using a neighbour-joining (NJ) algorithm (Saitou and
Nei 1987).

Comparison between EST-SSRs and genomic SSRs: We used the data
obtained by Le Guen et al. (2009), who used a stratified random selec-
tion of 18 genomic SSR markers among hundreds of polymorphic ones.
They were chosen genetically independent and covering the whole Hevea
genome (1 SSR per chromosome pair).

For comparison purposes, we also randomly selected 18 EST-SSR
markers among the 164 polymorphic ones. We then drew NJ hierarchical
trees for 16 individuals common to the Le Guen et al. (2009) study and
our work on both types of markers.

Results
EST sequences from SSH libraries

A total of 16 079 sequences were used as input for ESTtik pipe-
line. After PHRED quality score evaluation, 12 466 were consid-
ered of good quality for further analyses. Clustering resulted in
6992 unigenes (1483 contigs and 5509 singletons). The auto-
mated search for microsatellite motifs found 289 motifs in 280
unigenes. The most abundant types detected were dinucleotide
(53.3%, Table 2), followed by trinucleotide (36.7%). Two hun-
dred and thirty-two primer pairs corresponding to unique unig-
enes were successfully designed.

GenBank EST sequences

We retrieved 10 849 latex-derived EST sequences from public
databases (GenBank) and incorporated them into ESTtik pipe-
line. Following quality evaluation, 10 365 sequences were
retained for further analysis. After clustering, 3507 unigenes
(1301 contigs and 2206 singletons) were determined. Three hun-
dred and eighty-four microsatellite motifs were detected using
the default parameters for MISA. Di- and trinucleotide microsat-
ellites were the most abundant (Table 2). We also observed a
high proportion of compound microsatellites (20.6%). Resulting
microsatellite regions were blasted against the ones obtained
from SSH libraries to check for redundancy. As no redundant
microsatellite was detected, we retained the whole set for further
analysis.
Extended search for microsatellite motifs using less stringent

parameters resulted in 757 microsatellite motifs, among which
trinucleotide was the most abundant (35.4%, Table 2), followed
by dinucleotide (34.3%). A selection on this 757 candidate

Table 2: Microsatellite types detected in the EST sequences

Microsatellite

SSH libraries EST-SSRs

Latex EST-SSRs with
default EsTtik research

parameters1 Total default parameters1

Latex EST-SSRs with
extended research

parameters1

Number Percentage Number Percentage Number Percentage Number Percentage

Dinucleotide 154 53.3 186 48.4 340 50.5 260 34.3
Trinucleotide 106 36.7 109 28.4 215 31.9 268 35.4
Tetranucleotide 10 3.5 4 1.0 14 2.1 86 11.4
Pentanucleotide 2 0.7 2 0.5 4 0.6 23 3.0
Hexanucleotide 3 1.0 4 1.0 7 1.0 28 3.7
Compound 14 4.8 79 20.6 93 13.8 92 12.2
Total 289 100.0 384 100.0 673 100.0 757 100.0

1Default parameters stand for using default length of core motif parameters for the search of microsatellite motifs using ESTtik pipeline (dinucleotide:
6, trinucleotide: 5, tetra- penta- and hexanucleotide: 5), extended parameters stand for using modified parameters (dinucleotide: 5, trinucleotide: 4,
tetra- penta- and hexanucleotide: 3) for microsatellite detection using ESTtik pipeline.

Table 3: Polymorphism of the successfully amplified EST-derived mi-
crosatellites

Type of repeat

Number of
sequences containing

microsatellites

Number of
polymorphic
markers

Percentage of
polymorphic
markers

Dinucleotide 116 90 78
Trinucleotide 84 59 70
Tetranucleotide 7 3 43
Pentanucleotide 5 4 80
Hexanucleotide 4 3 75
Compound 10 5 50
Total 226 164 73

EST-SSRs for rubber tree 421



markers list, based on putative gene functions of plant resistance
or defence inferred from automatic ontology annotation and
blasting, enabled us to retain 32 SSR-containing sequences with
successfully designed primer pairs for testing (see Table S3).

Type of microsatellite repeats

The most abundant type of repeats among dinucleotide motifs
using default parameters was AG/TC (77.6% of the dinucleotide
repeats, Table 2), followed by AT/TA (18.8%) and CA/TG

(3.5%). Among trinucleotide motifs, AAG/TTC was the most
common (35.3% of the trinucleotide repeats), followed by AAT/
TTA (15.8%) and ACC/TGG (12.6%). Tetra-, penta- and hex-
anucleotide motifs accounted for <5%.

Efficiency of the amplification and polymorphism of EST-
SSR candidate markers

Of the 264 primer pairs tested, 226 (85.6%) gave amplification
products. Polymorphism appeared relatively high within the

Table 4: Summary statistics for EST-SSR markers on 19 individuals

Type of repeat

Number of alleles Gene diversity
Observed

heterozygosity PIC

Mean SD1 Mean SD1 Mean SD1 Mean SD1

Dinucleotide 7.4 0.4 0.62 0.02 0.45 0.02 0.61 0.02
Trinucleotide 3.9 0.3 0.42 0.03 0.33 0.03 0.4 0.03
Tetranucleotide 5.0 0.9 0.54 0.12 0.36 0.05 0.53 0.12
Pentanucleotide 3.8 1.0 0.49 0.03 0.42 0.1 0.43 0.04
Hexanucleotide 3.7 0.7 0.37 0.05 0.4 0.06 0.35 0.04
Compound 6.8 1.5 0.61 0.08 0.54 0.08 0.59 0.08
Whole 5.9 0.3 0.54 0.02 0.4 0.02 0.52 0.02

SD, standard deviation.
1SD is calculated based on 5000 iterations of a bootstrap procedure.
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Fig. 1: Neighbour-joining tree based on dissimilarity matrix for 19 genotypes and 164 polymorphic EST-SSR markers. Bootstrap values are calculated
on 5000 iterations
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amplified sequences as 164 (72.6%) were polymorphic. In sum-
mary, of the 264 primer pairs, 62.1% were converted into poly-
morphic markers. A list of the 164 polymorphic markers is
provided as Table S1. Additional information for microsatellites
motifs detected including blast-derived annotation is provided in
Table S2 for SSH libraries and in Table S3 for the 32 selected
GenBank ESTs-derived SSRs.
Polymorphism appeared to depend on the length of the core

repeat, as dinucleotide microsatellites exhibited 77.6% of

polymorphic markers among the amplified products, whereas tri-
nucleotides had 70.2% (Table 3).

Summary statistics and diversity of EST-SSRs for 19
genotypes

The summary statistics calculated from the 164 polymorphic
EST-SSRs are shown in Table 4. Individual descriptive statistics
per marker, including availability (rates of successful amplifica-

Table 5: Comparison of summary statistics for genomic and EST-derived microsatellite markers based on data for 16 genotypes

Marker set

Number of alleles Gene diversity
Observed

heterozygosity PIC

Mean SD1 Mean SD1 Mean SD1 Mean SD1

164 EST-SSR markers 5.8 0.3 0.54 0.02 0.41 0.02 0.54 0.02
18 randomly chosen EST-SSR markers 6.2 0.6 0.65 0.03 0.47 0.04 0.63 0.04
18 genomic SSR markers 12.8 0.7 0.83 0.02 0.64 0.04 0.85 0.03

SD, standard deviation.
1SD is calculated based on 5000 iterations of a bootstrap procedure.
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Fig. 2: Neighbour-joining tree based on dissimilarity matrix for 16 genotypes and 18 EST-SSR markers. Bootstrap values are calculated on 5000 itera-
tions
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tions), allele number, gene diversity, observed heterozygosity
(HO) and exact test of Hardy–Weinberg equilibrium, are pro-
vided as Table S1. The average number of alleles ranges from
3.69 to 7.42 for the hexanucleotide and dinucleotide EST-
derived microsatellites, respectively, with a mean of 5.94 for all
the markers. The dinucleotide microsatellites appeared to be the
most polymorphic with the highest mean number of alleles, gene
diversity and PIC values. With regard to the observed heterozy-
gosity, only compound microsatellites had a higher value than
dinucleotide, but this result should be taken with caution given
the small number (10) of compound microsatellites.
The NJ tree based on the dissimilarity matrix calculated with

the whole set of 164 markers (Fig. 1) displays a well-defined
genetic structure within H. brasiliensis germplasm. This cluster-
ing is consistent with known genetic structure of Amazonian
populations (Le Guen et al. 2009). It includes the three main
groups (Mato Grosso, Acre and Rondonia) described, with
Wickham genetic pool correctly placed within Mato Grosso ori-
gin. Nodes are supported by high bootstrap values regarding the
use of microsatellite markers.

Summary statistics and diversity of EST-SSRs for 16
genotypes and comparison with genomic SSRs

The results of all the statistics of the EST-SSR data sets for 16
individuals were close to those obtained with 19 individuals

(Table 5). When considering the genomic markers, we observed
an important increase in all the statistics, in particular with a
number of alleles twice that of the EST-SSR (12.8 and 5.8,
respectively). Gene diversity, observed heterozygosity and PIC
values of genomic SSRs were also significantly higher than
those of EST-SSRs.
The dendrograms of Figs 2 and 3 for both types of markers

show a comparable global view of genetic diversity, with the dif-
ferent groups clearly separated. However, EST-SSRs present a
more robust tree with well-supported nodes. Some of the separa-
tions are more accurate and closer to the whole diversity study
conducted by Le Guen et al. (2009) when considering EST-SSRs
rather than gSSRs, except for the Acre vs. Rondonia separation.

Discussion and Conclusion
Our newly developed frameset of EST-SSR markers in the
frame of a study of H. brasiliensis resistance to M. ulei
appears to amplify better than those developed by Feng et al.
(2009). This could be explained by the absence of mononucle-
otide repeats in our study, and differences in the parameters
used for SSR detection. These markers may be valuable tools
for resistance studies. Indeed, either they originate from SSH
libraries built from the identification of resistance-related genes
or they were selected based on gene ontology in relation to
resistance.
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Fig. 3: Neighbour-joining tree based on dissimilarity matrix for 16 genotypes and 18 genomic microsatellites, data retrieved from Le Guen et al.
2009. Bootstrap values are calculated on 5000 iterations
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As EST-SSR markers appear to have better transferability than
gSSRs (Varshney et al. 2005, Kumar Yadav et al. 2010, Wen
et al. 2010), they may also prove useful in comparative genom-
ics, evolutionary studies, population genetics and association
studies.
Our study based on a core representation of the whole genetic

diversity of H. brasiliensis species validates these markers as
powerful tools for population genetics, whether they are closely
linked to or part of expressed genes. The relatively low number
of alleles observed in EST-SSR markers compared with gSSR
markers (twice as low) indicates a lower mutation rate and better
suitability for such studies and association mapping. These stud-
ies perform better with a fewer number of alleles, both in terms
of statistical power (Gupta et al. 2005, Rafalski 2010) and extent
of linkage disequilibrium (Cubry et al. 2013). The lower muta-
tion rate of EST-SSRs compared with gSSRs also reduces the
risk of homoplasy when studying the demographic history of
rubber tree populations.
We compared the genetic structure in both types of markers

using data on gSSRs from Le Guen et al. (2009). The NJ tree
obtained with EST-SSRs was more robust than the one obtained
with gSSRs. The lower resolution of Acre vs. Rondonia separa-
tion with EST-SSRs may be due to the close origin of both pop-
ulations, better characterized by markers exhibiting a higher
mutation rate. At species level, EST-SSRs seem to provide
clearer clusters of diversity, but at a population level, gSSRs can
identify a very fine structure more accurately.
Distribution of the core motifs was consistent with previous

studies on different plants, including rubber tree or tomato (Feng
et al. 2009, Ohyama et al. 2009). Higher diversity indices were
obtained with dinucleotide core-length microsatellites. This result
has also been reported in several studies, for example Vigouroux
et al. (2005).
This new set of markers provides molecular breeders and

researchers with powerful tools, giving the opportunity to map
EST-SSRs potentially related to resistance on already developed
progeny. They will also contribute to filling in the gaps that still
exist in genetic maps.

Acknowledgements

This work was performed as part of the CIRAD – Michelin collaborative
project ‘Genesalb’ supported by a grant from the French National
Research Agency (Agence Nationale pour la Recherche; contrat ANR/
G�enoplante n° GPLA07017C). We thank the Montpellier Languedoc-
Roussillon Grand plateau technique r�egional for hosting the SSR geno-
typing activities. ESTtik database was made available by the SouthGreen
bioinformatics platform at http://southgreen.cirad.fr/. We thank Ronan
Rivallan for technical help, Xavier Argout for computational procedures
and data retrieving, G�erald Oliver for keeping some vegetal material in a
greenhouse in Montpellier, Jean-Marc Thevenin and Fabien Doar�e for
providing us with some fresh material from CIRAD’s Pointe Combi Cen-
tre (French Guyana) collection.

References
Argout, X., O. Fouet, P. Wincker, K. Gramacho, T. Legavre, X. Sabau,
A. Risterucci, C. Da Silva, J. Cascardo, M. Allegre, D. Kuhn, J. Veri-
ca, B. Courtois, G. Loor, R. Babin, O. Sounigo, M. Ducamp, M.
Guiltinan, M. Ruiz, L. Alemanno, R. Machado, W. Phillips, R. Sch-
nell, M. Gilmour, E. Rosenquist, D. Butler, S. Maximova, and C. La-
naud, 2008: Towards the understanding of the cocoa transcriptome:
production and analysis of an exhaustive dataset of ESTs of Theobro-
ma cacao L. generated from various tissues and under various condi-
tions. BMC Genomics 9, 512.

Besse, P., M. Seguin, P. Lebrun, M. H. Chevallier, D. Nicolas, and C.
Lanaud, 1994: Genetic diversity among wild and cultivated popula-
tions of Hevea brasiliensis assessed by nuclear RFLP analysis. Theor.
Appl. Genet. 88, 199—207.

Conesa, A., S. Gotz, J. M. Garcia-Gomez, J. Terol, M. Talon, and M.
Robles, 2005: Blast2GO: a universal tool for annotation, visualization
and analysis in functional genomics research. Bioinformatics 21,
3674—3676.

Cubry, P., F. De Bellis, K. Avia, S. Bouchet, D. Pot, M. Dufour, H.
Legnate, and T. Leroy, 2013: An initial assessment of linkage disequi-
librium (LD) in coffee trees: LD patterns in groups of Coffea canepho-
ra Pierre using microsatellite analysis. BMC Genomics 14, 10.

Ellis, J. R., and J. M. Burke, 2007: EST-SSR as a resource for popula-
tion genetic analyses. Heredity 99, 125—132.

Feng, S. P., W. G. Li, H. S. Huang, J. Y. Wang, and Y. T. Wu, 2009:
Development, characterization and cross-species/genera transferability
of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol. Breed.
23, 85—97.

Garcia, D., N. Carels, D. M. Koop, L. A. de Sousa, S. J. de Andrade
Junior, V. Pujade-Renaud, C. R. Reis Mattos, and J. C. de Mattos
Cascardo, 2011: EST profiling of resistant and susceptible Hevea
infected by Microcyclus ulei. Physiol. Mol. Plant Pathol. 76,
126—136.

Gupta, P. K., S. Rustgi, and P. L. Kulwal, 2005: Linkage disequilibrium
and association studies in higher plants: present status and future pros-
pects. Plant Mol. Biol. 57, 461—485.

Gupta, S., K. Kumari, M. Muthamilara, A. Subramanian, and M. Prasad,
2013: Development and utilization of novel SSRs in foxtail millet
[Setaria italica (L.) P. Beauv.]. Plant Breeding 132, 367—374.

Kumar Yadav, H., A. Ranjan, M. H. Asif, S. Mantri, S. V. Sawant, and
R. Tuli, 2010: EST-derived SSR markers in Jatropha curcas L.: devel-
opment, characterization, polymorphism, and transferability across the
species/genera. Tree Genet. Genomes 7, 207—219.

Le Guen, V., 2008: Exploration de la diversit�e des r�esistances g�en�etiques
�a la maladie sud-am�ericaine des feuilles de l’h�ev�ea (Microcyclus ulei)
par cartographie et g�en�etique d’association au sein de populations na-
turelles. Universit�e Montpellier II, Montpellier, France.

Le Guen, V., F. Doar�e, C. Weber, and M. Seguin, 2009: Genetic struc-
ture of Amazonian populations of Hevea brasiliensis is shaped by hy-
drographical network and isolation by distance. Tree Genet. Genomes
5, 673—683.

Le Guen, V., C. Gay, T. C. Xiong, L. M. Souza, M. Rodier-Goud, and
M. Seguin, 2011: Development and characterization of 296 new poly-
morphic microsatellite markers for rubber tree (Hevea brasiliensis).
Plant Breeding 130, 294—296.

Lespinasse, D., M. Rodier-Goud, L. Grivet, A. Leconte, H. Legnate, and
M. Seguin, 2000: A saturated genetic linkage map of rubber tree (He-
vea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers.
Theor. Appl. Genet. 100, 127—138.

Li, D., Z. Deng, B. Qin, X. Liu, and Z. Men, 2012: De novo assembly
and characterization of bark transcriptome using Illumina sequencing
and development of EST-SSR markers in rubber tree (Hevea brasilien-
sis Muell. Arg.). BMC Genomics 13, 192.

Liu, K., and S. V. Muse, 2005: PowerMarker: an integrated analysis
environment for genetic marker analysis. Bioinformatics 21, 2128—
2129.

Ohyama, A., E. Asamizu, S. Negoro, K. Miyatake, H. Yamaguchi, S.
Tabata, and H. Fukuoka, 2009: Characterization of tomato SSR mark-
ers developed using BAC-end and cDNA sequences from genome da-
tabases. Mol. Breed. 23, 685—691.

Perovic, D., J. F€orster, P. Devaux, D. Hariri, M. Guilleroux, K. Kanyuka,
R. Lyons, J. Weyen, D. Feuerhelm, U. Kastirr, M. R€oder, and
F. Ordon, 2009: Mapping and diagnostic marker development for Soil-
borne cereal mosaic virus resistance in bread wheat. Mol. Breed. 23,
641—653.

Perrier, X., and J. P. Jacquemoud-Collet, 2006: DARwin software: http://
darwin.cirad.fr/darwin. 5 edn. Cirad, Montpellier, France.

Perrier, X., A. Flori, and F. Bonnot, 2003: Methods of data analysis. In:
P. Hamon, M. Seguin, X. Perrier, and J. C. Glaszmann (eds), Genetic

EST-SSRs for rubber tree 425



Diversity of Tropical Crops, 31—64. CIRAD & Science Publ. Inc.,
Montpellier, France & Enfield (NH), USA.

Pootakham, W., J. Chanprasert, N. Jomchai, D. Sangsrakru, T. Yoocha,
S. Tragoonrung, and S. Tangphatsornruang, 2012: Development of
genomic-derived simple sequence repeat markers in Hevea brasiliensis
from 454 genome shotgun sequences. Plant Breeding 131, 555—562.

Rafalski, J. A., 2010: Association genetics in crop improvement. Curr.
Opin. Plant Biol. 13, 174—180.

Rozen, S., and H. J. Skaletsky, 2000: Primer3 on the WWW for general
users and for biologist programmers. In: S. Krawetz, and S. Misener
(eds), Bioinformatics Methods and Protocols: Methods in Molecular
Biology, 365—386. Humana Press, Totowa, NJ.

Saitou, N., and M. Nei, 1987: The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406—425.

Seguin, M., A. Flori, H. Legnate, and A. Cl�ement-Demange, 2003: Rub-
ber tree. In: P. Hamon, M. Seguin, X. Perrier, and J. C. Glaszmann
(eds) Genetic Diversity of Tropical Crops, 277—305. CIRAD & Sci-
ence Publ. Inc., Montpellier, France & Enfield (NH), USA.

Souza, L. M., C. C. Mantello, M. O. Santos, P. Souza Gonc�alves, and
A. P. Souza, 2009: Microsatellites from rubber tree (Hevea brasilien-
sis) for genetic diversity analysis and cross-amplification in six Hevea
wild species. Conserv. Genet. Res. 1, 75—79.

Triwitayakorn, K., P. Chatkulkawin, S. Kanjanawattanawong, S. Sraphet,
T. Yoocha, D. Sangsrakru, J. Chanprasert, C. Ngamphiw, N. Jomchai,
K. Therawattanasuk, and S. Tangphatsornruang, 2011: Transcriptome
sequencing of Hevea brasiliensis for development of microsatellite

markers and construction of a genetic linkage map. DNA Res. 18,
471—482.

Tyrka, M., D. Perovic, A. Wardy�nska, and F. Ordon, 2008: A new diag-
nostic SSR marker for selection of theRym4/Rym5 locus in barley
breeding. J. Appl. Genet. 49, 127—134.

Varshney, R. K., A. Graner, and M. E. Sorrells, 2005: Genic microsatellite
markers in plants: features and applications. Trends Biotech. 23, 48—55.

Vigouroux, Y., S. Mitchell, Y. Matsuoka, M. Hamblin, S. Kresovich, J.
S. C. Smith, J. Jaqueth, O. S. Smith, and J. Doebley, 2005: An analy-
sis of genetic diversity across the maize genome using microsatellites.
Genetics 169, 1617—1630.

Wen, M., H. Wang, Z. Xia, M. Zou, C. Lu, and W. Wang, 2010: Devel-
opment of EST-SSR and genomic-SSR markers to assess genetic
diversity in Jatropha Curcas L. BMC Res. Notes 3, 42.

Supporting Information
Additional Supporting Information may be found in the online version of
this article:
Table S1. List of the 164 newly developed microsatellites markers with
repeat types, sequence origin, primer sequences.
Table S2. List of SSR markers detected in SSH libraries with original
sequence and blast annotation.
Table S3. List of SSR markers detected in GenBank-retrieved ESTs with
original sequence and blast annotation.

426 P. CUBRY, V. PU JADE -RENAUD , D. GARC IA e t a l .


