## Modelling Pedogenesis in the Anthropocene Sophie Leguédois, Geoffroy Séré, Jérôme Cortet, Stéphanie Ouvrard, Françoise Watteau, Christophe Schwartz, Jean-Louis Morel ## ▶ To cite this version: Sophie Leguédois, Geoffroy Séré, Jérôme Cortet, Stéphanie Ouvrard, Françoise Watteau, et al.. Modelling Pedogenesis in the Anthropocene. 20. World Congress of Soil Science, Jun 2014, Jeju, South Korea. 2014, 20th World congress of soil science. In Commemoration of the 90th Anniversary of the IUSS. Soils Embrace Life and Universe. June 8 -13, 2014 Jeju, Korea. hal-01189992 HAL Id: hal-01189992 https://hal.science/hal-01189992 Submitted on 3 Jun 2020 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## 20th WORLD **CONGRESS** OF **SOIL SCIENCE** In Commemoration of the 90th Anniversary of the IUSS Soils Embrace Life and Universe June 8-13, 2014 Jeju, Korea www.20wcss.org Host Korean Society of Soil Science and Fertilizer Support O81-5 [DS1] Micromorphological Answers to Palaeopedological and Polypedogenetic Questions ## Modelling Pedogenesis in the Anthropocene Sophie Leguedois<sup>1\*</sup>, Geoffroy Sere<sup>2</sup>, Jerome Cortet<sup>3</sup>, Stephanie Ouvrard<sup>1</sup>, Francoise Watteau<sup>2</sup>, Christophe Schwartz<sup>2</sup> and Jean Louis Morel<sup>2</sup> <sup>1</sup> UMR 1120 LSE, Inra, France <sup>2</sup> UMR 1120 LSE, Universite de Lorraine, France <sup>3</sup> UMR 5175 CEFE, Universite Paul Valery Montpellier III, France sophie.leguedois@univ-lorraine.fr The objective of this paper is to develop a framework for pedogenetic modelling in the Anthropocene, i.e., the present geological epoch during which humanity has become the main factor impacting the environment. We review the concepts of soil evolution as well as 15 existing quantitative models to determine the features of soil evolution modelling in an Anthropocene context. We emphasise soil-plant interactions by considering the importance of vegetation, both as a provisioning service and as a factor in soil evolution. Our review covers output variables, time scales, spatial representation, model structure, and control variables. Our synthesis in this work demonstrates that the modelling of pedogenesis in the Anthropocene requires the following specific features: (i) a description of the human impact on soil evolution, (ii) outputs related to ecosystem functions and services, (iii) the integration of a dual time scale (decade and cyclic shorter-term), (iv) multiple and interactive processes modelling, (v) the simulation of vegetation and its feedback on soils, and (vi) a representation of spatial heterogeneities, at least at the profile scale. No specific models of soil evolution in the Anthropocene have been developed thus far; however, certain required characteristics have been integrated into existing soil-plant models. Some others features will require further development, particularly a coherent and tested conceptual cornerstone that enables dual-time-scale modelling and is based on the resilience concept and energy metrics. We thus propose a general framework as a conceptual basis from which we can develop models of pedogenesis in the Anthropocene. Keywords: Soil evolution, Soil functioning, Resilience, Soil-plant interactions, Dual-time-scale, Decadal time scale, Energy metrics