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Abstract

Traditional measures of diversity, namely the number of species as well as Simpson’s and Shannon’s indices, are particular
cases of Tsallis entropy. Entropy decomposition, i.e. decomposing gamma entropy into alpha and beta components, has
been previously derived in the literature. We propose a generalization of the additive decomposition of Shannon entropy
applied to Tsallis entropy. We obtain a self-contained definition of beta entropy as the information gain brought by the
knowledge of each community composition. We propose a correction of the estimation bias allowing to estimate alpha,
beta and gamma entropy from the data and eventually convert them into true diversity. We advocate additive
decomposition in complement of multiplicative partitioning to allow robust estimation of biodiversity.
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Introduction

Diversity partitioning means that, in a given area, the gamma

diversity Dc of all individuals found may be split into within (alpha

diversity, Da) and between (beta diversity, Db) local assemblages.

Alpha diversity reflects the diversity of individuals in local

assemblages whereas beta diversity reflects the diversity of the

local assemblages. The latter, Db, is commonly derived from Da

and Dc estimates [1]. Recently, a prolific literature has emerged on

the problem of diversity partitioning, because it addresses the issue

of quantifying biodiversity at large scale. Jost’s push [2–5] has

helped to clarify the concepts behind diversity partitioning but

mutually exclusive viewpoints have been supported, in particular

in a forum organized by Ellison [6] in Ecology. A recent synthesis by

Chao et al. [7] wraps up the debate and attempts to reach a

consensus. Traditional measures of diversity, namely the number

of species as well as Simpson’s and Shannon’s indices, are all

special cases of the Tsallis entropy [8,9]. The additive decompo-

sition [10] of these diversity measures does not provide indepen-

dent components but Jost [3] derived a non-additive partitioning

of entropy which does.

A rigorous vocabulary is necessary to avoid confusion. Unrelated

or independent (sensu [7]) means that the range of values of qDb is

not constrained by the value of qDa, which is a desirable property.

Unrelated is more pertinent than independent since diversity is not a

random variable here, but independent is widely used, by [3] for

example. We will write independent throughout the paper for

convenience. We will write partitioning only when independent

components are obtained and decomposition in other cases.

Tsallis entropy can be easily transformed into Hill numbers

[11]. Jost [3] called Hill numbers true diversity because they are

homogeneous to a number of species and have a variety of

desirable properties that will be recalled below. We will call diversity

true diversity only, and entropy Simpson and Shannon indices as

well as Tsallis entropy. The multiplicative partitioning of true c
diversity allows obtaining independent values of a and b diversity

when local assemblages are equally weighted.

However, we believe that the additive decomposition of entropy

still has something to tell us. In this paper, we bring out an

appropriate mathematical framework that allows us to write Tsallis

entropy decomposition. We show its mathematical equivalence to

the multiplicative partition of diversity. This is simply a

generalization of the special case of Shannon diversity [12]. Doing

so, we establish a self-contained (i.e. it does not rely on the

definitions of a and c entropies) definition of b entropy, showing it

is a generalized Jensen-Shannon divergence, i.e the average

generalized Kullback-Leibler divergence [13] between local

assemblages and their average distribution. Beyond clarifying

and making explicit some concepts, we acknowledge that this

decomposition framework largely benefits from a consistent

literature in statistical physics. In particular, we rely on it to

propose bias corrections that can be applied to Tsallis entropy in

general. After bias correction, conversion of entropy into true

diversity provides independent, easy-to-interpret components of

diversity. Our findings complete the well-established non-additive

(also called pseudo-additive) partitioning of Tsallis entropy. We

detail their differences all along the paper.

Methods

Consider a meta-community partitioned into several local

communities (let i~1, 2, . . . ,I denote them). ni individuals are

sampled in community i. Let s~1, 2, . . . ,S denote the species that

compose the meta-community, nsi the number of individuals of

species s sampled in the local community i, ns~
P

i nsi the total

number of individuals of species s, n~
P

s

P
i nsi the total number
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of sampled individuals. Within each community i, the probability

psi for an individual to belong to species s is estimated by

p̂psi~nsi=ni. The same probability for the meta-community is ps.

Communities may have a weight,wi, satisfying ps~
P

i wipsi. The

commonly-used wi~ ni=n is a possible weight, but the weighting

may be arbitrary (e.g. the sampled areas).

We now define precisely entropy. Given a probability distribu-

tion ps~ p1; p2; . . . ; ps; . . . ; pSf g, we choose an information

function I psð Þ, which is a decreasing function of ps having the

property I 1ð Þ~0: information is much lower when a frequent

species is found. Entropy is defined as the average amount of

information obtained when an individual is sampled [14]:

H~
X

s

psI (ps) ð1Þ

The best-known information function is I (ps)~{ ln (ps). This

defines the entropy of Shannon [15]. I psð Þ~ 1{psð Þ=ps yields the

number of species minus 1 and I psð Þ~1{ps, Simpson’s [16]

index. Relative entropy is defined when the information function

quantifies how different an observed distribution ps is different

from the expected distribution p0s. The Kullback-Leibler [17]

divergence is the best-known relative entropy, equal toP
s ps ln (ps=p’s). Shannon’s beta entropy has been shown to be

the weighted sum of the Kullback-Leibler divergence of local

communities, where the expected probability distribution of

species in each local community is that of the meta-community

[12,18]:

1Hb~
X

i

wi

X
s

psi ln
psi

ps

� �
ð2Þ

Let us define c as the meta-community’s diversity, a as local

communities’ diversities, and b as diversity between local

communities. Tsallis c entropy of order q is defined as:

qHc~
1{

P
s pq

s

q{1
ð3Þ

and the corresponding a entropy in the local community i is:

q
i Ha~

1{
P

s p
q
si

q{1
ð4Þ

The natural definition of the total a entropy is the weighted

average of local community’s entropies, following Routledge [19]:

qHa~
X

i

wi
q
i Ha ð5Þ

This is the key difference between our decomposition frame-

work and the non-additive one. Jost [3] proposed another

definition, qHa~
P

i (w
q
i =
P

i w
q
i )

q
i Ha, i.e. the normalized q-

expectation of the entropy of communities [20] rather than their

weighted mean. It is actually a derived result, see the discussion

below. Our results rely on Routledge’s definition (see Appendix

S1).

a and c diversity values are given by Hill numbers qD, called

‘‘numbers equivalent’’ or ‘‘effective number of species’’, i.e. the

number of equally-frequent species that would give the same level

of diversity as the data [14]:

qDc~
X

s

pq
s

 ! 1
1{q

ð6Þ

Routledge a diversity is:

qDa~
X

i

wi

X
s

p
q
si

 ! 1
1{q

ð7Þ

Combining (3) and (6) yields:

qDc~(1{(q{1) qHc)
1

1{q ð8Þ

We also use the formalism of deformed logarithms, proposed by

Tsallis [21] to simplify manipulations of entropy. The deformed

logarithm of order q is defined as:

lnq x~
x1{q{1

1{q
ð9Þ

It converges to ln when q?1.

The inverse function of lnq x is the deformed exponential:

ex
q~½1z(1{q)x�

1
1{q ð10Þ

The basic properties of deformed logarithms are:

lnq (xy)~ lnq xz lnq y{(q{1)( lnq x)( lnq y) ð11Þ

lnq

1

x
~{xq{1 lnq x ð12Þ

exzy
q ~ex

qe

y
1{(q{1)x
q ð13Þ

Tsallis entropy can be rewritten as:

qHc~
1{

P
s pq

s

q{1
~{

X
s

pq
s lnq ps ð14Þ

Diversity and Tsallis entropy are transformations of each other:

qHc~ lnq
qDc ð15Þ

Partitioning Diversity
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qDc~e
qHc
q ð16Þ

Decomposing diversity of order q
We start from the multiplicative partitioning of true diversity.

qDc~
qDq

aDb ð17Þ

If community weights are equal, b diversity is independent of a
diversity (it is whatever the weights if a diversity is weighted

according to Jost, but this is not our choice). We will consider the

unequal weight case later.

b diversity is the equivalent number of communities, i.e. the

number of equally-weighted, non-overlapping communities that

would have the same diversity as the observed ones.

We want to explore the properties of entropy decomposition.

We calculate the deformed logarithm of equation (17):

lnq
qDc~ lnq

qDaz lnq
qDb{(q{1)( lnq

qDa)( lnq
qDb) ð18Þ

uqHc~
qHaz lnq

qDb{ q{1ð Þ qHað Þ lnq
qDb

� �
ð19Þ

Equation (19) is Jost’s partitioning framework (equation 8f in

[3]). Jost retains HB~ lnq
qDb as the b component of entropy

partitioning. It is independent of qHa (they are respective

transformations of independent qDb and qDa), contrarily to the

b component of the additive decomposition [10,22] defined as
qHc{

qHa

After some algebra requiring Routledge’s defintiion of a diverity

detailed in Appendix S1, we obtain from equation (19):

qHc{
qHa~

P
i wi

P
s p

q
si{

P
s pq

s

q{1
ð20Þ

The right term of equation (20) is a possible definition of the b
component of additive decomposition. It can be much improved if

we consider
P

s pq
s ~

P
s pq{1

s

P
i wipsi and rearrange equation

(20) to obtain:

qHc{
qHa~

X
i

wi

X
s

p
q
si lnq

psi

ps

ð21Þ

We obtained the b entropy of order q. It is the weighted average

of the generalized Kullback-Leibler divergence of order q

(previously derived by Borland et al. [13] in thermostatistics)

between each community and the meta-community:

qHb~
X

i

wi
q
i Hb ð22Þ

q
i Hb~

X
s

p
q
si lnq

psi

ps

ð23Þ

q
i Hb converges to the Kullback-Leibler divergence when q?1.

The average Kullback-Leibler divergence between several

distributions and their mean is called Jensen-Shannon divergence

[23], so our b entropy qHb can be called generalized Jensen-Shannon

divergence. It is different from the non-logarithmic Jensen-Shannon

divergence [24] which measures the difference between the

equivalent of our a entropy and {
P

i wip
q
si lnq pq

s (the latter is

not Tsallis c entropy).

Our results are summarized in Table 1, including transforma-

tion of entropy into diversity. The partition of entropy of order q is

formally similar to that of Shannon entropy. It is in line with Patil

and Taillie’s [14] conclusions: qHb is the information gain

attributable to the knowledge that individuals belong to a

particular community, beyond belonging to the meta-community.

Information content of generalized entropy
Both qHc and qHb must be rearranged to reveal their

information function and explicitly write them as entropies.

Straightforward algebra yields:

qHc~{
X

s

ps

pq{1
s {1

q{1
ð24Þ

q
i Hb~

X
s

psi

p
q{1
si {pq{1

s

q{1
ð25Þ

The information functions respectively tend to those of

Shannon entropy when q?1.

Properties of generalized b entropy
qHb is not independent of qHa. Only Jost’s HB is an

independent b component of diversity indices. But qHb takes

place in a generalized decomposition of entropy. Its limit when

q?1 is Shannon b entropy, and in this special case only qHb is

independent of qHa.
qHb is interpretable and self-contained (i.e. it is not just a

function of c and a entropies): it is the information gain brought by

the knowledge of each local community’s species probabilities

related to the meta-community’s probabilities. It is an entropy,

defined just as Shannon b entropy but with a generalized

information function.
qHb is always positive (proof in [25]), so entropy decomposition

is not limited to equally-weighted communities.

Bias correction
Estimation bias (we follow the terminology of Dauby and Hardy

[26]) is a well-known issue. Real data are almost always samples of

larger communities, so some species may have been missed. The

induced bias on Simpson entropy is smaller than on Shannon

entropy because the former assigns lower weights to rare species,

i.e. the sampling bias is even more important when q decreases.

We denote qĤH the naive estimators of entropy, obtained by

applying the above formulas to estimators of probabilities (such as
q
i ĤHb~

P
s p̂p

q
si lnq (p̂psi=p̂ps)). Let q ~HH denote the estimation-bias

corrected estimators. Chao and Shen’s [27] correction can be

Partitioning Diversity
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applied to all of our estimators. It relies on the Horvitz-Thomson

[28] estimator which corrects a sum of measurements for missing

species by dividing each measurement by 1{(1{p̂psi)
n, i.e. the

probability for each species to be present in the sample. Next, the

sample coverage of community i, denoted Ci, is the sum of

probabilities the species of the sample represent in the whole

community. It is easily estimated [29] from the number of

singletons (species observed once) of the sample, denoted S1
i , and

the sample size ni:

ĈCi~1{
S1

i

ni

ð26Þ

The sample coverage of the meta-community is estimated the

same way: ĈC~1{S1=n. An unbiased estimator of psi is

~ppsi~ĈCip̂psi, and ~pps~ĈCp̂ps. Combining sample coverage, Horvitz-

Thomson and equation (23) estimator yields:

q ~HHc~{
X

s

(ĈCp̂ps)
q lnq ĈCp̂ps

1{(1{ĈCp̂ps)
n

ð27Þ

q
i

~HHb~
X

s

(ĈCip̂psi)
q lnq

ĈCi p̂psi
ĈCp̂ps

1{(1{ĈCip̂psi)
n

ð28Þ

Another estimation bias has been widely studied by physicists.

The latter generally consider that all species of a given community

are known and their probabilities quantified. Their main issue is

not at all missing species but the non-linearity of entropy measures

(see [30] for a short review). Probabilities ps are estimated by p̂ps.

For qw0, estimating pq
s by (p̂ps)

q is an important source of

underestimation of entropy. Grassberger [31] derived an unbiased

estimator ~ppq
s under the assumption that the number of observed

individuals of a species along successive samplings follows a

Poisson distribution, as in Fisher’s model [32] although arguments

are different. Grassberger shows that:

~ppq
s&ns

{q C nsz1ð Þ
C ns{qz1ð Þz

{1ð ÞnC 1zqð Þ sin pq

p nz1ð Þ

� �
ð29Þ

where C :ð Þ is the gamma function (C nð Þ~ n{1ð Þ! if n is an

integer). Practical computation of C nsz1ð Þ is not possible for large

samples so the first term of the sum must be rewritten as:

C(nsz1)=C(ns{qz1)~C(q)=B(ns{qz1,q) where B is the beta

function. This estimator can be plugged into the formula of Tsallis

c entropy to obtain:

q ~HHc~
1{

P
s ~ppq

s

q{1
ð30Þ

Other estimations of pq
s are readily detailed here. Holste et al.

[33] derived the Bayes estimator of pq
s (with a uniform prior

distribution of probabilities not adapted to most biological systems)

and, recently, Hou et al. [34] derived 2 ~HHc~n=(n{1)(1{
P

s p̂p2
s ),

namely the bias correction proposed by Good [29] and Lande

[10]. Bonachela et al. [30] proposed a balanced estimator for not

too small probabilities ps which do not follow a Poisson

distribution. This may be applied to low-diversity communities.

In summary, the estimation of pq
s requires assumptions about the

distribution of ps and Grassberger’s correction is recognized by all

these authors as the best up-to-date for very diverse communities.

Better corrections exist but are available for special values of q
only, such as the recent Chao et al.’s estimator of Shannon entropy

[35].

The correction for missing species by Chao and Shen and that

for non-linearity by Grassberger ignore each other. Chao and

Shen’s bias correction is important when q is small and becomes

negligible for q~2 while Grassberger’s correction increases with q,

vanishing for q~0. A rough but pragmatic estimation-bias

correction is the maximum value of the two corrections. It cannot

be applied when qv0 (Grassberger’s correction is limited to

positive values of q) neither to b entropy (Chao and Shen’s

correction can but Grassberger’s can’t). An estimator of b entropy

will be obtained as the difference between unbiased c and a
entropy.

We illustrate this method with a tropical forest dataset already

investigated by [12]. Two 1-ha plots were fully inventoried in the

Paracou field station in French Guiana. This results in 1124

individual trees (diameter at breast height over 10 cm) belonging

to 229 species. Figure 1 shows diversity values calculated for q

between 0 and 2, with and without correction. Chao and Shen’s

bias correction is inefficient for qw1:5 and can even be worse than

the naive estimator. In contrast, Grassberger’s correction is very

good for high values of q, but ignores the missed species and

decreases when q?0. The maximum value offers an efficient

correction. By nature, a and c diversity values decrease with q
(proof in [36]): around 300 species are estimated in the meta-

community (q~0, Figure 1), but the equivalent number of species

is only 73 for q~2.

Table 1. Values of entropy and diversity for generalized entropy of order q and Shannon entropy.

Diversity measure Generalized entropy Shannon

c entropy qHc~{
P

s pq
s lnq ps

1Hc~{
P

s pslnps

b entropy qHb~
P

i wi

P
s p

q
si lnq

psi

ps

1Hb~
P

i wi

P
s psi ln

psi

ps

True c diversity (Hill number) qDc~e
qHc
q

1Dc~e
1 Hc

True b diversity (numbers equivalent)
qDb~e

q Hb
1{(q{1)q Ha
q

1Db~e
1Hb

The deformed logarithm formalism allows presenting all orders of entropy as a generalization of Shannon entropy. Generalized b entropy is a generalized Kullback-
Leibler divergence, i.e. the information gain obtained by the knowledge of each community’s composition beyond that of the meta-community. Robust estimation of
the entropy of real communities requires estimation bias correction introduced in the text.
doi:10.1371/journal.pone.0090289.t001
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Converting unbiased entropy into diversity introduces a new

bias issue because of the non-linear transformation by the

deformed exponential of order q. We follow Grassberger’s

argument: this bias can be neglected because the transformed

quantity (i.e. the entropy) is an average value (the information)

over many independent terms, so it has little fluctuations

(contrarily to the species probabilities whose non-linear transfor-

mation causes serious biases, as we have seen above).

We used Barro Colorado Island (BCI) tropical forest data [37]

available in the vegan package [38] for R [39] to show the

convergence of the estimators to the real value of diversity. 21457

trees were inventoried in a 50 hectare plot. They belong to 225

species. Only 9 species are observed a single time, so the sample

coverage is over 99.99%. The inventory can be considered as

almost exhaustive and used to test bias correction. We subsampled

the BCI community by drawing chosen size samples (from 100 to

5000 trees) in a multinomial distribution respecting the global

species frequencies. We drew 100 samples of each size, calculated

their entropy, averaged it and transformed the result into diversity

before plotting it in Figure 2. For low values of q, Chao and Shen’s

correction is the most efficient. It is close to the Chao1 estimator

[40] of the number of species for q~0 (not shown). A correct

estimation of diversity of order 0.5 is obtained with less than 1000

sampled trees (around 2 hectares of inventory). When q increases,

Grassberger bias correction is more efficient: for q~1:5 and over,

very small samples allow a very good evaluation. Both corrections

are equivalent around q~1:2 (not shown).

Examples

Simple, theoretical example
We first propose a very simple example to visualize the

decomposition of entropy. A meta-community containing 4

species is made of 3 communities C1, C2 and C3 with weights

0.5, 0.25 and 0.25. The number of individuals of each species in

communities are respectively (25, 25, 40, 10), (70, 20, 10, 0), (70,

10, 0, 20). The resulting meta-community species frequencies is

(0.475, 0.2, 0.225, 0.1). Note that community weights do not

follow the number of individuals (100 in each community). No bias

correction is necessary since the sample coverage is 1 in all cases.

Entropy decomposition is plotted in Figure 3. For q~0, a and c
entropy equal the number of species minus 1. The meta-

community’s c entropy is 3, including a entropy equal to 2.5

(the average number of species minus 1). b entropy is 0.5, equal to

the averaged sum of communities contributions. C2’s b entropy is

negative (the total b entropy is always positive, but communities

contributions can be negative).

Considering Shannon entropy, C1 is still the most diverse

community (4 species versus 3 in C2 and C3, and a more equitable

distribution: it has the greatest a entropy equal to 1.29). C2 and

C3 have the same a entropy (their frequency distributions are

identical) equal to 0.8. C3’s species distribution is more different

from the meta-community’s than the others: it has the greatest b
entropy equal to 0.34. Entropies can be transformed into

diversities to be interpreted: the a diversity of communities is

3.6, 2.2 and 2.2 effective species, the total a diversity equals 2.8

effective species. The meta-community’s c diversity is 3.5 effective

species (quite close to its maximum value 4 if all species were

equally distributed) and b diversity is 1.2 effective communities:

the same b diversity could be obtained with 1.2 theoretical, equally

weighted communities with no species in common.

Real data application
We now want to compare diversity between Paracou and BCI,

the two forests introduced in the previous section.

Diversity profiles are a powerful way to represent diversity of

communities advocated recently by [36], as a function of the

importance given to rare species which decreases with q.

Comparing diversity among communities requires plotting their

diversity profiles rather than comparing a single index since

profiles may cross (examples from the literature are gathered in

[36], Figure 2). Yet, estimation bias depends on the composition of

communities, questioning the robustness of comparisons: a

consistent bias correction over orders of entropy is required.

Entropy is converted to diversity and plotted against q in

Figure 4 for our two forests: plots are given equal weight since they

have the same size and gamma diversity is calculated for each

meta-community. Paracou is more diverse, whatever the order of

diversity. Bias correction allows comparing very unequally

sampled forests (2 ha in Paracou versus 50 ha in BCI, sample

coverage equal to 92% versus 99.99%).

b diversity profile is calculated between the two plots of

Paracou. To compare it with BCI which contains 50 1-ha plots, we

calculated a and b entropies between all couples of BCI plots,

averaged them and converted them into b diversity (a and b
entropies are required to calculate b diversity). We also calculated

the 95% confidence envelope of b diversity between two 1-ha plots

of BCI by eliminating the upper and lower 2.5% of the distribution

of all plot couples b diversity. We chose to use Chao and Shen’s

correction up to q~1:2 and Grassberger’s correction for greater q
to obtain comparable results in the 1225 pairs of BCI plots.

Figure 5 shows Paracou’s b diversity is greater than BCI’s,

especially when rare species are given less importance: for q~2
(Simpson diversity), two plots in BCI are as different from each

other as 1.2 plots with no species in common, while Paracou’s

equivalent number of plots is 1.7. In other words, dominant

species are very different in Paracou plots, while they are quite

similar on average between two BCI plots.

The shape of b diversity profiles is more complex than that of c
diversity. At q~0, b diversity equals the ratio between the total

number of species and the average number of species in each

community [7]. At q~1, it is the exponential of the average

Kullback-Leibler divergence between communities and the meta-

community. A minimum is reached between both. Over q~1, b
diversity increases to asymptotically reach its maximum value

equal to ?Dc, i.e. the inverse of the probability of the most

frequent species of the meta-community, divided by ?Da, i.e. the

Figure 1. Profile of the c diversity in a tropical forest meta-
community. Data from French Guiana, Paracou research station, 2 ha
inventoried, 1124 individual trees, and 229 observed species. Solid line:
without estimation bias correction; dotted line: Grassberger correction;
dashed line: Chao and Shen correction. The maximum value is our bias-
corrected estimator of diversity.
doi:10.1371/journal.pone.0090289.g001
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inverse of the probability of the most frequent species in each

community.

Discussion

Diversity can be decomposed in several ways, multiplicatively,

additively or non-additively if we focus on entropy. A well-known

additive decomposition of Simpson entropy is as a variance (that of

Nei [41] among others). It is derived in Appendix S2. It is not a

particular case of our generalization: the total variance between

communities actually equals b entropy but the relative contribu-

tion of each community is different. Among these several

decompositions, only the multiplicative partitioning of equally-

weighted communities (17) and the non-additive partitioning of

entropy (19) allow independent a and b components (except for

the special case of q~1), but unequal weights are often necessary

and ecologists may not want to restrict their studies to Shannon

diversity.

We clarify here the differences between non-additive partition-

ing and our additive decomposition and we address the question of

unequally-weighted communities.

Additive versus non-additive decomposition
Jost [3] focused on independence of the b component of the

partitioning. He showed (appendix 1 of [3]) that if communities

are not equally weighted the only definition of qHa allowing

independence between a and b components is
qHa~

P
i (w

q
i =
P

i w
q
i )

q
i Ha. The drawback of this definition is

that a may be greater than c entropy if q=1 and community

weights are not equal. Each component of entropy partitioning

can be transformed into diversity as a Hill number.

We have another point of view. We rely on Patil and Taillie’s

concept of diversity of a mixture (section 8.3 of [14]), which

implies Routledge’s definition of a entropy. It does not allow

independence between a and b components of the decomposition

except for the special case of Shannon entropy, but it ensures that

Figure 2. Efficiency of bias correction. Estimation of diversity of the BCI tropical forest plot for two values of the order of diversity q (a: 0.5, b: 1.5).
The horizontal line is the actual value calculated from the whole data (around 25000 trees, species frequencies are close to a log-normal distribution).
Estimated values are plotted against the sample size (100 to 5000 trees). Solid line: naive estimator with no correction; dotted line: Grassberger
correction; dashed line: Chao and Shen’s correction. For q = 0.5, Chao and Shen perform best. For q = 1.5, Grassberger’s correction is very efficient
even with very small samples.
doi:10.1371/journal.pone.0090289.g002

Figure 3. Decomposition of a meta-community entropy. The meta-community is made of three communities named C1, C2 and C3 (described
in the text). Their a entropy q

i Ha (bottom part of the bars) and their contribution to b entropy q
i Hb (top part of the bars) are plotted for q~0 (a) and

q~1 (b). The width of bars is each community’s weight. a and b entropies of the meta-community are the weighted sums of those of communities,
so the area of the rectangles representing community entropies sum to the area of the meta-community’s (width equal to 1). c entropy of the meta-
community is a plus b entropy.
doi:10.1371/journal.pone.0090289.g003
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b entropy is always positive. We believe that independence is not

essential when dealing with entropy, as it emerges when

converting entropy to diversity, at least when community weights

are equal. The b component of the decomposition cannot be

transformed into b diversity without the knowledge of a entropy

but we have shown that it is an entropy, justifying the additive

decomposition of Tsallis entropy.

The value of b entropy cannot be interpreted or compared

between meta-communities as shown by [4], but combining a and

b entropy allows calculating b diversity (Table 1).

Unequally weighted communities
Routledge’s definition of a entropy does not allow independence

between a and b diversity when community weights are not equal,

and b diversity can exceed the number of communities [7]. We

show here that the number of communities must be reconsidered

to solve the second issue. We consider the independence question

then.

We argue that Routledge’s definition always allows to reduce

the decomposition to the equal-weight case. Consider the example

of Chao et al. [7]: two communities are weighted w1~0:05 and

w2~0:95, their respective number of species are S1~100 and

S2~10, no species are shared, and we focus on q~0 for

simplicity. 0Dc equal 110 species, 0Da is the weighted average of

S1 and S2 equal to 14.5, so 0Db is 7.6 effective communities,

which is more than the actual 2 communities. But this example is

equivalent to that of a meta-community made of 1 community

identical to the first one and 19 communities identical to the

second one, all equally weighted. b diversity of this 20-community

meta-community is 7.6 effective communities.

A more general presentation is as follows. A community of

weight w can be replaced by any set of n identical communities of

weights w1,:::,wn provided that the sum of these weights is w,

without changing a, b and c diversity of the meta-community

because of the linearity of Routledge’s definition of entropy. Any

unequally weighted set of community can thus be transformed into

an equally weighted one by a simple transformation (strictly

speaking, if weights are rational numbers).

Consider a meta-community made of several communities with

no species in common, and say the smallest one (its weight is wmin)

is the richest (its number if species is Smax). If Smax is large enough,

the number of species of the meta-community is not much more

than it (poor communities can be neglected). c richness 0Dc tends

to Smax, 0Da tends to wminSmax, so 0Db tends to 1=wmin. The

maximum value b diversity can reach is the inverse of the weight

of the smallest community: its contribution to a diversity is

proportional to its weight, but its contribution to c diversity is its

richness. Given the weights, the maximum value of b diversity is

thus 1=wmin; it is the number of communities if weights are equal.

Comparing b diversity between meta-communities made of

different number of communities is not possible without normal-

ization. Jost [3] suggests normalizing it to the unit interval by

dividing it by the number of communities in the equal-weight case.

We suggest extending this solution to dividing b diversity by

1=wmin. When weights are not equal, the number of communities

is not the appropriate reference.

Although we could come back to the equally-weighted-

community partition case, b diversity is not independent of a
diversity because communities are not independent of each other

(some are repeated). Chao et al. (appendix B1 of [7]) derive the

relation between the maximum value of 0Db and 0Da for a two-

community meta-community: 0Dbƒ
1

wmin

½1{
wmax{wmin

0Da
�. The

last term quantifies the relation between a and b diversity. It

vanishes when weights are close to each other, and it decreases

quickly with 0Da. If a diversity is not too low (say 50 species), the

constraint is negligible (0Db can be greater than 0:98=wmin

whatever the weights).

A complete study of the dependence between a and b diversity

for all q values and more than two communities is beyond the

scope of this paper but these first results show that this dependence

is not so serious a problem as that between a and b entropy. As

long as weights are not too unequal and diversity is not too small,

results can be interpreted clearly.

Very unequal weights imply lower b diversity: the extreme case

is when the larger community is the richest. If it is large enough,

the meta-community is essentially made of the largest community

and 0Db tends to 1. This is not an issue of the measure, but a

consequence of the sampling design.

Conclusion

The additive framework we proposed here has the advantage of

generalizing the widely-accepted decomposition of Shannon

entropy, providing a self-contained definition of b entropy and

some ways to correct for estimation biases. Deformed logarithms

allow a formal parallelism between HCDT and Shannon entropy

Figure 4. Paracou and BCI c diversity. Diversity of the forest
stations is compared. Solid line: Paracou with bias correction; dotted
line: Paracou without bias correction; dashed line: BCI with bias
correction; dotted dashed line: BCI without bias correction. Without bias
correction, Paracou and BCI diversities appear to be similar for low
values of q. Bias correction shows that Paracou is undersampled
compared to BCI (actually around 1000 trees versus 25000). Paracou is
much more diverse than BCI.
doi:10.1371/journal.pone.0090289.g004

Figure 5. Paracou and BCI b diversity. b diversity profile between
Paracou plots (solid line) is compared to that of any two plots of BCI
(dotted line with 95% confidence envelope).
doi:10.1371/journal.pone.0090289.g005
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(equations (15) and (16) and Table 1). Of course, diversity can be

calculated directly, but no estimation-bias correction is available

then. The additive decomposition of HCDT entropy can be

considered empirically as a calculation tool whose results must

systematically be converted to diversity for interpretation.

We rely on Routledge’s definition of a entropy which allows

decomposing unequally-weighted communities and takes place in

a well-established theoretical framework following Patil and

Taillie. The price to pay is some dependence between a and b
diversity when weights are not equal. It appears to be acceptable

since it is unlikely to lead to erroneous conclusions. Still, a rigorous

quantifying of it shall be the object of future research.

We only considered communities where individuals were

identified and counted, such as forest inventories. Entropy

decomposition remains valid when frequencies only are available

but our bias correction relies entirely on the number of individual:

other techniques will have to be developed for these communities

if unobserved species cannot be neglected. Bias correction is still an

open question. We proposed a first and rough solution. More

research is needed to combine the available approaches rather

than using each of them in turn.

We provide the necessary code for R to compute the analyses

presented in this paper as a supplementary material in Appendix

S4 with a short user’s guide in Appendix S3.
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30. Bonachela JA, Hinrichsen H, Muñoz MA (2008) Entropy estimates of small data
sets. Journal of Physics A: Mathematical and Theoretical 41: 1–9.

31. Grassberger P (1988) Finite sample corrections to entropy and dimension

estimates. Physics Letters A 128: 369–373.
32. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of

species and the number of individuals in a random sample of an animal
population. Journal of Animal Ecology 12: 42–58.

33. Holste D, Grobe I, Herzel H (1998) Bayes’ estimators of generalized entropies.

Journal of Physics A: Mathematical and General 31: 2551–2566.
34. Hou Y, Wang B, Song D, Cao X, Li W (2012) Quadratic tsallis entropy bias and

generalized maximum entropy models. Computational Intelligence.
35. Chao A, Wang YT, Jost L (2013) Entropy and the species accumulation curve: a

novel entropy estimator via discovery rates of new species. Methods in Ecology
and Evolution 4: 1091–1100.

36. Leinster T, Cobbold C (2011) Measuring diversity: the importance of species

similarity. Ecology 93: 477–489.
37. Hubbell SP, Condit R, Foster RB (2005) Barro colorado forest census plot data.

Available: https://ctfs.arnarb.harvard.edu/webatlas/datasets/bci.
38. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan:

Community ecology package. Available: http://CRAN.R-project.org/

package = vegan.
39. R Development Core Team (2013) R: A language and environment for

statistical computing.
40. Chao A (1984) Nonparametric estimation of the number of classes in a

population. Scandinavian Journal of Statistics 11: 265–270.
41. Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings

of the National Academy of Sciences of the United States of America 70: 3321–

3323.

Partitioning Diversity

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e90289

https://ctfs.arnarb.harvard.edu/webatlas/datasets/bci
http://CRAN.R-project.org/package=vegan
http://CRAN.R-project.org/package=vegan

