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ABSTRACT 
 
The method to derive surface temperature from top of canopy 
brightness temperature developed by Olioso (1995b) [20] is tested 
over the Avignon-Crau-Camargue area (France) using Landsat-7 
ETM+ images. The difference between surface temperature and 
brightness temperature depends on surface emissivity, incident 
atmospheric radiation and the temperature itself. Differences up to 
2 K were obtained for a surface emissivity of 0.97. It can increase 
up to 7 K when surface emissivity was 0.91. The surface 
temperature derived from Landsat data were in agreement with the 
ground measurements when using local calibration of the surface 
emissivity derivation method and a modification of the calculation 
of atmospheric radiation as compared to [20]. The impact of error 
in emissivity derivation was higher than the impact of errors in 
deriving atmospheric radiation. 
 

Index Terms— Surface temperature, thermal infrared, surface 
emissivity, atmospheric radiation 
 

1. INTRODUCTION 
 

Surface temperature is a key variable for monitoring land surface 
energy balance and in particular evapotranspiration ([2], [4], [5], 
[21], [28], [26], [24]). Remote measurement of surface temperature 
allows assessing surface energy balance at various spatial scales 
from satellite and airplane platforms or from hand-held thermal 
infrared radiometers. However, surface temperature cannot be 
directly derived from thermal measurements. Measured radiation 
includes not only the radiation emitted by the surface but also the 
radiation emitted by the atmosphere. If we consider top of canopy 
measurements, this additional radiation results from the reflection 
of atmospheric radiation by the surface toward the sensor. Impact 
of surface emissivity must also be accounted since it directly 
affects the level of emitted radiation at a given temperature. Poor 
knowledge in either surface emissivity or atmospheric radiation 
results in error in the determination of surface temperature from 
remote sensing measurement. These effects have been recognized 
for a long time (e.g. [5], [15], [25]). Olioso (1995b, [20]) showed 
that an error of +/- 0.01 on surface emissivity results in an error 
between 0.6 and 0.9 K on surface temperature. [20] also reported 
that this error strongly depends on the way atmospheric radiation is 
characterized and that it is very important to consider the 
atmospheric radiation in the same spectral range as the sensor (e.g. 

10.5 µm – 12.5 µm, 8 µm – 14 µm…). This is particularly 
problematic since measuring the atmospheric radiation in a limited 
spectral range is complex. 

In the present study, the method proposed by [20] for deriving 
surface temperature from thermal infrared measurements is re-
assessed and tested on Landsat data acquired over the lower Rhône 
Valley in France (Avignon-Crau-Camargue area). The set of 
equations used for deriving atmospheric radiation is modified and a 
method for deriving surface emissivity in the Landsat thermal 
channel is presented. The method is evaluated by comparing 
surface temperatures derived from Landsat 7 – ETM+ images to 
ground measurements. The impact of the improvement of the 
atmospheric radiation and the surface emissivity estimation is 
assessed. 
 

2. METHODS AND DATA 
 
2.1. The relation between surface temperature and  brightness 
temperature  

 
Olioso (1995b) [20] proposed to estimate surface temperature (Ts) 
from top of canopy thermal infrared measurements (expressed as 
brightness temperature Tbλ1–λ2, the temperature corresponding to a 
blackbody emitting the same radiation as the measured radiation) 
from an expression giving the temperature difference as:  

 − ≅ 1 −4	 			 
  					−			 	 	 			 ↓        (1) 

where the subscript λ1–λ2 refers to the considered spectral band, 
ελ1–λ2 is the surface emissivity in this band and  fλ1-λ2(T) a factor 
corresponding to the fraction of energy emitted in this spectral 
band by a black body at temperature T relative to the emitted 
energy over the full spectrum.  Ra↓λ1-λ2 is the incident atmospheric 
radiation in the considered spectral band. The first term in Eq. 1 is 
an ‘emissivity term’ which increases with the reflectivity of the 
surface and with the temperature. The second term is a ‘reflectivity 
term’ which also increases with the surface reflectivity and the 
atmospheric radiation, but decreases with the temperature.   

Considering Landsat-7 data, brightness temperatures 
( . – . 	 ) were obtained from the ETM+ thermal band in the 
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10.4–12.5 µm spectral range (band 6) after removing atmospheric 
effects using the atmospheric radiative transfer model MODTRAN 
([3]). The factor f10.4-12.5 μm (T) was expressed as (Idso 1981 [14]): 
 . . 	 = −0.2338 + 0.2288 · 10 	 − 0.3617 · 10      (2) 
 
It varies between 0.12 and 0.13 for temperatures between -10 ºC 
and +45 ºC. The incoming atmospheric radiation (Ra↓10.4–12.5µm) can 
be expressed as a function of air temperature and a spectral 
atmospheric emissivity (εa 10.4–12.5µm) as given by [14]:  
 . . 	↓ = 	 . . 	 · 	 . . 	 · ·      (3) 

 
The atmospheric emissivity was originally estimated from air 

temperature and air vapour pressure using formulas derived by [14] 
(see [20], [11]). However, [14] derived these formulas from 
measurements using a thermal infrared radiometer facing the zenith 
and receiving radiation from approximately two degree viewing 
angle. [23] showed that such measurements were not representative 
of the emission of the whole sky-hemisphere and that the 
emissivity expression provided by [14] should be corrected so that
  	 . . 	 = . . 	 	. 5.91 · 10 · · 						(4) 

 
[12] provided an expression of the correction factor  
(γ10.4–12.5µm) depending on the atmospheric precipitable water (W) 
that we adapted for ETM+ : . . 	 = 1.67 − 0.09	  . In our 
study, W was obtained as the mean of the values given at 12:00 
UTC both by the local-radiosonde profiles made at Nîmes airport 
and the NCEP atmospheric provided by the operational 
atmospheric-correction tool available at 
http://atmcorr.gsfc.nasa.gov. In our conditions γ10.5–12.5µm ranged 
from 1.37 (for the wettest atmosphere) to 1.63 (for the driest 
atmosphere).  

 
2.2. Estimation of surface spectral emissivity 

 
Surface emissivity can be estimated from NDVI using relationships 
such as provided by van de Griend and Owe 1993 [27]: see for 
example [2]. Actually, as shown by Olioso (1995a, [19]), this 
relationship is only appropriate for regions similar to that used by 
[27] (i.e., a semi-arid region in Botswana). The variability of the 
relationship was analyzed through radiative transfer modeling in 
vegetation canopy by [19]. Wittich (1997) [29] proposed a simple 
analysis that made it possible to derive a simple and generic 
formula:  =	 	 − 	 − 	  (6) 

 
where NDVI is the normalized difference vegetation index defined 
from NIR and red reflectances (bands 4 and 3 on ETM+). This 
relationship can be applied to any study site as soon as its 
parameters can be derived from information on soil and plant 
canopy in the area of interest: εs10.4–12.5µm, ε∞10.4–12.5µm, NDVIs, 
NDVI∞, k1 and k2. The subscript s stands for bare soil conditions 
and the subscript ∞ stands for maximal NDVI at full vegetation 
cover. The coefficient k1 is an attenuation factor relevant to the 
relation between LAI and NDVI ([1]) and k2 an attenuation 
coefficient relevant to the relation between emissivity and LAI 
[19]. In our study, specific values for the parameters were derived 
from the analysis of the shape of the NDVI – emissivity 

relationship together with measurements of soil (at different 
moisture content) and vegetation canopy emissivities performed in 
our study area ([7], [17], [18]). Additional experimental 
measurements of emissivity from crops at large NDVI were also 
considered, including emissivity of wheat ([22]), alfalfa ([8]), and 
rice ([9]) fields from other experimental sites. Soil data from [18] 
consisted in laboratory measurements of reflectance spectra 
between 0.4 µm and 14 µm. They were used to derive emissivity 
and NDVI values by applying the response functions of ETM+ in 
band 3, 4 and 6. All the other measurements were performed in-
situ using various versions of the box method ([23]).  

 
2.3. The experimental area and the data  

 
The study region is located in the lower Rhône Valley, South 
Eastern France, including the Avignon area (43.92°N; 4.88°E; 32 
m above sea level) and the Crau-Camargue area (50 km around 
43.56°N; 4.86°E; 0 to 60 m above sea level). It is mainly a flat area 
which presents a wide variety of surfaces including dry and 
irrigated grasslands, wetlands and various crops. Climate is 
Mediterranean, with irregular precipitations (annual cumulative 
precipitation range between 350 mm and 1100 mm with an average 
close to 550 mm), long dry periods in spring and summer, and 
strong winds. The area is covered by a single Landsat-7 ETM+ 
image. A network of ground stations was deployed over different 
types of ecosystems to monitor surface energy balance and 
meteorological variables: (1) the Avignon site hosted a succession 
of arable crops (sorghum and durum wheat) cultivated over a 2 ha 
size field (see [4], [6], [10], [16], [30]); (2) the Coussouls site 
corresponded to a large and flat stony area covered by a specific 
dry grass ecosystem (locally named ‘coussouls’); (3) the Domaine 
du Merle site composed of irrigated meadows; (4) the Tour du 
Valat site was located within the Rhône River delta (Camargue) on 
a Mediterranean saltmarsh scrubs area (see [13]). 

Brightness temperatures were estimated from 29 Landsat-7 
images acquired from 2007 to 2010. Atmospheric corrections were 
performed using MODTRAN and atmospheric information derived 
from nearby radiosoundings performed in Nimes (20 to 40 km 
away). Surface temperatures were derived by applying equation 
(1).  These surface temperatures derived from Landsat were 
compared to surface temperatures derived from pyrgeometer 
measurements (Kipp and Zonen CNR1 sensors) applying equation 
(1) to the 5-50 µm spectral range at the four surface energy balance 
stations.  

3. RESULTS 
 
3.1. Differences between surface and brightness temperatures 

 
The theoretical impact of atmospheric radiation and emissivity on 
the difference between surface and brightness temperature is given 
by Eq. (1). It is presented on Figure 1 at different level of 
atmospheric radiation, surface emissivity and temperature. The 
temperature difference increased when atmospheric radiation 
decreased, emissivity decreased or temperature increased. 
Differences up to 2 degrees can be reached when temperature is 
high and surface emissivity is 0.97. It can be up to 7 K for 
emissivity of 0.91. 
 
3.2. Surface emissivity 

 
The NDVI - emissivity relationship obtained for our area is 
presented on Figure 2. At low NDVI, variations in emissivity and 
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