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ABSTRACT

The method to derive surface temperature from top of canopy
brightness temperature developed by Olioso (1995b) [20] is tested
over the Avignon-Crau-Camargue area (France) using Landsat-7
ETM+ images. The difference between surface temperature and
brightness temperature depends on surface emissivity, incident
atmospheric radiation and the temperature itself. Differences up to
2 K were obtained for a surface emissivity of 0.97. It can increase
up to 7 K when surface emissivity was 0.91. The surface
temperature derived from Landsat data were in agreement with the
ground measurements when using local calibration of the surface
emissivity derivation method and a modification of the calculation
of atmospheric radiation as compared to [20]. The impact of error
in emissivity derivation was higher than the impact of errors in
deriving atmospheric radiation.

Index Terms— Surface temperature, thermal infrared, surface
emissivity, atmospheric radiation

1. INTRODUCTION

Surface temperature is a key variable for monitoring land surface
energy balance and in particular evapotranspiration ([2], [4], [5],
[21], [28], [26], [24]). Remote measurement of surface temperature
allows assessing surface energy balance at various spatial scales
from satellite and airplane platforms or from hand-held thermal
infrared radiometers. However, surface temperature cannot be
directly derived from thermal measurements. Measured radiation
includes not only the radiation emitted by the surface but also the
radiation emitted by the atmosphere. If we consider top of canopy
measurements, this additional radiation results from the reflection
of atmospheric radiation by the surface toward the sensor. Impact
of surface emissivity must also be accounted since it directly
affects the level of emitted radiation at a given temperature. Poor
knowledge in either surface emissivity or atmospheric radiation
results in error in the determination of surface temperature from
remote sensing measurement. These effects have been recognized
for a long time (e.g. [5], [15], [25]). Olioso (1995b, [20]) showed
that an error of +/- 0.01 on surface emissivity results in an error
between 0.6 and 0.9 K on surface temperature. [20] also reported
that this error strongly depends on the way atmospheric radiation is
characterized and that it is very important to consider the
atmospheric radiation in the same spectral range as the sensor (e.g.

10.5 pm — 12.5 pm, 8 um — 14 pm...). This is particularly
problematic since measuring the atmospheric radiation in a limited
spectral range is complex.

In the present study, the method proposed by [20] for deriving
surface temperature from thermal infrared measurements is re-
assessed and tested on Landsat data acquired over the lower Rhone
Valley in France (Avignon-Crau-Camargue area). The set of
equations used for deriving atmospheric radiation is modified and a
method for deriving surface emissivity in the Landsat thermal
channel is presented. The method is evaluated by comparing
surface temperatures derived from Landsat 7 — ETM+ images to
ground measurements. The impact of the improvement of the
atmospheric radiation and the surface emissivity estimation is
assessed.

2.METHODSAND DATA

2.1. Therelation between surface temperature and brightness
temperature

Olioso (1995b) [20] proposed to estimate surface temperature (7s)
from top of canopy thermal infrared measurements (expressed as
brightness temperature 7h;;_;,, the temperature corresponding to a
blackbody emitting the same radiation as the measured radiation)
from an expression giving the temperature difference as:
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where the subscript 1,—4, refers to the considered spectral band,
€,;_;2 1s the surface emissivity in this band and f;;.;,(7) a factor
corresponding to the fraction of energy emitted in this spectral
band by a black body at temperature 7T relative to the emitted
energy over the full spectrum. Ra';;. is the incident atmospheric
radiation in the considered spectral band. The first term in Eq. 1 is
an ‘emissivity term’ which increases with the reflectivity of the
surface and with the temperature. The second term is a ‘reflectivity
term’ which also increases with the surface reflectivity and the
atmospheric radiation, but decreases with the temperature.

Considering  Landsat-7 data, brightness temperatures

(Th ) were obtained from the ETM+ thermal band in the

10.4-12.5 pm



10.4-12.5 pm spectral range (band 6) after removing atmospheric
effects using the atmospheric radiative transfer model MODTRAN
([3]). The factor f794.12.5 um (T) Was expressed as (Idso 1981 [14]):

04-12.5 um (T) = —0.2338 + 0.2288 - 1072 T — 0.3617 - 10~5T2 2
1%

It varies between 0.12 and 0.13 for temperatures between -10 °C
and +45 °C. The incoming atmospheric radiation (Ra' ;.4 2.5um) €anN
be expressed as a function of air temperature and a spectral
atmospheric emissivity (g, 70.4-72.5.m) as given by [14]:
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The atmospheric emissivity was originally estimated from air
temperature and air vapour pressure using formulas derived by [14]
(see [20], [11]). However, [14] derived these formulas from
measurements using a thermal infrared radiometer facing the zenith
and receiving radiation from approximately two degree viewing
angle. [23] showed that such measurements were not representative
of the emission of the whole sky-hemisphere and that the
emissivity expression provided by [14] should be corrected so that
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[12] provided an expression of the correction factor
(710.4-12.54m) depending on the atmospheric precipitable water ()
that we adapted for ETM+ : y104-12.5 ym = 1.67 — 0.09 W. In our
study, W was obtained as the mean of the values given at 12:00
UTC both by the local-radiosonde profiles made at Nimes airport
and the NCEP atmospheric provided by the operational
atmospheric-correction tool available at
http://atmcorr.gsfc.nasa.gov. In our conditions y;g5_;5 5., ranged
from 1.37 (for the wettest atmosphere) to 1.63 (for the driest
atmosphere).

2.2. Estimation of surface spectral emissivity

Surface emissivity can be estimated from NDVI using relationships
such as provided by van de Griend and Owe 1993 [27]: see for
example [2]. Actually, as shown by Olioso (1995a, [19]), this
relationship is only appropriate for regions similar to that used by
[27] (i.e., a semi-arid region in Botswana). The variability of the
relationship was analyzed through radiative transfer modeling in
vegetation canopy by [19]. Wittich (1997) [29] proposed a simple
analysis that made it possible to derive a simple and generic
formula:

(6)
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where NDVI is the normalized difference vegetation index defined
from NIR and red reflectances (bands 4 and 3 on ETM+). This
relationship can be applied to any study site as soon as its
parameters can be derived from information on soil and plant
canopy in the area of interest: &4 125um> Ecwt0.4-12.50m» INDVI,
NDVI,, k; and k,. The subscript s stands for bare soil conditions
and the subscript c stands for maximal NDVI at full vegetation
cover. The coefficient k; is an attenuation factor relevant to the
relation between LAl and NDVI ([1]) and 4, an attenuation
coefficient relevant to the relation between emissivity and LA/
[19]. In our study, specific values for the parameters were derived
from the analysis of the shape of the NDVI — emissivity

relationship together with measurements of soil (at different
moisture content) and vegetation canopy emissivities performed in
our study area ([7], [17], [18]). Additional experimental
measurements of emissivity from crops at large NDVI were also
considered, including emissivity of wheat ([22]), alfalfa ([8]), and
rice ([9]) fields from other experimental sites. Soil data from [18]
consisted in laboratory measurements of reflectance spectra
between 0.4 um and 14 um. They were used to derive emissivity
and NDVI values by applying the response functions of ETM+ in
band 3, 4 and 6. All the other measurements were performed in-
situ using various versions of the box method ([23]).

2.3. The experimental area and the data

The study region is located in the lower Rhone Valley, South
Eastern France, including the Avignon area (43.92°N; 4.88°E; 32
m above sea level) and the Crau-Camargue area (50 km around
43.56°N; 4.86°E; 0 to 60 m above sea level). It is mainly a flat area
which presents a wide variety of surfaces including dry and
irrigated grasslands, wetlands and various crops. Climate is
Mediterranean, with irregular precipitations (annual cumulative
precipitation range between 350 mm and 1100 mm with an average
close to 550 mm), long dry periods in spring and summer, and
strong winds. The area is covered by a single Landsat-7 ETM+
image. A network of ground stations was deployed over different
types of ecosystems to monitor surface energy balance and
meteorological variables: (1) the Avignon site hosted a succession
of arable crops (sorghum and durum wheat) cultivated over a 2 ha
size field (see [4], [6], [10], [16], [30]); (2) the Coussouls site
corresponded to a large and flat stony area covered by a specific
dry grass ecosystem (locally named ‘coussouls’); (3) the Domaine
du Merle site composed of irrigated meadows; (4) the Tour du
Valat site was located within the Rhone River delta (Camargue) on
a Mediterranean saltmarsh scrubs area (see [13]).

Brightness temperatures were estimated from 29 Landsat-7
images acquired from 2007 to 2010. Atmospheric corrections were
performed using MODTRAN and atmospheric information derived
from nearby radiosoundings performed in Nimes (20 to 40 km
away). Surface temperatures were derived by applying equation
(1). These surface temperatures derived from Landsat were
compared to surface temperatures derived from pyrgeometer
measurements (Kipp and Zonen CNR1 sensors) applying equation
(1) to the 5-50 um spectral range at the four surface energy balance
stations.

3.RESULTS
3.1. Differences between surface and brightness temper atures

The theoretical impact of atmospheric radiation and emissivity on
the difference between surface and brightness temperature is given
by Eq. (1). It is presented on Figure 1 at different level of
atmospheric radiation, surface emissivity and temperature. The
temperature difference increased when atmospheric radiation
decreased, emissivity decreased or temperature increased.
Differences up to 2 degrees can be reached when temperature is
high and surface emissivity is 0.97. It can be up to 7 K for
emissivity of 0.91.

3.2. Surface emissivity

The NDVI - emissivity relationship obtained for our area is
presented on Figure 2. At low NDVI, variations in emissivity and



NDVI were related to the level of soil moisture content (see [18]).
Soil emissivity derived from soil reflectance spectra ranged
between ~0.965 for dry soils to ~0.985 for wet soils, in agreement
with in-situ values by [7] and [17]. Vegetation emissivity at high
vegetation cover ranged between ~0.975 and ~0.990 (NDVI ~0.9).
Three NDVI — emissivity relationships were derived in order to
account for the variability in NDVI and emissivities (see Figure 2).

3.3. Surface temperature

The comparison of surface temperatures derived from Landsat data
to surface temperatures obtained from ground measurements is
given in Figure 3, showing a general good agreement and a slight
overestimation by Landsat (Root mean square error RMSE = 1.7 K
and bias ME = 0.6 K). Some discrepancies occurred for the
Avignon site which can be explained by the spatial heterogeneity
of the target (as shown by the high standard deviation around each
point) and for the Tour du Valat site at high temperature which can
be explained by the limited knowledge on emissivity for this site
(salty marshes with a high level of salt, temporary flooded and
presenting non-green vegetation stands affecting the emissivity —
NDVI relationship).

When the derivation of surface temperature was done using the
original set of equations presented by [20], i.e. without accounting
for the correction factor y;9.4-;2 5.m, the Toot mean square error and
the bias were only slightly increased (RMSE = 1.8 K and ME = 0.8
K). When surface emissivity was estimated from the equation
proposed by [27] instead of the equation calibrated over local
information, RMSE and ME were significantly increased (RMSE =
2.4 K and bias ME = 1.5 K). These results can be explained on one
hand by the limited variations of the incident atmospheric radiation
in the situation of our measurements (the range of value is quite
similar before and after correction between 10 W m™ and 40 W m™
despite a corrective factor varying between 0.5 and 1.5), and on the
other hand by large differences in surface emissivity between the
equation from [27] and the local equation.

4. CONCLUSION

Our study shows that in the conditions of our images, emissivity
estimation had the largest impact on the temperature difference.
However, Figure 1 shows that the atmospheric impact can be large,
in particular for high level of radiation which may occur in summer
when the atmosphere is warmer and the vapor pressure is higher.
The procedure presented in this study is currently being
implemented in a processing chain developed for mapping
evapotranspiration.

This work was performed in the frame of the Sirrimed project
(European FP7 financial support) and in the frame of the
development of the EVASPA processing chain to produce
evapotranspiration from remote sensing images.
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