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SupAgro, UMR CBGP, Montferrier-sur-Lez, France, 5 INRA, UMR1062 CBGP, Montferrier-sur-Lez, France, 6CNRS-IRD, UMR 2724 MIVEGEC, Montpellier, France, 7CIRAD –

CATIE, Departamento de Agricultura y Agroforesteria, CATIE, Turrialba, Costa Rica

Abstract

Plant diversification using cover crops may promote natural regulation of agricultural pests by supporting alternative prey
that enable the increase of arthropod predator densities. However, the changes in the specific composition of predator diet
induced by cover cropping are poorly understood. Here, we hypothesized that the cover crop can significantly alter the diet
of predators in agroecosystems. The cover crop Brachiaria decumbens is increasingly used in banana plantations to control
weeds and improve physical soil properties. In this paper, we used a DNA metabarcoding approach for the molecular
analysis of the gut contents of predators (based on mini-COI) to identify 1) the DNA sequences of their prey, 2) the
predators of Cosmopolites sordidus (a major pest of banana crops), and 3) the difference in the specific composition of
predator diets between a bare soil plot (BSP) and a cover cropped plot (CCP) in a banana plantation. The earwig Euborellia
caraibea, the carpenter ant Camponotus sexguttatus, and the fire ant Solenopsis geminata were found to contain C. sordidus
DNA at frequencies ranging from 1 to 7%. While the frequencies of predators positive for C. sordidus DNA did not
significantly differ between BSP and CCP, the frequency at which E. caraibea was positive for Diptera was 26% in BSP and
80% in CCP; the frequency at which C. sexguttatus was positive for Jalysus spinosus was 14% in BSP and 0% in CCP; and the
frequency at which S. geminata was positive for Polytus mellerborgi was 21% in BSP and 3% in CCP. E. caraibea, C. sexguttatus
and S. geminata were identified as possible biological agents for the regulation of C. sordidus. The detection of the diet
changes of these predators when a cover crop is planted indicates the possible negative effects on pest regulation if
predators switch to forage on alternative prey.
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Introduction

Agriculture faces the challenges of providing more food and

energy while adapting to climate change and mitigating environ-

mental impacts. One of the most promising approaches to meet

these challenges is the design of new agroecosystems based on the

management of ecological processes rather than on application of

fertilizers and pesticides [1]. For instance, the regulation of crop

pests through top-down and bottom-up effects remains a potential

alternative to reduce the ecological imprints of agroecosystems

while maintaining production [2]. This regulation could rely on

the management of primary resources, such as the addition of

cover crops [3]. The underlying hypothesis is that cover crops

enable the development of alternative preys leading to higher

densities and diversities of generalist arthropod predators. The

larger the densities of predators, the higher the consumption of

herbivore pests - provided that the pest remains a favourite prey

[4,5]. It follows that designing environmentally friendly cropping

systems requires a clear understanding of food web functions.

In spite of the substantial research conducted in the last decade,

food web ecology suffers from a lack of efficient and comprehen-

sive methods to measure trophic links in natura with accuracy. To

date, trophic links are often inferred by abundance measurements

of predators and prey [6–10], stable isotope analyses [11–17], and

protein-based approaches [18,19]. Although recent molecular

approaches, like multiplex-PCR, have enabled identification of

specific prey in the gut contents and faeces of a wide range of

predators [20], these methods are not suited for the detection of

unexpected prey [21]. Recently, Next Generation Sequencing

(NGS) technology has been used to examine the specific

composition of the diet of a given predator or herbivore and to

describe two-level food webs [for a review, see 22]. The

development of DNA metabarcoding now enables researchers to

measure trophic links without a priori knowledge of the consumed

species and to determine the diet of each individual [22]. The

metabarcoding approach is based on the pyrosequencing of a

DNA barcode (amplified with universal primers) that can

discriminate and identify species in a DNA mixture. This method

could be used to analyse gut contents of arthropods, because it has

the potential to identify the complex diet of generalist predators.
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Plant diversification has strong bottom-up effects on multi-

trophic interaction networks, especially on lower trophic levels

[23], but it remains unclear whether the addition of a cover crop

in agroecosystems actually leads to enhanced pest control by

predators [24]. In banana agroecosystems in Martinique, the

cover crop Brachiaria decumbens Stapf, a tropical C4 grass, is

increasingly used to control weeds and to improve physical soil

properties. In these agroecosystems, Mollot et al. [25] showed that

Solenopsis geminata (F.), a generalist predator feeding on the banana

weevil Cosmopolites sordidus (Germar), the major banana insect pest,

was more abundant in cover cropped plots (CCP) than in bare soil

plots (BSP). Along with this increase in densities, S. geminata

exhibited a change in isotopic signature, indicating that it fed on

the C4 pathway provided by the new resource. In the same study,

the monitoring of eggs of C. sordidus artificially deposited in plots

showed that predation on eggs was always higher in CCP than in

BSP. However, the specific changes in the diets of predators

affected by the cover crop are unclear. Identifying the prey

consumed and determining the rate at which they are consumed

by the major generalist predators would help us understand the

effects of the cover crop on predator diets and thus on the

regulation of C. sordidus.

Using a metabarcoding approach based on the COI barcode,

we assessed the diet of eight ground-dwelling predators commonly

found in banana plantations in Martinique: wolf spiders from the

Lycosidae family, the earwig Euborellia caraibea Hebard, the

carpenter ant Camponotus sexguttatus (F.), the trap jaw ant

Odontomachus baurii Emery, the fire ant S. geminata, the little fire

ant Wasmannia auropunctata (Roger), rove beetles from the

Staphilinidae family, and centipedes from the Scolopendridae

family. We amplified a shortened fragment of COI (mitochondrial

cytochrome c oxidase I) from the gut contents of predators to

identify (1) DNA sequences of their prey, (2) predators of C.

sordidus, and (3) the difference in predator diet between CCP and

BSP. Based on these results, we make suggestions about how to use

and manage a B. decumbens cover crop to control the populations of

C. sordidus in banana plantations. Finally, we discuss the technical

implications of the use of the metabarcoding approach to assess

the diet of ground-dwelling predators.

Materials and Methods

Ethics Statement
All of the authors declare that the experiments performed in the

present study comply with the current laws of France. No specific

permits were required for the described field study, which involved

sampling of invertebrates and plant species. No specific permits

were required to perform the described study in this location,

which is an experimental farm owned by CIRAD. All of the

authors confirm that the location is not privately owned or

protected in any way and that the field studies did not involve

endangered or protected species.

Study Sites
Sampling was conducted in Martinique (French West Indies)

between January and June 2011. Samples were collected from an

experimental farm in Rivière Lézarde (14u39945.040N;

60u59959.080W) in two adjacent plots: a bare soil plot (BSP) of

300 m2 and a B. decumbens cover cropped plot (CCP) of 368 m2.

Both plots were in the sixth year of banana production without

insecticide application; plants were unsynchronized and harvested

throughout the year.

Sampling
The first step of the procedure was the construction of a

reference bank of DNA sequences that included every possible

arthropod prey taxa from the studied sites. To construct this bank

of sequences, we designed a sampling scheme to capture most of

the arthropod diversity in banana agroecosystems. We collected

two to four samples (one sample corresponds to one individual of a

given taxon) belonging to each of 15 taxa commonly found in

banana fields (taxa and trapping methods are listed in Table S1).
Soil-surface arthropod samples were collected with dry pitfall traps

and pseudostem traps (one-half of a section of fresh banana

pseudostem, 50 cm long), whereas flying arthropod samples

(Gryllus, Cicadellidae, and Pentatomidae) were collected by 15-s

sessions with a suction sampler (D-vac, Rincon-Vitova Insectaries,

Inc., Ventura, California, USA). We also directly collected samples

with clean forceps to obtain arthropods that were not trapped by

pitfall traps, pseudostem traps, or vacuum sampling.

The samples for the diet analyses were obtained by collecting

individual samples from the most common ground-dwelling

predators (n=572) (Table S2). The recovery of DNA from the

gut contents of predators was optimized by placing samples in a

portable cooler (4uC) in the field so as to decrease enzymatic

activity and prevent DNA degradation. Samples were collected

every 12 h from dry pitfall traps and pseudostem traps, which

were distributed at 4-m intervals over the plots, and by direct

capture. As indicated by King et al. [20], predation events

occurring in traps remain a substantial concern for diet analyses.

To reduce this possible source of error, we focused on direct

capture, frequently collected predators in the traps, and excluded

samples from traps that contained fragments of herbivores or other

predators. Samples were placed in separate tubes in 96% ethanol;

the tubes were temporarily kept in a portable cooler until they

were transported to the laboratory and stored at 220uC.

Feeding Trials and Positive Controls
To determine whether it was possible to detect C. sordidus DNA

in the gut contents of predators, we collected 10 additional samples

of O. baurii in the field by direct capture and placed them

individually in tubes with moistened cotton and without food for

96 h. At this stage, seven samples were killed and then placed

individually in clean tubes containing 96% ethanol and stored at

220uC; among them, three samples were analysed alone, and four

samples were analysed after the addition of one C. sordidus egg

before DNA extraction. The remaining three samples, which had

been kept alive, were placed in new tubes with moistened cotton

and one C. sordidus egg (one predator and one egg per tube); after

12 h, each individual of O. baurii had fed on the provided egg and

was placed in a clean tube in 96% ethanol and stored at 220uC.
In a ‘‘positive control’’ experiment, we also analysed the quantity

of sequences recovered as a function of the number of C. sordidus

eggs in a sample without predators; this experiment used 1 egg

(n= 9), two eggs (n = 3), and three eggs (n = 3).

Construction of the Mini-COI Bank of Sequences by
SANGER Sequencing for Taxa Assignment
Predation was studied by amplifying and sequencing the

mitochondrial cytochrome c oxidase I (COI) gene, which is widely

used for species-level identification of animals [26]. Legs of two to

four frozen samples of each taxon collected in the banana

plantations (taxa and trapping methods are listed in Table S1)
were used for the construction of the COI bank of sequences.

Total DNA was extracted from legs with the DNeasy Blood and

Tissue kit (Qiagen, Germany) following the manufacturer’s

Cover Cropping Alters Predators’ Diet
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protocol. The long fragment of COI was amplified with the

universal primers LCOI490 and HCO2198 [27] in a 20-ml volume

containing 0.5 U of HotStarTaq plus DNA polymerase (Qiagen),

3 mMMgCl2, 400 mM of each dNTP, 10 mM of each primer, and

8 ml of arthropod DNA extract. After an initial activation of the

DNA polymerase for 5 min at 95uC, the amplification was

performed with 5 cycles of 1 min at 95uC, 1 min at 45uC, and
1.5 min at 72uC; followed by 30 cycles of 1 min at 95uC, 1 min at

48uC, and 1.5 min at 72uC; and a final extension of 5 min at

72uC. Amplicons were sequenced using the Sanger method on

both strands and for each sample with the ABI3730XL analyser

(Applied Biosystems) by the Macrogen sequencing service (Seoul,

South Korea). Sequences were assembled and aligned with

Geneious Pro 5.5.3 (Biomatters, New Zealand) before the mini-

COI barcode was extracted. We deposited 15 sequences of COI in

GenBank, and these included the sequences of two species

previously not recorded in GenBank (see Table S1). The final

mini-COI bank of sequences included the 15 sequences obtained

from samples of the banana plantations and 20 additional COI

sequences obtained from GenBank after the BLAST of the raw

454 sequences (sequences recovered with GenBank in Table S3).

454 Pyrosequencing of Mini-COI
We used a shortened fragment of COI, the mini-COI fragment

(127 bp), which was amplified with primers Uni-MinibarF1 and

Uni-MinibarR1 designed by Meusnier et al. [28]. Total DNA was

extracted from the dissected gut contents or from the whole body

(when body size was ,1 cm) of the ground-dwelling predators

with the DNeasy Blood and Tissue kit following the manufactur-

er’s protocol. To enable deconvolution of pooled 454 sequencing

runs such that individual sequences could be traced back to a

particular sample, we tagged the 59 end of the PCR primers with

different combinations of seven nucleotides (the tags are listed in

Table S4). A total of 30 different tags enabled us to process the

572 samples of ground-dwelling predators for diet analyses and the

59 samples for positive controls (taxa, trapping methods, and

positive controls are listed in Table S2). Deconvolution of the

pooled sequences was performed with an exact search of the tag

sequences. These tags differed in at least three nucleotides, which

reduced the risk of incorrect assignment of sequences to sample ID

in case of a sequencing error.

Amplification of mini-COI was performed in a 20-ml volume

containing 0.5 U of HotStarTaq plus DNA polymerase (Qiagen),

3 mMMgCl2, 400 mM of each dNTP, 10 mM of each primer, and

8 ml of arthropod DNA extract. After an initial activation of the

DNA polymerase for 5 min at 95uC, the mini-COI was amplified

with 5 cycles of 60 s at 95uC, 60 s at 46uC, and 30 s at 72uC; 35
cycles of 60 s at 95uC, 60 s at 53uC, and 30 s at 72uC; and a final

extension of 5 min at 72uC. Although blocking probes are often

used to reduce the sequencing of predator DNA [29], they also

make the procedure more cumbersome, especially when numerous

taxa are analysed. In the current study, the pyrosequencing

generated enough sequences so that prey could be identified even

with over-representation of predator DNA sequences (see Results).

An analysis of the migration of the PCR products obtained with

tagged mini-COI primers enabled us to sort PCR products as a

function of their signal intensity (null, low, medium, strong). PCR

products from gut contents of ground-dwelling predators were

concentrated in an oven at 35uC for 12 h. Then, we standardized

the DNA concentration in all samples before pooling them in an

equimolar solution. Pooled PCR products were purified with the

QIAquick Gel Extraction Kit (Qiagen, Germany) and sequenced

using the 454 GS FLX Titanium platform (Roche, Basel,

Switzerland) of Beckman Coulter Genomics (Danvers, MA, USA).

Bioinformatics Processing of Raw Sequences and
Taxonomic Assignment
Pyrosequencing outputs were analysed using |SE|S|AM|E|

BARCODE, a software designed to process the large amount of

DNA sequences generated by pyrosequencing [for more details on

the bioinformatics pipeline used, see 30,31]. The software loads a

table in which the sequence of each tag is recorded for each

sample and the FASTA file obtained from the pyrosequencing

step. Sequences of interest are recovered after the BLAST of each

raw sequence to a consensus sequence of the marker (threshold E-

value = e22, which is low to recover a maximum of sequences).

This marker consensus sequence (127 bp) was obtained after the

alignment [MUSCLE algorithm, 32] of all sequences of taxa

found in the banana plantations (Table S1).

Mini-COI barcodes were assigned to taxa from the bank of

sequences using the BLAST+ (E-value = e220) and FASTA

algorithm (85% similarity threshold) available in |SE|S|AM|E|

BARCODE. Final barcoding identification was performed by

assigning sequences with a Nearest Neighbour algorithm. Decision

rules applied during the processing of sequences lead to an

assignment to a higher taxonomic rank when the percentages of

similarity were strictly equal between two or more species. Unique

sequences were removed so that a minimum of two sequences was

used for the barcoding identification. Sequences with fewer than

120 nucleotides (without primers) were discarded.

Comparison of the Diet of the Ground-dwelling
Predators in BSP vs. CCP
Although the number of sequences found for each prey was

determined for each predator sample, this quantitative informa-

tion could not be processed directly as indicated by Pompanon

et al. [22]. The number of sequences obtained for a given prey was

converted into binary information (presence/absence), and the

trophic links were quantified by the number of predator samples

among the population that were positive for each prey taxon. It is

important to note that sequences assigned to a taxonomic rank

higher than order were discarded from the analyses. Finally, we

calculated the differences of frequency of consumption for each

identified prey taxon between BSP and CCP and determined

whether the differences were statistically significant using a Fisher’s

exact test implemented within the statistical program R [33].

Results

Control Experiments
We first assessed our ability to amplify and detect C. sordidus

mini-COI from 1, 2, or 3 C. sordidus eggs in a sample that lacked

predator tissue or predator DNA. We correctly assigned the

samples to C. sordidus for 14 of the 15 samples (see first three rows

in Table 1). Nevertheless, no significant correlation was obtained

between the number of eggs analysed and the number of

sequences. We also performed trials in which each of three O.

baurii was either fed with one C. sordidus egg and then analysed or

in which each of four O. baurii was mixed with one C. sordidus egg

and then analysed; although the detection rate was ,100%, C.

sordidus was detected in both cases (see rows 4–6 in Table 1). In
negative controls (pure water), DNA of Myospila lauta Stein was

detected (two sequences) (see rows 7 and 8 in Table 1) and was

consequently excluded from further analyses because we suspected

a possible cross-contamination (a total of 36 sequences of M. lauta

were detected in four samples of C. sexguttatus).

Cover Cropping Alters Predators’ Diet
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Pyrosequencing Outputs and Resolution of the Mini-COI
Barcode
Among the 177,186 raw sequences obtained from the gut

contents of predators, 118,180 sequences (67%) were identified as

mini-COI marker, of which 75,313 sequences (43%) were

successfully assigned to a taxon. A total of 56 distinct taxa

belonging to 14 orders were identified (predator diet analyses and

positive controls are indicated in Figure 1); 71.4% were identified

to species, 80.3% to genus, and 91.0% to family. Among these

taxa, nine were identified from sequences obtained in this study

(Table S2) while the 47 remaining taxa were recovered from COI

sequences recorded in GenBank (Table S3). Sequences of taxa
belonging to the Lycosidae and to E. caraibea were very abundant

(87% of the assigned sequences, Table 2). It is highly probable

that these taxa were so efficiently amplified during the PCR step

that they were later overrepresented in the samples. Consequently,

we considered these taxa as a possible source of false positive prey

detection, and we removed them from the diet analyses of

predators.

Identification of Prey from the Gut Contents of Ground-
dwelling Predators
A total of 29 prey taxa were identified from the gut contents of

the eight ground-dwelling predators taxa found in the banana

plantations (Figure 2). DNA sequences of the banana weevil C.

sordidus were recovered from samples of three species, with

relatively low frequencies of consumption (frequency of consump-

tion refers to the percentage of samples that were positive for DNA

of the prey in question): the earwig E. caraibea (frequencies:

BSP= 3%, CCP=7%), the carpenter ant C. sexguttatus

(CCP=3%), and the fire ant S. geminata (BSP= 1%). The BLAST

of sequences against the COI sequences recorded in GenBank

enabled identification of dipteran arthropods that were not

sampled in the plots during the study. We did not identify prey

consumed by samples from the Scolopendridae family in either

plot. Because of the absence of prey sequences in one of the two

plots, the diet change could not be assessed for samples from the

Lycosidae family, O. baurii, or the Staphilinidae family (frequencies

of consumption are listed in Table S5).

Difference in the Diets of Ground-dwelling Predators
between BSP and CCP
Twenty-nine prey taxa were identified from the gut contents of

ground-dwelling predators. Among these, 22 prey taxa were

identified in BSP while 19 were identified in CCP; 12 prey taxa

were detected in both plots. Frequencies of prey detected from gut

contents significantly differed in the two plots for some of the

ground-dwelling predators (Figure 3). Interestingly, whereas

Jalysus spinosus (Say) was detected as the main prey of the carpenter

ant C. sexguttatus in BSP (14% positive), no sample of C. sexguttatus

was positive for this prey in CCP (Fisher’s exact test, p-

value = 0.0043). The frequency at which the earwig E. caraibea

was positive for dipteran DNA was 26% in the BSP and 80% in

the CCP (Fisher’s exact test, p-value ,0.0001). The frequency at

which the fire ant S. geminata was positive for DNA of the little

banana weevil Polytus mellerborgi Heller was 21% in the BSP and

3% in the CCP (Fisher’s exact test, p-value = 0.0006). Samples of

C. sexguttatus that were positive for banana weevil DNA were found

only in CCP, while samples of S. geminata that were positive for

banana weevil DNA were found only in BSP. Cosmopolites sordidus

was detected in the gut contents from two samples of E. caraibea in

BSP (n=53) and from two other samples in CCP (n=30).T
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Discussion and Conclusions

We used a metabarcoding approach to analyse the gut contents

of eight ground-dwelling predators in banana plantations. We

demonstrated that the addition of a new primary resource in the

agroecosystem modified the diet for some of the predators. This is

one of few studies that has used metabarcoding to investigate the

gut contents of the arthropod food web. The results suggest that

this is a feasible approach for ecological studies and also revealed

some issues that will require methodological adjustments.

The efficiency of the mini-COI PCR was highly variable

depending on the predator taxa examined, and this remains a

major problem in achieving comprehensive identification of the

prey ingested by a predator. While some of the predator taxa (e.g.,

the Lycosidae) were over-represented in the amplicon set, others

were not amplified at all (e.g., the Hymenoptera). Regarding the

latter, Yu et al. [34] also recently reported difficulties with COI

sequencing of hymenopteran samples with 454 technology. This

problem indicates that optimization of PCR conditions and

primers is essential. The combination of several barcodes [35]

could be used to achieve a complete description of the predator

diets. The differences in PCR efficiencies also resulted in our

inability to include some taxa in the food web and confirmed that

metabarcoding data cannot be interpreted in a quantitative

manner [22]. Relating the number of DNA sequences detected

to the amount of material ingested appears to be an intractable

problem. The quantification of trophic interactions would be

enhanced by coupling the metabarcoding approach with stable

isotope analysis [36] that enables assessment of the quantity of

material used for the construction of an organism [14]. A second

problem was the large number of the sequences that were

unassigned despite our effort to sample comprehensively and thus

to include arthropod diversity from the studied sites in the bank of

sequences. In addition, more than 4,000 sequences were assigned

to the Neoptera infra-class level. Such uninformative identification

may result from the incompleteness of the bank of sequences or

from the incorrect identification of COI sequences recorded in

GenBank [37]. The non-assignment of sequences should be

prevented by an exhaustive and rigorous sampling in the studied

ecosystem.

Despite the methodological shortcomings mentioned above (i.e.,

it must be borne in mind that the food webs described here are

incomplete), metabarcoding is an excellent approach for inferring

the food web from the natural environment and for detecting

differences in its topology among treatments. These advantages

were particularly appealing for our study, in which we aimed to

detect differences in the predation of a major pest between two

banana plantation management systems.

In the current study, the banana weevil C. sordidus was identified

in the gut contents of three ground-dwelling predators: the earwig

E. caraibea, the fire ant S. geminata, and the carpenter ant C.

sexguttatus. These three species have previously been shown to feed

on the banana weevil. In laboratory trials, earwigs of the genus

Euborellia in Kenya [38] and other dermapterans in Indonesia [39]

attacked C. sordidus eggs and larvae. The fire ant S. geminata is often

described as an important generalist predator [40–42] and was

observed to feed on C. sordidus in banana agroecosystems in

Martinique [25]. Here, we showed that S. geminata workers that

were directly sampled in the field were positive for C. sordidus

DNA; however, the role of this species in the consumption of the

pest may be underestimated in our study because ant workers

usually carry prey to their nest to feed the colony [43]. Carpenter

ants in the genus Camponotus were found in pseudostem leaf sheaths

Figure 1. Number of sequences assigned to each order after mini-COI barcode sequencing. Data were derived from 454 pyrosequencing
run, and sequences were assigned to taxa with SE|S|AM|E BARCODE (minimum of two sequences, BLAST+ E-value = e220, FASTA 85% similarity
threshold and Nearest Neighbour algorithm for the final identification). Bar charts indicate the total number of assigned sequences obtained for all
taxa belonging to each taxonomic group. 42,915 sequences remained unassigned.
doi:10.1371/journal.pone.0093740.g001
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and leaf trash in Indonesia and were predicted to forage in the

banana plant [39], which is the habitat of immature stages of C.

sordidus. Here, the diet analysis of C. sexguttatus revealed the

consumption of C. sordidus by ant workers that were trapped in the

field. In contrast, although ants in the genus Odontomachus are

thought to be predators of C. sordidus [44] and although O. baurii

consumed C. sordidus eggs in a laboratory assay of the current

study, we did not detect C. sordidus DNA in O. baurii trapped in the

field. From these results, we identified three species of predators

that could be considered for the control of C. sordidus populations

in banana plantations. Two of the three species are ants, which are

often assumed to play a key role in the regulation of C. sordidus in

banana plantations [44–46].

In this study, we described the changes in the diets of generalist

predators induced by plant diversification of a cropping system.

We demonstrated that the use of a B. decumbens cover crop in

banana plantations altered the arthropod food web, with

significant changes in the frequency of consumption of some of

the prey. Duyck et al. [47] found similar results based on stable

isotope analyses, i.e., the trophic positions of generalist predators

were changed by cover cropping. In the current study, the

percentage of samples of the earwig E. caraibea that were positive

for dipteran DNA was higher in CCP (80%) than in BSP (26%).

Table 2. Frequency of taxa identified corresponding to each taxon analysed with the mini-COI barcodes.

Sample (n) Barcoding identification Rank Frequency (n) Number of sequences

Lycosidae (20) Trochosa Genus 100 (20) 18088

Pardosa Genus 65 (13) 2884

Pardosa milvina Species 15 (9) 9

Lycosidae Family 10 (2) 29

Pardosa amentata Species 5 (1) 11

Pardosa giebeli Species 5 (1) 2

Pardosa paludicola Species 5 (1) 3

Varacosa avara Species 5 (1) 4

E. caraibea (97) E. caraibea Species 100 (97) 39114

Scolopendra (6) Scolopendra Genus 100 (6) 544

Scolopendra mutilans Species 67 (4) 323

Henicopidae Family 50 (3) 864

Lamyctes hellyeri Species 50 (3) 8

Anopsobius giribeti Species 17 (1) 28

Scolopendra subspinipes Species 17 (1) 10

Scolopendra multidens Species 17 (1) 8

Pleurostigmophora Subclass 17 (1) 7

Otostigmus aculeautus Species 17 (1) 4

Cicadellidae (3) Cicadellidae Family 67 (2) 29

C. sordidus (15) Cosmopolites sordidus Species 93 (14) 407

Oniscidae (2) Oniscidae Family 50 (1) 69

Blattodae (2) Blatella germanica Species 100 (2) 101

P. mellerborgi (2) Polytus mellerborgi Species 100 (2) 365

Gryllus (1) Gryllus Genus 100 (1) 136

Orocharis saltator Species 100 (1) 59

Gryllidae Family 100 (1) 16

A. castelnaui (2) Tribolium castaneum Species 100 (2) 16

Lumbricidae (2) (not assigned) – – –

Rhinocricidae (2) (not assigned) – – –

Paradoxosomatidae (2) (not assigned) – – –

O. baurii (96) (not assigned) – – –

C. sexguttatus (103) (not assigned) – – –

S. geminata (155) (not assigned) – – –

W. auropunctata (108) (not assigned) – – –

Staphilinidae (10) (not assigned) – – –

Generated by 454 pyrosequencing, the table displays the taxonomic rank, the frequencies of samples and the corresponding sample size in brackets, and the number of
sequences corresponding to taxa identified by barcoding and belonging to the same order of the taxa analysed. A frequency of 100% means that all samples of the taxa
analysed had at least two sequences of the taxa identified by barcoding (BLAST+ with E-value = 10220, FASTA with 85% similarity threshold, and Nearest Neighbour
algorithm for the final identification).
doi:10.1371/journal.pone.0093740.t002
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This diet change suggests the B. decumbens cover crop probably

increases the abundance of dipterans and thereby increased their

consumption by E. caraibea. In sugarcane fields in Hawaii, weeds

favour dipterans by providing food, shade, and resting areas [48].

Management of the B. decumbens cover crop by mowing is required

to maintain the trade-off between the increase of predator densities

and pest control. However, the increase in alternative prey (i.e.,

prey other than the target pest) in the diet of generalist predators

exemplifies the processes that can dampen the positive effects of

cover crops on pest regulation. In other words, the predators may

increase consumption of non-pests without increasing consump-

tion of pests.

In conclusion, it is essential to disentangle trophic interactions in

order to achieve a better understanding of ecosystem resilience

and persistence following disturbances [49], such as plant

diversification [3]. DNA metabarcoding allows direct inference

of trophic interactions and enables the assessment of arthropod

diet. Although the method has limitations, including the inability

to discriminate between direct predation, secondary predation,

and scavenging [20], it has the potential to be very useful for

describing arthropod food webs. Here, we identified new and

unexpected trophic interactions in the predator–prey system in

banana plantations. The accurate determination of trophic

networks will challenge current models of trophic interactions

and will contribute to food web theory and ecosystem manage-

ment. In addition to its application to individual food webs, DNA

metabarcoding could be used to link different food webs, such as

those that describe micro-organisms, plants, arthropods, and

larger animals.

Supporting Information

Table S1 List of taxa collected in banana plantations in
order to sequence CO1 with SANGER method. This

sampling was performed to build the bank of sequence from

individuals of the studying site. Sequences were aligned (MUSCLE

algorithm) to build the consensus sequence used during the

Figure 2. Bipartite food webs of predator-prey interactions on (A) bare soil, and (B) cover cropped banana plantation. For each web,
lower bars represent relative abundance of consumed prey, and upper bars represent relative abundance of positive ground-dwelling predators,
each drawn at different scale. The width of links between ground-dwelling predators and prey represents the frequency of consumption. Numbers in
grey indicate unlinked taxa. Visualization was performed with the R package ‘‘bipartite’’ [50]. 1: Anopheles claviger. 2: Anopheles nimbus. 3: Baetis
rhodani. 4: Blatella germanica. 5: Calliphora vomitoria. 6: Carabidae spp. 7: Codophila varia. 8: Coridius chinensis. 9: Cosmopolites sordidus. 10: Diptera.
11: Drosophila anceps. 12: Drosophila melanica. 13: Drosophila montana. 14: Gryllus. 15: Hemiptera. 16: Jalysus spinosus. 17: Nebria chinensis. 18:
Neoneides muticus. 19: Nezara viridula. 20: Oniscidae. 21: Ophyra spinigera. 22: Periplaneta americana. 23: Podisus serieventris. 24: Polytus mellerborgi.
25: Resseliella yagoi. 26: Sarcophila. 27: Scolopendra. 28: Scolopendra mutilans. 29: Stephensioniella sterrei. 30: Lycosidae. 31: Camponotus sexguttatus.
32: Euborellia caraibea. 33: Odontomachus baurii. 34: Scolopendridae. 35: Solenopsis geminata. 36: Staphilinidae. 37: Wasmannia auropunctata.
doi:10.1371/journal.pone.0093740.g002

Figure 3. Diet changes of ground-dwelling predators between
bare soil plot and cover cropped plot. The bar charts display the
difference of frequencies of consumption for each prey calculated
between the two plots, with the bare soil plot as a reference. The
significance of the difference of frequencies of consumption observed
between plots was assessed with a Fisher’s exact test. (***: p-value,
0.0001; **: p-value,0.001; *: p-value,0.01). Black crosses above bar
charts indicate that the prey was not detected in both treatments.
doi:10.1371/journal.pone.0093740.g003
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bioinformatics processing of raw sequences (Consensus sequence

of mini-CO1:59-TTTATATTTTATTTTTGGARCTTGAG-

CAGGAATAGTAGGAACTTCATTAAGAATAHTTATTC-

GAGCAGAATTAGGAMAACCCGGATCATTAATTGGT-

GATGATCAAATTTATAATGTTATTGTTACA-39).

(DOCX)

Table S2 List of taxa collected in banana plantations for
the 454 pyrosequencing. Taxa were collected for diet analyses

(ground dwelling predators, n = 572 samples), and for positive

controls of the 454 pyrosequencing run (n= 59 samples). Positive

controls are designed to check the efficiency of the pyrosequencing

run.

(DOCX)

Table S3 List of species identified with GenBank. These
taxa were recovered by blasting raw sequences derived from the

454 pyrosequencing run from the gut contents of ground-dwelling

predators to GenBank database. Samples of these prey species

were not collected during the sampling campaign designed in

order to construct the bank of sequences. Identification to higher

taxonomic rank results from an equal score calculated between

two or more sequences of species recorded in GenBank, and the

table displays taxa only for sequences identified to species rank.

(DOCX)

Table S4 List of tags used for forward and reverse primers. Each

sample had a specific combination of tagged primers allowing an

assignment of sequence to its respective sample ID. Each primer

was added with a 7 nucleotide sequence (tag) at the 59-end.

(DOCX)

Table S5 Frequencies of consumption of prey by the
ground-dwelling predators. Resulting from the 454 pyrose-

quencing, the table displays the taxonomic rank, the frequencies of

individuals and the corresponding number of individuals under

brackets, and the number of sequences corresponding to prey

identified by barcoding. The sample sizes for each predator and as

a function of the treatment (bare soil and cover crop) are indicated

under brackets. Barcoding identifications were validated with at

least two sequences of the taxa identified (BLAST+ with e-

value = 10220, FASTA with 85% similarity threshold and Nearest

Neighbour algorithm for the final identification).

(DOCX)
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