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Abstract 

Background 

Since processes in well-known model organisms have specific features different from those 

in Bos taurus, the organism under study, a good way to describe gene regulation in ruminant 

embryos would be a species-specific consideration of closely related species to cattle, sheep 

and pig. However, as highlighted by [1], gene dictionaries in pig are smaller than in cattle, 

bringing a risk to reduce the gene resources to be mined (and so for sheep dictionaries). 

Bioinformatics approaches that allow an integration of available information on gene 

function in model organisms, taking into account their specificity, are thus needed. Besides 

these closely related and biologically relevant species, there is indeed much more knowledge 

of (i) trophoblast proliferation and differentiation or (ii) embryogenesis in human and mouse 

species, which provides opportunities for reconstructing proliferation and/or differentiation 

processes in other mammalian embryos, including ruminants. The necessary knowledge can 

be obtained partly from (i) stem cell or cancer research to supply useful information on 

molecular agents or molecular interactions at work in cell proliferation and (ii) mouse 

embryogenesis to supply useful information on embryo differentiation. However, the total 

number of publications for all these topics and species is great and their manual processing 

would be tedious and time consuming. This is why we used text mining for automated text 

analysis and automated knowledge extraction. To evaluate the quality of this “mining”, we 

took advantage of studies that reported gene expression profiles during the elongation of 

bovine embryos [2-11] and defined a list of transcription factors (or TF, n = 64) and used it as 

biological “gold standard”. When successful, the “mining” approach would identify them all, 

as well as novel ones. 

Methods 

To gain knowledge on molecular-genetic regulations in a non model organism, we offer an 

approach based on literature-mining and score arrangement of data from model organisms. 

This approach was applied to identify novel transcription factors during bovine blastocyst 

elongation, a process that is not observed in rodents and primates. As a result, searching 

through human and mouse corpuses, we identified numerous bovine homologs, among which 

11 to 14% of transcription factors including the gold standard TF as well as novel TF 

potentially important to gene regulation in ruminant embryo development. The scripts of the 

workflow are written in perl and available on demand. They require data input coming from 

all various databases for any kind of biological issue once the data has been prepared 

according to keywords for the studied topic and species; we can provide data sample to 

illustrate the use and functionality of the workflow. 

Results 

To do so, we created a workflow that allowed the pipeline processing of literature data and 

biological data, extracted from Web of science (WoS) or PubMed but also from Gene 

Expression Omnibus (GEO), Gene Ontology (GO), Uniprot, HomoloGene, TcoF-DB and 

TFe (TF encyclopedia). First, the human and mouse homologs of the bovine proteins were 

selected, filtered by text corpora and arranged by score functions. The score functions were 

based on the gene name frequencies in corpora. Then, transcription factors were identified 

using TcoF-DB and double-checked using TFe to characterise TF groups and families [12]. 



Thus, among a search space of 18,670 Bovine homologs, 489 were identified as transcription 

factors. Among them, 243 were absent from the high-throughput data available at the time of 

the study. They thus stand so far for putative TF acting during Bovine embryo elongation, but 

might be retrieved from the RNA sequencing data from [11] that was not considered here. 

Beyond the 246 TF that appeared expressed in bovine elongating tissues, we restricted our 

interpretation to those occurring within a list of 50 top-ranked genes. Among the transcription 

factors identified therein, half belonged to the gold standard (ASCL2, c-FOS, ETS2, GATA3, 

HAND1, TP53) and half did not (ESR1, HES1, ID2, NANOG, PHB2, TP53). 

Conclusions 

A workflow providing search for transcription factors acting in bovine elongation was 

developed. The model assumed that proteins sharing the same protein domains in closely 

related species had the same protein functionalities, even if they were differently regulated 

among species or involved in somewhat different pathways. Under this assumption, we 

merged the information on different mammalian species from different databases (literature 

and biology) and proposed 489 TF as potential participants of embryo proliferation and 

differentiation, with (i) a recall of 95% with regard to a biological gold standard defined in 

2011 and (ii) an extension of more than 3 times the gold standard of TF detected so far in 

elongating tissues. The working capacity of the workflow was supported by the manual 

expertise of the biologists on the results. The workflow can serve as a new kind of 

bioinformatics tool to work on fused data sources and can thus be useful in studies of a wide 

range of biological processes. 

Background 

Mining context 

Molecular-genetic data obtained from model organisms are widely used in studies of 

biological processes. The problem is that the processes studied in the well-known model 

organisms often have specific features different from those in related non-model organisms. 

For this reason, a single model organism cannot give a complete idea of a process of interest. 

Development of bioinformatics approaches that allow integration of available information on 

gene function in model organisms taking into account their specificity is therefore an 

important task. This task is relevant to almost all areas of biology, including biomedicine, 

veterinary, and agriculture. For example, studies of embryo development in ruminants are 

important to i) understand embryonic loss, especially in high producing dairy cows and ii) 

compare developmental processes across species. However, molecular-genetic data on 

ruminant embryo development are scant and blastocyst elongation is not observed in rodents 

and primates; as a result, the number of well-studied organisms to refer to is limited. A good 

way to describe gene regulation in embryo development from ruminants would be a species-

specific consideration of closely related species to cattle, such as sheep or pig, along with the 

well-studied model organisms, such as human and mouse. The current study offers an 

approach for knowledge acquisition on molecular-genetic regulation in any organism based 

on literature mining and integration of data sources from model organisms. This approach 

was applied to identify transcription factors acting in ruminant embryo development. We 

analyzed data on trophoblast proliferation and differentiation, embryogenesis, stem cells and 

cancer concerning cattle, human, mouse, rat, sheep, pig and horse, that were reported in 

PubMed and WoS. As a result, we identified novel genes potentially important to gene 



regulation in ruminant embryo development. These results will be helpful to design further 

biological experiments on ruminant embryo development but a similar approach would be 

useful to study other biological processes using data sources from other model organisms in 

either animals or plants. Approaches to search for articles that describe molecular-genetic 

mechanisms underlying complex biological processes have been developed. For example, a 

service enabling literature search and ranking based on their biological relevance to gene sets 

has been presented recently [13]. However, our approach is better in tune with ongoing issues 

in text-mining such as feature selection and fusion of literature and biological databases [14]. 

In animal sciences, text-mining just starts to be in the scope of in-silico methods [1] and TF 

Encyclopedia proves the interest around transcription factors in life sciences [12]. 

Biological issue 

A characteristic feature of blastocyst development in ruminants (cattle, sheep) and in pig is 

the elongation process (Figure 1). It is relevant to note that blastocyst elongation is not 

observed in rodents (mainly mouse, rat) and primates (human, monkey) [7,15]. It is observed 

in a few ungulates (pig), not in others (horse) however. 

Figure 1 Microscopic views of the bovine embryo. Microscopic views of the bovine 

embryo during the elongation phase: spherical (S), ovoid (O), tubular (T) and filamentous (F) 

shapes appear sequentially from Day 9 (S) to Day 12–13 (O), Day 14–15 (T), and Day 16–18 

(F). All these steps precede the onset of implantation (D19-21) 

In contrast to cattle, there is an abundance of data on human trophoblast proliferation [16] 

and differentiation [17] or mouse trophoblast development [18,19]. Cancer research also 

disclosed an abundance of data on proliferative and invasive properties, thereby providing 

evidence for molecular circuits shared with human trophoblast cells [16]. Moreover, a special 

kind of trophoblastic cancer, usually of the placenta - choriocarcinoma type - was used to 

derive choriocarcinoma cell lines, frequently used to study trophoblast properties (Rcho-1, 

for example) [20], and to elucidate transcriptional regulation of a bovine trophoblast-specific 

gene, such as the IFN-tau [9,21]. Stem cell research also provides molecular data on 

trophoblast stem cells in mouse and human [22,23]. 

In addition to the text mining issue, we addressed here inter-specific differences in 

proliferation and differentiation, whose molecular bases are likely common over species and 

cell types. The total number of published scientific texts on the studied organisms is great; 

therefore, computer-aided systems must be used for automated knowledge extraction. Our 

main goal was to search for novel transcriptional regulators involved in the development of 

bovine extra-embryonic tissues using a new text mining approach (a transcription factor or 

TF is a protein that binds to specific DNA sequences, activating or inhibiting the recruitment 

of RNA polymerase to specific genes; see the Transcription Factor Encyclopedia [12]). Text 

mining in biology is a well-established practice to identify genes and their possible 

interactants [24,25] that is not much used in animal science [1]. Biological text mining 

focuses on the following tasks: (1) article classification, (2) protein and gene name 

recognition and (3) detection of protein-protein interaction pairs [26]. The F-score (balance 

precision and recall) was around 92% (weighting contribution of many classifiers, from 82 to 

87%) for task 2, and the F-score was 29% for task 3 with pattern-based approaches [26]. The 

event extraction for biological entities became promising for information extraction [27]. 

Like in a jigsaw puzzle, each document is mined to get a piece of knowledge for a gene 

identified in sentences in a way to build its context: interactome, localization of gene 



products, biological processes involving the gene [28-31]. Natural language processing and 

text-mining of scientific articles can be a tool for digging out a hidden piece of knowledge 

and for enriching biological data analysis [32]. Our approach is original in the sense that we 

divide the bulk of literary facts into specialized sub-topics for the topic on which we focused. 

We introduced the concept of the subcorpus. To do so, at the first step we reduced the list of 

species to 7 (cattle, human, mouse, rat, sheep, pig and horse) and the list of keywords to 3: 

trophoblastic (tro), extraembryonic (ex), choriocarcinoma (cho). Our main goal was thus the 

identification of factors regulating gene expression and growth in the bovine trophoblast as a 

major contribution to elongation of the blastocyst before its implantation. To achieve this 

goal, we (i) took into account information from available studies in other species and (ii) 

identified shared genes or proteins through common Pfam domains (as in [33]) and 

HomoloGene records. As known, the protein domain is the evolutionary conserved unit of a 

protein that performs a particular function [34-37] but not all proteins are described by a 

Pfam. 

The hypothesis search space was gradually reduced from about 18,670 putative genes (in 

Homologene/UniProtKB/TrEMBL) to a ranked list of around 1,000 proteins (Figure 2). 

Ranking was the first step in selecting a pool of genes that can be arranged in an interaction 

network [34]; the second step was to identify genes, among this top list, involved in 

regulatory interactions. 

Figure 2 Hypothesis search space of genes. Reduction of the hypothesis search space of 

genes involved in our specific biological issue (symbolised by the red circle). This search 

space corresponds to 1155 genes: 806 Pfam homologs from the 21 subcorpuses, among 

which 80 specific to the Pfam database and 726 shared with HomoloGene. The extra group of 

349 genes corresponds to the homologs identified by HomoloGene but with no Pfam 

equivalent within the 21 subcorpuses (details in Tables 1 and 2) 

Methods 

Databases 

Our study benefited from concomitance of information scattered over several databases. It is 

related to a heterogeneous data exploration topic (or heterogeneous data mining). 

Eight databases were used for processing: 

• 

PubMed and Web of Science 

PubMed (formerly Medline) from NCBI is the most scientific text database specialized in 

biology and medicine; indexing more than 20 million publications in the form of records 

but recently 30% are available as free full texts. The text database called Web of Science 

(formerly ISI) from Thomson Reuters consists of more than 45 million publications for 

any topics, it is mainly used for science assessment. We developed a number of 

subcorpora about species and biological processes from databases. 

• 

Uniprot 

This database from EBI offers knowledge of all the known or putative proteins. Uniprot 

proposes a file, „UniprotKB‟, consisting of records for each protein. These were records 

derived from the TrEMBL database (3,513,283 proteins « not reviewed » hence not 

completely known) and from the Swiss-Prot database (155,669 proteins « reviewed » or 



definitely described). From this file, we decided to extract codes about “reviewed” proteins 

and extracted information from each species. Table 1 shows the distribution of genes 

described with the Uniprot/Swiss-Prot codes per species. 

Table 1 Distribution of protein/gene IDs 

Files proteins (Uniprot) proteins (Pfam) HomoloGene Datasets 

SHEEP 447 409 0 

HORSE 280 265 0 

PIG 1,374 1,264 0 

RAT 7,554 6,670 19,921 

HUMAN 20,286 16,478 19,062 

MOUSE 16,307 13,944 21,076 

BOVINE 5,786 4,971 18,670 

Distribution per species of the number of proteins/genes having Uniprot IDs (left) and at 

least one Pfam domain (center) or an HomoloGene item with the Bovine species (right)  

• 

GO 

Gene Ontology from a 20 Institutions consortium is a hierarchy of concepts. It can be 

useful for getting functional annotation as linguistic concept in such a concept tree to 

understand the role of protein. We used tags of GO included in Uniprot frames. 

• 

Pfam 

The Pfam database (or Protein families) from Sanger Institute consists of at least 12,000 

functional domains. A domain is a molecular structure (a DNA sequence associated with a 

three-dimensional structure), whose properties are preserved over evolution of species and 

between genomes. Domains contribute to the properties of proteins. 

• 

HomoloGene 

HomoloGene is a system from NCBI for automated detection of homologs among 

annotated genes of several completely sequenced eukaryotic genomes. Together with 

human, mouse and rat, HomoloGene (Release 66) contains 18,670 bovine genes, placed in 

17,472 homology groups. 

• 

Geo 

GEO is a database from NCBI of experimental raw datasets, generally microarrays, 

indexing around 2,800 datasets. We used a dataset named GDS1003 derived from the 

microarray study of [3] on embryogenesis and early fetal development: time course for 

bovine embryo [3]. The number of RNA coding sequences was 1,950. 

• 

TcoF-DB 

TcoF-DB from King Abdullah University is a database that includes a highly accurate set 

of 1365 human TFs [38]. Data were extracted from resources: i) a census of human TFs 

previously published by [39] that was regarded to be a gold-standard due to the meticulous 

way it was created; ii) TRANSFAC, a very well known database on TFs [40]; iii) TFCAT 

[41] that compiles the mouse TF genes. For these genes, human orthologs were identified 

by the TcoF-DB team. It must be highlighted that each TF in the TcoF-DB list was curated 

manually at some point during the data integration. 

The crucial step was how to bridge objects from all these independent databases to use 

information about our starting pool of bovine genes. The object here was the gene (and its 

product(s), i.e., its protein(s)). 



The geneticist usually considers a few differences between a gene and its related protein, 

which have often the same designation in a publication. We deliberately chose a unique key 

for a gene as a meta-language between all these databases (gene name, Uniprot ID). This 

choice was based on (1) usage of both tabular and text databases (2) consensus in the 

bioinformatics community of researchers, „molecular biologists‟, that the Uniprot database is 

universal. For instance, gene names in the microarray data of [3] were transformed into 

Uniprot IDs using the tool available at http://niaid.abcc.ncifcrf.gov/. In contrast to Uniprot 

ID, which is unique to a protein, a gene name may not be used regularly in its form; this is 

why synonyms of gene names must be taken into account (some synonyms are cited in the 

Uniprot database). 

General analytical workflow for gene identification 

Our objective was to identify and classify the proteins involved in trophoblast development. 

The initial search space consisted of the 18,670 hypothetical bovine proteins (Figure 2). We 

chose the genes well-described in the Swiss-Prot database, not more than 5,786. 

At the next step, we looked through the functional domains of the bovine genes to identify 

genes from other species that shared the same domains. They were considered as homologs, 

since they performed probably the same operating functions. In this way, we further reduced 

the hypothesis search space to about 4,971 for human and mouse. Finally, the literature 

concerned with genes was taken into consideration in the workflow to infer information for 

some genes active in embryonic development or proliferation. To do so, we had to build 

corpora for each species and for each process (i.e., subcorpora). 

Figure 3 shows a rough workflow that has two parts. The first branch (yellow) got data from 

the database to compute the Pfam homologs. They were exported by ranking according to 

scores. The second branch following the first is beyond the scope of this paper. The list of 

genes was input to organize their links as an associative network (green branch) taking into 

account also the same subcorpora used in the yellow branch. 

Figure 3 General workflow. General workflow separated into two branches 

Details of the yellow branch are given in Figure 4. In the upper part (rose frame) the 

workflow has the objective to get data and make feature selection from raw data and 

encyclopedic data from heterogeneous databases described above. Genes to be analyzed are 

identified in both Uniprot/Swissprot and high-throughput data concerning the target species, 

in our case Bos taurus. At this step, queries to extract data files were names of species. The 

script to combine information is called ortho and is written in Perl. It generated homologs 

with the help of functional domains from the Pfam database between cattle and each species, 

pairwise, in separate exported files. Descriptions were from the collections of publications for 

which queries were defined by the process names. Ortho script was also able to compute the 

most representative Pfam IDs of each species (exclusive domains relative to other species and 

most frequent domains). The matrix of Boolean vectors for the presence or the absence of the 

806 Pfam homologs within the 21 corpora was generated. 

Figure 4 Detailed workflow. Workflow: from databases to ranking of relevant genes. Grey: 

building of sub-corpus. Rose: the Pfam and HomoloGene homologs extraction. The result 

with transcription factors (TF) list exportation is in white. Green link is the communication 

between text processing and other databases processing 



Identification of transcription factors among the top genes 

a) 

11 to 12 TF in the 50 top genes with the Pfam 

Transcription factors are proteins that bind to specific DNA sequences, thereby controlling 

the flow (or transcription) of genetic information from DNA to mRNA. The characteristic 

feature of TFs is that these proteins possess a sequence specific DNA binding domain. 

Two approaches were combined to identify TFs among the 50 top genes. First, the gene 

functions given by GO were analyzed. The presence of GO terms “sequence-specific DNA 

binding transcription factor activity” “transcription regulator activity”, “bHLH 

transcription factor binding”, “transcription activator activity”, “DNA binding” or “RNA 

binding” was considered as an evidence that the protein is a transcription factor or is 

involved in some way in transcription regulation. Taking into account the fact that GO 

annotations are incomplete and in the majority of cases, inferred by electronic annotation, 

we made also use of the TcoF-DB set of 1,365 human transcription factors which was 

created very accurately [38]. For these human TFs from the TcoF-DB collection, bovine 

orthologous genes from each 50 top gene sets were identified. Further manual curation of 

revealed candidate proteins demonstrated that the results of the two approaches were in a 

good agreement. 

b) 

around 150 TF among the 1155 genes from the TF-IDF-21subcorpora (HomoloGene): we 

used the TcoF-DB and TF encycopledia to identify the TF families present in this gene 

sampling, out of the 3 to 400 DNA binding families identified nowadays [12]. 

c) 
about 500 TF within the 4794 genes in the TF-IDF human/mouse corpora (HomoloGene), 

using the same tools: TcoF-DB and TF encycopledia. 

Results 

Identification of Pfam homologs 

To make the information from the model species applicable to cattle, we defined homology 

between bovine proteins and human, mouse, rat, sheep, pig and horse proteins using Pfam 

functional domains. These domains are the amino acid sequences, whose structure and role in 

protein function remained stable during species evolution. Table 1 presents the number of 

proteins stored in the Pfam database for the 7 species listed above. Clearly, it seemed at first 

that most proteins of the tabulated species were described by Pfam domains. 

The solution suggested for the detection of proteins with functions similar to those of cattle 

(the Pfam homologs) is based on (1) consideration of the bovine genes whose proteins have 

at least one Pfam domain and (2) search for proteins of other species, which share all the 

Pfam domains of a given bovine protein. 

Figure 5 presents the distribution of the number of Bos taurus proteins having Pfam 

homologs in the examined species. As seen in the figure, from 75 to 85% of the bovine 

proteins have human, mouse and rat homologs. The number of Pfam homologs was smaller 

in sheep, horse and pig because the number of protein sequences for sheep, horse and pig was 

small in Uniprot. It is also seen that virtually all the proteins known in these species had 

homologs among cattle proteins. Thus, the functional similarities between the proteins with 

defined sequences from different species appeared quite amply characterized relying on 

Pfam. 



Figure 5 Distribution of gene categories. Distribution of gene categories among corpora 

and species we studied. Gene categories are defined by the IPA tool on the 448 orthologs 

(among 806) we identified. Transcription regulators are in red. (display has been realized 

with R-project [42]) 

The same Pfam domain could be present in many different proteins in a species. Say, the 

bovine protein ACOD_BOVIN could have the PF00487 domain. It occurred in 27 different 

proteins in sheep, rat, pig, human and mouse. Obviously, a group of homologs could contain 

both orthologs and paralogs. However, we were interested in genes whose products could 

perform a similar function in different species. Their evolutionary relationships and 

consequently classification of homologs according to orthologs and paralogs were 

disregarded. It may be assumed that common Pfam domains justified the reference of 

proteins to the same functional family and, accordingly, supported their potential 

involvement in the same biological processes. 

Identification of homologs (HomoloGene) 

Homologs from HomoloGene are computed according to gene families. Only Rat, Human 

and Mouse species describe families in common with the Bovine species. Intersection 

between families ID is computed to export lists of homologs between Bovine and Human, 

Bovine and Mouse, and Bovine and Rat. Table 1 shows amounts of homologs between these 

three species and Bos taurus. 

Filtering by a document corpus 

Proteins consisting of a single Pfam domain were more numerous than the total number of 

Pfam IDs describing all the protein domains of a species (for example, for mouse 9,305 

against 3,978). Therefore, we had more than one Pfam homolog per protein. It seems 

plausible that not all the Pfam homologs of a particular protein act in the same tissues of a 

model organism and participate in similar processes. This demonstrated that the Pfam 

database alone did not solve the problem of the one-to-one correspondence between bovine 

and model organism proteins. Thus, additional tools to reduce the number of Pfam homologs 

were required. Our hypothesis space consisted of seven species (cattle, pig, sheep, horse, 

human, mouse and rat) and three tissue types (extraembryonic tissues, trophoblast, and 

choriocarcinoma). Taking this into account, 21 subcorpora were created (see Table 2).  

Table 2 Number of documents 

Corpus Description PubMed WoS Fusion 

Tropho Corpus about trophoblast, extraembryonic tissues and 

choriocarcinoma 

20,132 25,702 33,798 

HuMo Corpus about human/proliferation and mouse/development 111,862   

subcorpus 

name 

Description PubMed WoS Fusion 

TroBo trophoblast and bovine 409 473 583 

ChoBo choriocarcinoma and bovine 33 27 39 

ExBo extraembryonic tissues and bovine 47 39 58 

TroHu trophoblast and human 4,976 4,762 6,336 

ChoHu choriocarcinoma and human 2,023 1,745 2,553 



ExHu extraembryonic tissues and human 519 417 623 

TroMo trophoblast and mouse 1,724 1,478 2,064 

ChoMo choriocarcinoma and mouse 268 181 308 

ExMo extraembryonic tissues and mouse 1,081 928 1,252 

TroRa trophoblast and rat 564 492 701 

ChoRa choriocarcinoma and rat 156 123 191 

ExRa extraembryonic tissues and rat 124 90 154 

TroHo trophoblast and horse 59 66 82 

ChoHo choriocarcinoma and horse 5 3 6 

ExHo extraembryonic tissues and horse 8 7 12 

TroPig trophoblast and pig 206 178 263 

ChoPig choriocarcinoma and pig 8 4 8 

ExPig extraembryonic tissues and pig 29 28 36 

TroShe trophoblast and sheep 376 357 505 

ChoShe choriocarcinoma and sheep 21 19 25 

ExShe extraembryonic tissues and sheep 44 47 60 

Number of processed documents per corpus and subcorpus 

The following query was defined to generate the corpora from the PubMed and the WoS 

databases: 

((trophoblast* or choriocarcinoma* or extra-embryonic* or extraembryonic*) 

and (bovine or human or pig or sheep or mouse or rat or horse)) 

PubMed is specialized in biomedical documents, but use of WoS is quite complementary and 

enriches by 20% the initial corpus. The first script was written, considering keywords from 

the query, to divide these two global corpora (WoS and PubMed) into 21 subcorpora. The 

second script was used to merge each subcorpus pair (PubMed and WoS) into a single 

subcorpus avoiding document duplicates. Additional file 1 shows the number of documents 

per subcorpus and the original global corpus („Tropho‟). We noticed that some subcorpora 

were poorly documented including „ExBo‟, „ChoHo‟ or „ChoPig‟ (Additional file 1). 

However, as reported by [1], using pig, sheep or horse species in this study likely limited the 

size of information to be mined. Therefore, a more general corpus has also been created, 

including only the human and mouse model species. Firstly a query for human has been 

created to generate a subcorpus called “Human Proliferation” from PubMed. It contained 

77,333 documents. Keywords used were: 

  Query = #req1 OR #req2 OR #req3 OR #req4 

  #req4 = human AND embryo Field: Title/Abstract, Limits: Humans 

  #req3 = human AND embryo Field: MeSH Terms, Limits: Humans 

  #req2 = human AND placenta AND cancer Field: Title/Abstract, Limits: Humans 

  #req1 = human AND placenta AND cancer Field: MeSH Terms, Limits: Humans 

A second subcorpus called “Mouse Development” had also been generated from PubMed. It 

contained 34,529 documents. Keywords used were: 



  Query = #req1 OR #req2 

  #req1 = mouse AND embryo Field: Mesh Terms, Limits: Animals 

  #req2 = mouse AND embryo Field: Title/Abstract, Limits: Animals 

Globally their fusion led to a dictionary of 256,133 tokens. 

We then considered the frequency of occurrence, in the publications, of words with similar 

meanings. For example, extraembryonic is a rare word in the literature concerning cattle 

since the word “trophoblast” is more often used to designate the extraembryonic tissues. 

Indeed, the latter word comes from the mouse literature. The word “choriocarcinoma” is not 

very much applied to livestock species, since it comes from the medical community. Indeed, 

no choriocarcinoma has ever been described in these species (cattle, sheep, pig, horse), 

although (i) ectopic grafts of pig trophoblast cells seemed to adopt a tumorigenic phenotype 

(ii) a rat choriocarcinoma-derived cell line (Rcho-1) as well as (iii) human choriocarcinoma-

derived lines (JEG-3, JAR, BEWO; http://www.cell-lines-service.de) were established. As 

mentioned above with reference to the processing of general corpora, from each subcorpus a 

dictionary of unique lexical units (i.e., tokens) was established. Additional file 1 shows the 

number of such units in each subcorpus. Each dictionary was then used to filter (by 

presence/absence) the list of Pfam homologs. 

As known, some genes may have several functions and act in different tissues. When applied 

to a process, this filtering may be regarded as heuristic, (useful for knowledge discovery), 

ensuring filtering of genes playing a role in the process: trophoblast development, for 

example (Table 3) shows the number of Pfam homologs filtered by subcorpora). The whole 

set of Pfam homologs with the bovine domains were present in all corpora, that is to say, in 

all tissues and species tested, and was composed of 1155 genes and 153 TF (Additional file 

3). We observed that usage of synonyms improved the search in dictionaries and increased 

the number of detected genes (Table 3, right column). The list of genes identified in the text 

was enriched by 30%. 

Table 3 Number of Pfam homologs per subcorpus 

Subcorpus name Pfam homologs With synonyms Pfam homologs (without synonyms) 

TroBo 108 87 

ChoBo 15 10 

ExBo 35 35 

TroHu 551 380 

ChoHu 297 193 

ExHu 167 152 

TroMo 336 241 

ChoMo 74 51 

ExMo 199 146 

TroRa 120 74 

ChoRa 43 27 

ExRa 28 16 

TroHo 2 4 

ChoHo 0 0 

ExHo 0 0 

TroPig 24 18 



ChoPig 2 1 

ExPig 5 6 

TroShe 29 23 

ChoShe 5 3 

ExShe 8 9 

Total 806 569 

Number of Pfam homologs, with and without Uniprot synonyms 

We envisioned two options to reorganize this list of genes beyond their interaction context. 

The first relied on identification of their transcription regulatory properties in relation to 

differentiation pathways. In so doing, we identified 15 to 20% of these homologs as 

transcription regulators and analyzed their distribution among corpora (Figure 5). Human and 

mouse corpora were rich in these factors, as compared to the rat or bovine corpora. In 

contrast, as feared, pig, sheep and horse corpora were poorly documented in this regard. The 

second option to reorganize the list was related to a sorting operation by score computation. 

The last one would be a screening for growth factors, cytokines or kinases linked to the cell 

cycle. We realized that cytokines and growth factors were much less represented than 

transcription regulators in the main corpora (human, mouse). Interestingly, kinases were 

similarly well documented in the human and mouse “tro” corpora but less documented in the 

“cho” corpora. This may indicate their tissue-specificity and open new areas of data-mining. 

Classification of genes – presence score in subcorpora 

The classification is intuitive enough, therefore interpretable, and easily tractable. It is based 

on the identification of genes typical of processes or species. The key is the presence (or 

absence) of a gene within a subcorpora. Such a classification is the final result of the general 

workflow (see Figure 3). For this purpose, we created a matrix of scores. There are n genes 

and m subcorpora, let S be the matrix of scores of the gene set G = {g1,…,gn} by the set of 

subcorpora C = {c1,…,c m}. Sij is defined such as sij = 1, if a gene gi is present in the 

subcorpus cj, otherwise sij = 0. Below we show the algorithm: 

  For each gene i from 1 to n 

  For each subcorpus j from 1 to m 

  Compute s[i,j] 

  End j 

  End i 

  Compute si0 = Sum of sij for j = 1,m 

  Sort i = 1,n order by si0 (decreasing) 

Our final filtering step led us to n = 806 genes using m = 21 subcorpora and the first 50 top 

genes sorted by rank (si0 > = 9), were potentially selected by biologists for further validations. 

Classification of genes – frequency score in subcorpora and PubMed 

The second approach to sort the gene list was the extraction of the more or less specific genes 

with regard to the process of interest. This meant study of the specificity of a gene described 

by one or more subcorpora with regard to the whole space of knowledge (WoS and PubMed). 



Technically, we assigned a smaller weight to a gene occurring very frequently in PubMed. In 

our workflow, this concerned the processing part in the grey frame (Figure 4). 

In computation, we used the classical score in the information retrieval and called tf-idf [43]. 

This weight takes into account the relative importance of a term (i.e., word or phrase) in a 

document (it is the „term frequency‟ or the „tf‟ part in the score), with a modulation by 

inverse of the ratio defined by the total number of documents divided by the number of 

documents containing the term (it is the „inverse document frequency‟ or the „idf‟ part of the 

score). Normalization of the frequency by the size of the documents ensured comparisons of 

documents of different sizes. In our case, a term was a gene name with its synonyms. The 

total number of documents in the PubMed and in the subcorpora was used to work out the tf-

idf. For a given gene, name normalization is defined by the number of documents of all 

subcorpora containing this gene name. 

To compute the „tf‟ part of a score, we proceed as follows. Let gi be the name of gene i, ni be 

the number of corpus documents containing gi, j be the index of the subcorpus containing at 

least one document with gi and Nj be the number of documents of subcorpus j . Thus, 

  
 

It is the importance of a gene in subcorpora. 

The „idf‟ part was computed as follows. Let D be the number of documents in PubMed, and 

GFi be the number of documents in PubMed which contain the name of i-th gene, then: 

  
 

Finally, the score of classification for gene i is wi = tfi ·idfi 

Below we present the algorithm: 

  For each gene i from 1 to n 

  Compute GF[i] 

  End i 

  For each gene i from 1 to n 

  For each sub corpus j from 1 to m 

  compute n[i,j] 

  End j 

  Compute SC = Sum |N[j]| from j = 1,m if n[i,j] is not NULL 

  Compute tf[i] = n[i]/SC 

  Compute idf[i] = log(D/GF[i]) 

  Compute w[i] = tf[i]*idf[i] 

  End i 

  Sort i = 1,n order by w[i] (decreasing) 



and the results obtained by both classifications (presence/absence and tf-idf) led to a short-list 

about the 50 top genes over all subcorpora. Each kind of computed score places different 

genes at the top of the lists, six genes are common: feta, cata, ntri, soma, sprc, ty3h. 

Interpreting general functions given by Gene Ontology in both lists (computed with the two 

different scores), we observed that they are very close to our initial issue and indicate 

development and proliferation, however, few TF were identified in these shorts lists, thus 

highlighting the risks of the ranking procedures as well as the risk of treating only an 

“emerging part” of the datasets for further validations. 

Revealing transcription factors among top-ranked genes 

Using dictionaries for Human Proliferation and Mouse Development we obtained - out of 

18,670 genes isolated from of the Bovine genome - (i) 4,794 orthologs with the 2 “Human-

Mouse” subcorpora and (ii) 1,155 candidates using the previous 21 subcorpora. Taking 

advantage of studies that reported gene expression profiles during the elongation of bovine 

embryos, we (i) defined a list of transcription regulators (TR, n = 70) among which we kept 

the transcription factors only (TF, n = 64; Table 4) and - from the terminology of the data 

mining domain – (ii) used it as a “gold standard” to assess the quality of our approach. 

Considering the gold standard gene set and the TF lists that were identified through our 

analyses, we got the following scores: (i) 95.3% recall with the “Human-Mouse” subcorpora 

(3 non retrieved genes: KLF15, PHLDA11, TBX15 due to unrecognized gene ID depending 

on the species or databases), (ii) 59.4% recall with the 21 subcorpora (26 non retrieved genes, 

likely due to restricted gene resources) and (iii) 17.2% recall using the „top 100‟ genes from 

the 21 subcorpora, following a ranking by “presence/absence” within these subcorpora (53 

non retrieved genes with the workflow). 

Table 4 Biological gold standard for transcription factors 

ASCL21ASH2 ETSI HOXE9 KLFB SIX2 

CDX2 ETS2 HOXC4 KLF9 SIX3 

-fos FOSU HOXDI‟J MSX1 SOXI3 

CITEDI FOXA2 HOXDI1 MXI1 SOXIS 

CITED2 GATA2 HOXDI3 MYE SOXI7 

DLX2 QTA3 JUN NYC SOX2 

DLX3 Qt!JA4 JUD OTX2 SPI 

DLX4 GTA5 KLFIU PAX9 STAT2 

DLX5 GATA6 KLFU PHLDAI TX1U 

FLF2 hND1 KLFIS PIt(2 TBXI5 

Ff5 hNF4A KLF3 POUSFI T5X18 

FOMES HDXA4 KLF4 SALL1 TBXS 

 hDXB7 KLF5 SIXI P53 

64 genes generating our biological Gold Standard for Transcription Factors identified so far 

as differentially expressed in Bovine embryos during the elongation process [3,4,11] 

At first, one could think: “the larger the gene list, the larger the TF content”, however, this is 

not the case because of a plateau (Figure 6) and 2 TF-identification slopes for the ranges of 0 

to 2500 and 2500 to 5000 gene IDs. Moreover, 2 converging arguments came from the 

literature to reinsure these observations: i) not more than 873 TF were identified over 11,795 

genes and 32 human adult tissues, using an Affymetrix gene chip, even if some tissues 



exhibit more TF than others: brain and placenta for example [12], ii) across 24 eukaryotic 

genomes from yeast to chimpanzee, not more than 1391 TF were considered as an 

evolutionary repertoire of TF [12]. 

Figure 6 Cumulated curve of TF number in ranked list of homologs 

Nevertheless, considering the largest corpus led to the highest recall (95%). Indeed, among 

the 4,794 homologs, 523 gene IDs were recognized as TF and among these, 489 had a pfam 

domain which was used to confirm their main role of “DNA binding” function (Figure 6). 

Moreover, 246 of these IDs were identified as present whithin 2 gene expression datasets on 

bovine elongating embryos (Figure 7). At last, the 243 gene IDs that were not in these 

datasets were however “true” TF since 95% (n = 231; Figure 8) were properly classified by 

the TF encyclopedia, the other 5% corresponding to unrecognized gene ID or synonyms. 

Interestingly enough, most of the TF identified here belonged to the homeodomain family 

(Figure 8), a characteristic for developmental processes and tissues [12] and a sign of relevant 

TF classes with our mining approach and workflow. 

Figure 7 Venn Diagram with 489 Pfam-HomoloGene TF and previous studies 

Figure 8 TF families of 243 putative expressed TF in Bovine embryo elongation. Legend: 

TF families with 1–10 TF: GATA, GCM, RFX, Stat and T domains, 10–15 TF: HMG, ETS, 

Leucine zipper, Hormone-nuclear Receptor, 15–30 TF: Forkhead, beta-beta-alpha zinc finger, 

HLH 

However, as underlined by [12], some TF are present in all or most tissues with similar 

expression levels, thus being ubiquitous TF, while others are selectively expressed in a few 

tissues, thus bringing specific tissue signatures. Therefore, it is clear that among the 489 TF 

identified by our approach, only a part will contribute to an extra-embryonic, a trophoblastic 

or an elongating signature. That is also why the analysis through species and tissues (21 

subcorpuses) may help sorting out expression specificities, before further biological 

investigations. As an example, the transcription regulators from these subcorpuses that did 

not belong to the “gold standard” revealed interesting biological features: i) ESR1 is involved 

in proliferation and development of various tissues [44] and expressed in bovine placenta 

[45], ii) HES1 is involved in embryonic patterning [46] and mediates differentiation into 

mouse trophoblast giant cells [47], iii) Id2 mediates signaling by activating the proto-

oncogene Myc [48] and can be down-regulated by TGF-beta signaling to favor 

differentiation, as evidenced in trophoblast stem cells [49], iv) NANOG is required for the 

maintenance of cellular pluripotency during normal development as well as in cultured 

embryonic stem cells but has been detected in bovine extra-embryonic tissues [4], v) P53 

regulates the cell cycle and functions as an apoptosis regulator in human villous trophoblast 

cells [50] and vi) PHB2 is a transcription coregulator, initially identified as a repressor of 

estrogen-dependent transcriptional activity. Furthermore, it appeared that all these genes had 

interesting patterns during elongation with ID2 increasingly transcribed and PHB2 

decreasingly transcribed from the ovoid to the filamentous stage, whereas HES1peaked at the 

tubular stage. 



Discussion 

Elongation, i.e., the lengthening and morphological transition of the conceptus from a sphere 

to ovoid, tubular and filamentous shapes (Figure 1) provides an increased surface area to 

enable maternal-conceptus cross-talk and nutrient exchanges [51]. Accompanying elongation 

is the degradation of the sheath of trophoblast cells covering the embryonic disc (Rauber‟s 

layer) exposing the cells of the embryonic disc to the maternal milieu [52]. The trophoblast is 

an epithelium and its development combines many biological processes among which 

proliferation and differentiation take place. The trophoblast from ruminants does not attach to 

the uterus of the mother as the trophoblast of rodents and primates do: no invasion, no 

implantation at a single site and no hemochorial placenta. Total metabolism and protein 

trafficking are characteristic of the onset of elongation, whereas cellular interactions, cell to 

cell signalling and cell adhesion become prevalent at the end of it [3,15,53]. Recent results 

confirmed that an intense multiplication of a non-fully differentiated trophoblast has to be 

considered at the onset of elongation [4]. However, few data on the molecular bases of this 

proliferation have been reported in cattle, while they were well documented in such areas as 

human cancer or human trophoblast development. Since differentiation occurs during 

elongation and since mouse corpora are well documented for proliferation and differentiation, 

it was satisfying that our workflow identified on the “human-mouse” corpora the highest 

number of TF with the best recall of the “gold standard” gene set. Interestingly, the 21 

subcorpora identified less transcription factors and genes from the gold standard, but 

highlighted other genes of interest, such as cytokines or growth factors. Indeed, early 

implantation is known to be facilitated by an acute inflammatory response of the uterus, a 

process orchestrated by the trophoblast through the augmentation of cytokine responses [54], 

and the trophoblast we studied here is only a few days ahead of implantation. The ranking 

procedures thus helped for gene selection. 

Returning to the 806 Pfam homologs, the distribution of genes across subcorpora (Figure 5) 

reveals that TroHu is close to TroMo, ChoHu and ExMo, suggesting some closeness between 

species or tissues, judging by their the gene profiles. Let us assume for further analysis of 

interactions that (i) species like human and mouse, or bovine and rat can be gathered in only 

2 corpora, (ii) tissues may also be gathered or discriminated on the basis of proteins of 

interest (cytokines or growth factors, for example). All this could be done to extract common 

and specific features for sub-classes of species or tissues and refined to screen for: 

– 
other genes (cytokines, growth factors, kinases…) or links to other proteins along 

pathways from the cell membrane to the nucleus 

– 
sub-cellular locations through bioinformatics databases [55] or histological atlases [56], 

hunting for co-expressed genes 

and thus, work on text mining data to build interaction maps. 

Conclusions 

We created a workflow to search for genes of interest through (1) crossing information from 

several databases (tables for protein knowledge and raw text) and (2) furnishing a gene list to 

manage economy in biological testing. 



The developed workflow is a mining analytical methodology leading to selection of 

characteristics of biological processes according to gene and protein properties disseminated 

in several databases. The originality is highly related to (i) exploration of biomedical text 

database to make a powerful semantic filter for expression context of genes (ii) use sub-

corpora resulting from this filtering and (iii) use fused resources: text and biology. The 

suggestion to build corpuses, in order not to explore the whole text database, relies on the 

internal structure of language - based on reuse of words and phrases making them ambiguous; 

a corpus is a kind of “unstructured” knowledge base of biological facts that may be 

considered as “cleaned” enough, i.e. containing solely facts about the subject (in our case 

tissues and species). The ultimate result is a list of Pfam-HomoloGene homologs containing 

about 15 to 20% of transcription regulators as well as shorter lists of sorted genes (cytokines, 

kinases…) that could now be the objects of further refined mining. 

The workflow can now serve as a new kind of bioinformatics tool to work on fused data 

sources (raw text and biology) and can thus be useful in studies of a wide range of biological 

processes. 
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Additional files 

Additional_file_1 as XLSX 

Additional file 1 Dictionaries. Dictionary sizes (list of all lexical forms) for each corpus and 

subcorpus. 

Additional_file_2 as XLSX 

Additional file 2 List of putative expressed TF for Bovine embryo. 243 putative TF for 

bovine elongating tissues; Could however be partly present within the recent RNA 

sequencing data set, which was published in 2012 and was not included here (Mamo, 2012). 

In pink, the gene IDs that were not recognised by the TF encyclopedia; in blue, the TF 

families that were identified through the use of synonyms for these IDs. 

Additional_file_3 as PNG 

Additional file 3 Distribution of TF families for 153 TF identief by pfam-homologene and 21 

subcorpora. TF domains were identified with TF encyclopedia. 


