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1 Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, University Montpellier 2 - Centre national de la recherche scientifique, Montpellier,
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Abstract

The genome content of extant species is derived from that of ancestral genomes, distorted by evolutionary events such as
gene duplications, transfers and losses. Reconciliation methods aim at recovering such events and at localizing them in the
species history, by comparing gene family trees to species trees. These methods play an important role in studying genome
evolution as well as in inferring orthology relationships. A major issue with reconciliation methods is that the reliability of
predicted evolutionary events may be questioned for various reasons: Firstly, there may be multiple equally optimal
reconciliations for a given species tree–gene tree pair. Secondly, reconciliation methods can be misled by inaccurate gene
or species trees. Thirdly, predicted events may fluctuate with method parameters such as the cost or rate of elementary
events. For all of these reasons, confidence values for predicted evolutionary events are sorely needed. It was recently
suggested that the frequency of each event in the set of all optimal reconciliations could be used as a support measure. We
put this proposition to the test here and also consider a variant where the support measure is obtained by additionally
accounting for suboptimal reconciliations. Experiments on simulated data show the relevance of event supports
computed by both methods, while resorting to suboptimal sampling was shown to be more effective. Unfortunately, we
also show that, unlike the majority-rule consensus tree for phylogenies, there is no guarantee that a single reconciliation can
contain all events having above 50% support. In this paper, we detail how to rely on the reconciliation graph to efficiently
identify the median reconciliation. Such median reconciliation can be found in polynomial time within the potentially
exponential set of most parsimonious reconciliations.
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Introduction

Gene families evolve through a complex process involving,

among other things, incomplete lineage sorting and evolutionary

events such as speciation (S), gene duplication (D), horizontal gene

transfer (T) and gene loss (L). The resulting differences between the

histories of gene families (gene trees) and the history of the species

in which the genes are located (species tree) provide clues that are

used by reconciliation methods to infer the events undergone by

gene families. Accurately inferring those evolutionary events is

essential in studying genome evolution as well as in inferring

orthology relationships.

Reconciliation methods construct a mapping between a gene

tree and a species tree to explain their incongruence by

macroevolutionary events such as S,D,T, and L. Several

reconciliation methods have been recently developed according

to the parsimonious or probabilistic paradigm (see [1] for a

review). Parsimony methods search for a discrete evolutionary

scenario of minimum overall cost according to the elementary cost

assigned to each basic evolutionary event [2–8]. Probabilistic

methods search for a continuous scenario maximizing the

likelihood, or the posterior probability, of gene trees [9–11]. The

latter methods are more realistic than parsimony methods, but

their usage is limited to small sets of genes and taxa due to their

high computing time. In contrast, parsimony methods can easily

deal with tens of thousands of gene families [12].

A major issue with reconciliation methods is that the reliability

of inferred evolutionary events may be questioned for several

reasons: Firstly, there may be multiple equally optimal reconcil-

iations for a given species tree - gene tree pair. Secondly,

reconciliation methods can be misled by inaccurate gene/species

trees [13–16]. Thirdly, predicted events may fluctuate with

method parameters such as the cost of elementary events. This

can lead to overestimating the number of evolutionary events, to

erroneously annotate genes as being orthologous and overall to

undermine the value and usage of reconciliation methods. All of

these reasons highlight the need for methods to infer support

values for evolutionary events predicted by reconciliation methods.

Recently, Park et al. [17] proposed a bootstrap based method

for estimating the support of horizontal gene transfers in the

phylogenetic network framework, regardless of duplications and

losses. Considering the reconciliation problem involving duplica-

tions, transfers and losses (the DTL model), Scornavacca et al. [18]

suggested to use a reconciliation graph (DTL-graph) to infer supports
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for evolutionary events based on their frequencies in the set of

equally parsimonious reconciliations. However, no experiments

have been carried out so far to assess the relevance of such

supports. In this paper, we test this approach and complement it

with a number of steps that increase the accuracy of inferred

evolutionary events. For instance, when several most parsimonious

reconciliations exist, we propose to return a median reconciliation

rather than a random one, as done by state of the art methods. We

define two variants of median reconciliations and provide

polynomial algorithms for computing them. Experimental results

show that such median reconciliations lead to significantly more

accurate inferences in several situations. Median reconciliations

are all the more appealing since there are cases where no

parsimonious reconciliation can contain all events with high

support (.50%). Hence, a pairwise compatibility of events does

not ensure a global compatibility of those events.

Considering the whole set of equally parsimonious reconcilia-

tions is a first step toward the estimation of event reliability. Yet

this is often not sufficient to provide accurate supports for

evolutionary events. For instance, when there is a unique optimal

reconciliation, the solution proposed in [18] is unadapted since, as

the considered reconciliation set contains a single reconciliation,

all its events have maximal support. Moreover, via simulations, it

has been observed that the real evolutionary histories of gene

families can slightly differ from the optimal reconciliations [14]. In

such cases, suboptimal solutions may more accurately reflect the

real evolution. This prompted us to study a method for inferring

event supports from a set of (sub)optimal reconciliations obtained

by computing most parsimonious reconciliations for slightly

different elementary event (D,T,L) costs. Confidence values for

evolutionary events are then computed according to their frequen

cy among this set of sampled (sub)optimal reconciliations. As

Doyon et al. [1] showed that most likely reconciliations are in the

closed neighborhood of the most parsimonious ones, our strategy

to obtain event supports can thus be seen as a rough

approximation of event posterior probabilities. This approach is

presented here in the parsimonious framework proposed by

Doyon et al. [5] but it could easily be extended to the probabilistic

framework.

Experiments on simulated data show the meaningfulness of the

proposed support measures. Indeed, the evolutionary histories

composed of events with high supports (e.g.$50%) are more

accurate than those proposed by traditional reconciliation tools,

which do not use supports. Although such improvements were

achieved for all the different support measures that we tested,

measures accounting for suboptimal reconciliations perform

significantly better than those that focus only on equally

parsimonious reconciliations.

Basics

This section outlines the prerequisites needed to fully under-

stand how our method can, in polynomial time, assess event

reliability and select a reconciliation containing the most

supported events. After introducing the basic notations used in

the reconciliation framework, we recall the formal definition of the

parsimonious reconciliation problem with respect to the DTL

model introduced by Doyon et al. [5] and present the graphDTL

structure [18] that allows us to design a polynomial time

complexity solution.

Basic notations
The trees considered in this paper are binary rooted trees,

labeled only at their leaves, and uniquely leaf-labeled (this

simplifies definitions, while not keeping several leaves of a gene

tree from corresponding to sequences of the same organism, see

Figure 1). The node set, edge set, leaf node set and root of a tree T

are respectively denoted V(T), E(T), L(T) and r(T). The label of

each leaf u is denoted L(u), while the set of labels of leaves of T is

denoted L(T). Given two nodes u and v of T, we write uƒT v (resp.

uvT v) if and only if v is on the sole path from u to r(T) (resp. and

u?v). For a node u of T, Tu denotes the subtree of T rooted at u, up

the parent node of u, hence (up,u) is the parent edge of u. When u has

two children, they are denoted u1 and u2. The height of u, denoted

h(u), corresponds to the maximum number of edges along a direct

path between u and any of the leaves in the subtree Tu.

A species tree is a rooted binary tree depicting the evolutionary

relationships of ancestral species (internal nodes) leading to a set of

extant species (leaves). A species tree S is considered here to be

dated, that is associated with a time function hS : V (S)?Rz such

that if x[L(S) then hS(x)~0 and if yvSx then hS(y)vhS(x). T

he date of a node represents the time separating it from extant

species. Such dates are usually expressed in million years and

estimated on the basis of molecular sequences [19] and fossil

records. To ensure that predicted transfers only occur between two

co-existing species, absolute dates are not required, with the

important information here being the relative order of the nodes of

S induced by the dating. Given a dated binary species tree S, the

reconciliation model we rely on considers a subdivision S’ of S (as

also done in [5,10,20]) together with an associated time function

hS’. This subdivision is constructed as follows: for each node

x[V(S)\L(S) and each edge (yp,y)[E(S) s.t. hS(yp)whS(x)w

hS(y), a new node w is inserted along the edge (yp,y), with

hS’(w)~hS(x). Moreover, for nodes x[V (S’) corresponding to

nodes already present in S, we set hS’(x)~hS(x).

A gene tree G is a rooted binary tree depicting the evolutionary

history of a gene family, i.e. of a set of homologous sequences

observed in current organisms. The sole label associated with each

leaf of the gene tree, i.e.L(:), corresponds to a specific extant copy

of the gene in a species. Note that several leaves of a gene tree can

be associated with the same species due to duplication and transfer

events. We define a surjective function s : L(G)? �LL as the species

labeling of G, where s(u) is used to denote the species to which the

sequence u belongs. The set of species labels of the leaves of G is

denoted S(G). Each edge (up,u) of E(G) can be univocally

identified by the subset L(Gu)(L(G). An example of a species

tree and its subdivision, along with a gene tree is presented in

Figure 1.

Parsimonious reconciliations
Inspired by the work of several other authors, Doyon et al. [5]

proposed a parsimonious reconciliation model for reconciling a

dated binary species tree S with a binary gene tree G by building a

mapping a that associates each gene u[V (G) to an ordered list of

nodes in V(S), namely the ancestral and/or extant species in which

the sequence u evolved. This model takes four kinds of biological

events into account: gene speciation, duplication, transfer and loss.

To ensure the time consistency of transfers and to optimize the

running time, the mapping is based on a set of seven atomic

events: a speciation (S), a duplication (D), a transfer (T), a transfer

followed by loss of the non-transferred child (TL), a speciation

followed by loss of one of the two resulting children (SL), a no

event (1) indicating that a gene lineage has crossed a time

boundary, and a contemporary event (C) associating an extant

gene copy with its corresponding species. For completeness, we

reproduce the formal definition of a DTL reconciliation [5] in

Appendix S1. As an example, consider the reconciliation depicted

Estimating the Reliability of Reconciliations
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on the left of Figure 2. This reconciliation corresponds to the

following mapping a: a(u)~fxg (event S1), a(v)~fy’,Ag (events

13 and T4), a(w)~fyg (event S2), a(A1)~fAg,
a(B1)~a(B2)~fBg and a(C1)~fCg. Note that several valid

reconciliations can exist. For example, both reconciliations in

Figure 2 are valid reconciliations for the trees depicted in Figure 1.

Actually, given a gene tree G and species tree S, the number of

possible reconciliations is infinite when successive TL s are

allowed, and still huge otherwise. Discrete evolutionary models

compare alternative reconciliations by counting the number of

events that these reconciliations respectively induce. As different

types of event can have different expectancies (e.g. L are thought to

be more frequent than D and T [21]), reconciliation models allow

for a specific cost to be associated with each kind of event. The cost

of a reconciliation a is then the sum of the costs of the individual

events it induces, i.e. cost(a)~ddzttzll, where d, t, and l
respectively denote the cost of a D,T, and L event, while d, t, and l

respectively denote the number of these events in the reconcili-

ation a. In this setting, the parsimony approach consists in

preferring a reconciliation of minimum cost, called a Maximum

Parsimony Reconciliation (MPR). Note that several distinct alternative

reconciliations can have the same optimal reconciliation cost. Note

also that distinct reconciliations on S’ can be equivalent with

respect to S, whereby one can identify a unique canonical

reconciliation on S’ for each such equivalent reconciliation set

[5,18].

The DTL graph
In the reconciliation field, given a gene tree G and a species tree

S, the main aim is to find the optimal reconciliation with respect to

a chosen evolutionary model. One difficulty is that there can be

several optimal or near-optimal reconciliations. In the maximum

likelihood framework, numerous reconciliations may have a

probability that is not significantly different from the optimal

one, while in the parsimony framework there can sometimes be an

exponential number of most parsimonious reconciliations [4].

Scornavacca et al. [18] introduced a compact bipartite graph to

represent, in a common structure, a set of reconciliations on the

basis of their shared events. This reconciliation graph (also called

DTL-graph) is outlined below. This graph is an efficient solution to

represent the set of MPRs as it has at most size O(DSD3:DGD) and can

be constructed in O(DSD3:DGD) time from G and S, in spite of the

possibly exponential size of the represented set. Moreover, a single

traversal of the DTL-graph allows us to compute, for each event e,

the number of MPRs displaying it and hence its frequency among

the set of (canonical) MPRs reconciliations ([18], Section 4.2).

More formally, a DTL-graph G~(V (G),E(G)) is composed of

mapping nodes and event nodes, respectively denoted Vm(G) and

Ve(G). Each event node corresponds to an event (S,D,T, …), and

each mapping node associates a node of G with a node of S’. For

instance, in Figure 3, the node denoted (u,x),2 is a mapping node

while the one denoted S 0,1 is an event node. In more detail, letR
be the set of all MPRs for a gene tree G, the subdivision S’ of a

species tree, and a vector of costs of individual events. Then, for

each a[R, node u[V (G) and index 1ƒiƒDa(u)D such that

x~ai(u), Vm(G) contains the node labeled (u,x). In particular, a

root of G is a mapping node whose association concerns the root

r(G) of G (note that G can have multiple roots). Moreover, two

mapping nodes labeled (u,x) and (u’,x’) are connected via an

event node labeled E[fS,D,Tg if and only if there exist a[R and

index 1ƒiƒDa(u)D such that ai(u) is associated with an event of

type E in Definition 1 in Appendix S1. and either (1) ivDa(u)D,

Figure 1. An example of trees. An example of a gene tree (G) and of a dated species tree (S), along with its subdivision (S’). The species labeling of
G is as follows: s(A1)~A, s(B1)~s(B2)~B and s(C1)~C.
doi:10.1371/journal.pone.0073667.g001

Figure 2. An example of reconciliation. Two valid reconciliations for the trees depicted in Figure 1 (C events are not indicated). The
reconciliation on the left contains two S events, one 1 event, a T event and four C events, while the one S on the right contains one S event, one
SL, one 1 event, two T events and four C events.
doi:10.1371/journal.pone.0073667.g002

Estimating the Reliability of Reconciliations
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u’~u and aiz1(u)~x’ or i~Da(u)D, u’~ul (or ur) and a1(ul)~x’
(or a1(ur)~x’). For instance, in Figure 3, the mapping node

denoted (u,x),2 at the top of the graph associates the gene node u

with the species node x while the nodes just below – denoted S 0,1
and D 1,1 – indicates that u can be associated with x via a

speciation (S 0) or a duplication (D 1). The values following the

commas (2, 1 and 1, respectively) indicate the number of

reconciliations encoded in the graph containing the nodes. Graph

G is constructed in such a way that each reconciliation a[R is

depicted as a subgraph of G called the reconciliation tree Ta associated

with a. By construction, G contains all MPRs of G and S’.
Moreover, all reconciliation trees in G are associated with one

reconciliation inR, i.e. G is a tight representation ofR. For further

detail please refer to [18].

To introduce the notations needed hereafter, let ch(u) denote the

set of children of a node u in G. Moreover, for each event node e in

Ve(G), fGe denotes its frequency in the set of canonical MPRs in G,

computed as described in [18], Section 4.2. We also call fGe the

MPR support of e, or simply support when the context is clear. Only

canonical reconciliations are considered here when computing the

frequencies of events to give the same weight to each event defined

w.r.t. S (since each one may correspond to several events w.r.t. S’
[5,18]).

Methods

In this section, we define the notion of median reconciliation, a

reconciliation of choice to represent a set of reconciliations. We

then detail how to efficiently compute this median reconciliation

for the set of most parsimonious reconciliations by relying on the

reconciliation graph introduced in the previous section. Finally we

introduce a method to sample suboptimal reconciliations by

altering the costs of elementary events and detail how the median

reconciliation of this larger set of reconciliations can also be

computed in polynomial time.

Median reconciliations
When faced by the fact that several reconciliations can be

optimal for the parsimony criterion, several methods and

computer programs return a randomly chosen optimal solution,

e.g. [7,12], whereas CoRe-PA [22], Mowgli [5], the new version of

Jane [20], and NOTUNG [8] only offer, as an alternative solution,

to output all most parsimonious scenarios. Dealing with this list is

not straightforward since there can be an exponential number of

most parsimonious reconciliations [23]. When looking for a good

representative of a set of objects, an intuitive choice is to select the

median. Here we investigate the notion of the median of a set of

reconciliations, proposing two variants of such a median. To

define median reconciliations, we first need to specify distance

measures between such objects.

Let R1 and R2 be two reconciliations a,a’ on the same gene tree

G and species tree S whose respective event sets are denoted E(R1)
and E(R2). Now, let E1 be an event in E(R1) corresponding to the

mapping ai(u) and let E2[(R2) correspond to the mapping a’j(v).

Then we have the following:

Definition 1. We say that E1 is equivalent to E2, denoted E1%E2, if

and only if:

1. u = v;

2. ai(u)~a’j(v);

3. one of the following conditions holds:

(a) ai(u) (and thus a’j(v)) is a leaf;

(b) i~Da(u)D, j~Da’(v)D, a1(ul)~a’1(vl) and a1(ur)~a’1(vr)
(or the symmetric holds);

(c) i=Da(u)D, j=Da’(v)D and aiz1(u)~a’jz1(v).

The asymmetric distance between R1 and R2 is defined as:

da(R1,R2)~DE(R2)\E(R1)D ð1Þ

while the symmetric distance ds(R1,R2) is defined as:

ds(R1,R2)~DE(R2)\E(R1)DzDE(R1)\(ER2)D ð2Þ

The first distance only accounts for events of R2 missing in R1,

while the second distance also accounts for events in R1 not in R2.

Note that, by definition, all reconciliations of a given gene and

species tree pair have the same set of Cevents, so these events will

not be considered hereafter. As an example, let R1 and R2 be the

Figure 3. An example of a DTL graph. The DTL graph produced by
Algorithm 3 of [18] for the trees depicted in Figure 1 and costs d = 0.9,
t = 1.1 and l l = 0.1. Event nodes are depicted using dashed lines and
mapping nodes using solid lines.
doi:10.1371/journal.pone.0073667.g003
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two reconciliations depicted in Figure 2. For these reconciliations

it holds that E(R1)~fS1,S2,13,T4g while E(R2)~fS5,
SL6,T7,18,T9g. Since S1%S5, 13%18 and T4%T9, then

da(R1,R2)~2 and ds(R1,R2)~3. The above defined distances are

the direct analogues of distances used in the phylogenetic

reconstruction field: For instance, the symmetric distance is

defined there as the number of clades (or splits in the unrooted

context) present in one tree but not in the other [24]. In this field,

there is a direct link between median trees and the support of

clades (or splits) in a tree: when defining the support of a clade as

the frequency of its appearance in a set of trees, the median tree

happens to be the tree containing all clades with over 50%

support, known as the majority-rule tree [24,25]. If a more

informative output is needed, one can rely on the asymmetric

median tree, which is defined as the tree maximizing the sum of

the frequencies of its clades, hence potentially including clades

with lower than 50% support (see [26] for more details on

consensus and median trees).

Reconciliations are more complex objects than trees and

unfortunately the set of events present in more than 50% of an

input set of reconciliations cannot always be embedded in a single

reconciliation. Indeed, Figure 4 shows a case where none of the

most parsimonious reconciliation contains all events with above

50% support. In other words, the global compatibility of the set of

events having above 50% support is not ensured. However, rather

than resigning oneself to picking a random reconciliation, it seems

preferable to select one with as many highly supported events as

possible. This is why we turn to medians. Indeed, we will show in

the next section that the medians of the reconciliation set used to

estimate event supports are precisely the reconciliations with as

many highly supported events as possible (see Lemma 1). To

ensure that the proposed reconciliation is parsimonious, we limit

our search to the input set, thus considering the problem of finding

the ‘‘most median’’ reconciliation among input reconciliations,

both in the asymmetric and symmetric case:

Problem 1. Asymmetric Median Reconciliation (AMR)

INPUT: A setR of reconciliations on the same gene tree G and species tree S,

such that S(G)(LS.

OUTPUT: A reconciliation RA[R minimizing da(RA,R)~P
R[R

da(RA,R) over all reconciliations R in R.

Problem 2. Symmetric Median Reconciliation (SMR)

INPUT: A setR of reconciliations on the same gene tree G and species tree S,

such that S(G)(LS.

OUTPUT: A reconciliation RS[R minimizing ds(RS,R)~P
R[R

ds(RS,R) over all reconciliations R in R.

Note that there can be several reconciliations within the initial

set R minimizing da(RS,R) or ds(RS,R). In the worst case, all

reconciliations of R can have the same value for those functions,

thus returning one of the (a)symmetric medians of R is just

equivalent to returning a random reconciliation of R. Such

problematic cases occur, for instance, when reconciliations have

no events in common. In these extreme cases, it does not really

matter which reconciliation is chosen since all of its events will

have a low support (1=DRD). Moreover, in most realistic cases, only

one or a few reconciliations will minimize da(RS,R) (or ds(RS ,R)),
and the (a)s-median criterion will allow us to select, among MPRs,

the one with the most frequent (i.e. reliable) events.

Computing median reconciliations
We now explain the link between the frequencies of events in a

set of reconciliations and the criteria optimized by a median

reconciliation of this set. Given a reconciliation set R, (R) denotes

the set of events that appear in at least one reconciliation in R.

Given an event e[E(R), f(e) denotes the frequency of this event in

R, i.e. the proportion of reconciliations displaying e.

Lemma 1.

N The asymmetric median reconciliation RA of a set R of reconciliations is

one of the reconciliations maximizing
P

e[E(R)

f (e), over all reconciliations R

in R.

N The symmetric median reconciliation RS of a set R of reconciliations is

one of the reconciliations maximizing
P

e[E(R)

(f (e){0:5), over all

reconciliations R in R.

Proof: Deferred to Appendix S1.

Note that though the two criteria stated in Lemma 1 seem quite

similar, they generally do not lead to choosing the same

reconciliation as representative of R. As an example, let R1 and

R2 be the two reconciliations depicted in Figure 2. These

reconciliations R1 and R2 have equal event sets except for

S2[E(R1)\E(R2) and SL6,T7[E(R2)\E(R1). Suppose that

f (S2)~0:8,f (SL6)~0:3,f (T7)~0:6. Then
P

e[E(R2)

f (e){
P

e[E(R1)

f (e)~0:1 leading R2 to be preferred for the asymmetric median,

while
P

e[E(R1)

f (e){0:5){
P

e[E(R2)

f (e){0:5)~0:4 leading R1 to be

preferred for the symmetric median.

Polynomial time algorithms to identify median
reconciliations of most parsimonious reconciliations

Note that, since there can be an exponential number of MPRs,

median reconciliations cannot be constructed in polynomial time

from a raw representation of the set of all MPRs (indeed, this

would require exponential running time just to read this input set).

We get around this problem thanks to the DTL-graph represen-

tation of the set of MPRs – that can be computed and stored in

polynomial time and space. We now show how to compute

asymmetric and symmetric median reconciliations for a set of

reconciliations depicted by a DTL-graph in polynomial time. Let

G be the DTL-graph for a gene tree G and the subdivision S’ of a

species tree containing all MPRsR of G and S’. Recall that solving

the AMR problem is to find the reconciliation RA minimizing

da(R,R) =
P

R’[R
da(R,R’) over all reconciliations R’ in R, so, by

Lemma 1, the one maximizing
P

e[E(R’)
fGe, over all reconciliations

R’ in R. Here, each reconciliation R[R corresponds to a

reconciliation tree TR in T , and obtaining R from TR is

straightforward ([18], Algorithm2). We will then focus on

identifying a reconciliation tree for which the sum of event

supports is maximized. This is achieved by a single traversal of G,

described in the Algorithm below (see Table 1 and Table 2). Note

that from a practical standpoint of view, it suffices to subtract 0.5

to all event supports in a preprocessing step to transform Problem

2 into Problem 1. So the Algorithm can also be used to solve

Problem 2, having previously subtracted 0.5 from all event

supports.

We first prove the correctness of the algorithm.

Theorem 1. Let G be the minimum reconciliation graph for a dated

species tree S, a gene tree G such that S(G)(LS and positive costs d, t, and

l for a D,T, and L, event respectively. Algorithm 1 (Table 1) extracts a

reconciliation tree TA from G such that the sum of the event supports of TA is

maximum among all reconciliation trees included in G, i.e. among all MPRs.

The proof is deferred to Appendix S1.

Theorem 2. Algorithm runs in O(DSD3:DGD) time.

Estimating the Reliability of Reconciliations
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Proof: Since each node v of G is considered on line 8 or 10

(c{(v)z1) times, where c{(v) is the number of edges entering in

v, the overall complexity of lines 1–10 is proportional to DE(G)D.
The subroutine BACKTRACK(r) constructs a reconciliation tree by a

pre-order traversal of the subgraph of G rooted at r. Since each

node of this subgraph is considered at most once by construction,

the overall complexity of this step and of Algorithm 1 (Table 1) is

DV (G)D. Both DE(G)D and DV (G)D are bounded by O(DSD3:DGD)
(Theorem 2 of [18]). This concludes the proof.

Overall, the above results show that we can easily compute

central representatives of most parsimonious reconciliations

between a gene and species tree.

Considering suboptimal reconciliations by altering the
elementary event costs

The choice of the cost for the elementary events may have a

strong impact on the event set inferred by parsimonious

reconciliation methods. These costs are usually derived from

evolutionary event rates inferred by probabilistic methods on

biological datasets [11]. In the case of simulated datasets, exact

event rates are known and can be directly used to derive

elementary event costs (see [5,27] and Equation 4).

A standard strategy to estimate the reliability of an inference is

to consider its stability with respect to fluctuations of the method

parameters, i.e. here the costs of the elementary events (see [28] for

an example in the sequence alignment context). Since optimal

solutions for slight variations of parameter values are near-optimal

solutions for the original parameter values, this strategy can also be

viewed as a sampling of suboptimal solutions. To obtain a set of

Near-optimal Parsimonious Reconciliations (NPRs), we thus

proceeded as follows: first, we fixed a value for a parameter,

denoted D, controlling the dispersion of new elementary costs.

Second, for each elementary event type E (with E being D,T,or L,),

a new cost c’E was randomly drawn from a Gaussian distribution

with mean equal to the initial cost cE , and standard deviation

equal to D � cE , i.e. c’E*N cE ,(D � cE)2
� �

. Third, the resulting

combination of elementary costs was input in Algorithm 3 of

Scornavacca et al. [18] to construct a DTL-graph G that

summarizes the MPRs for this parameter set. These MPRs, for

a set of altered costs, can be seen as NPRs for the original

parameter set. The last two steps were repeated 1,000 times

without varying the value of D, producing a set XD of 1,000 DTL-

graphs summarizing the set of generated NPRs.

The support of an event among NPRs can then be defined as

the percentage of NPRs containing it. In practice, the NPR-based

support of an event e can be computed by combining its MPR

supports observed in the 1,000 DTL-graphs as follows:

fD(e)~
X
G[XD

fGe � DGD

0
@

1
A= X

G[XD

DGD, ð3Þ

where DGD denotes the number of MPRs encoded in G. Having

computed such global NPR supports and assigning them to the

corresponding node event in each DTL-graph in XD, the

symmetric and asymmetric median reconciliation problems can

be solved by running Algorithm 1 (Table 1) successively on the

1,000 DTL-graphs of XD and selecting the best overall returned

reconciliation. Hence, considering NPRs instead of MPRs just

increases the running time by a constant factor, without increasing

the asymptotic time and space complexity. Note that the definition

of NPR-based supports indeed generalizes the MPR-based one,

since when D tends to 0, NPRs tend to MPRs. Indeed, if D= 0,

then fD is just the aforementioned fG support.

Figure 4. An example where none of the MPRs contain all highly supported events. (a) The DTL-graph composed of three canonical MPRs
was computed by Algorithm 3 of [18] given the species tree S whose subdivision is S’ (b), the gene tree G (c), and the costs d = 0.60205, t = 0.74818,
and l = 0.24303 respectively for a D,T, and Levent. Events with support higher than 50% are highlighted by yellow squares. Each node of S’ (resp. G)
is assigned a unique id. An event node (resp. mapping node) of the graph is labeled as ‘‘E id,N ’’ (resp. ‘‘(gene id,species id),N ’’), where
E[fS,D,T,TL,SL,1,Cg, and N is the number of parsimonious reconciliations passing through the node. Recall that each parsimonious reconciliation
tree can contain only one child of a mapping node.
doi:10.1371/journal.pone.0073667.g004

Table 1. Algorithm 1: MAXSUMFREQUENCIESTREE(G).

1 for v[V (G) do

2 SCORE vð Þ/0; // score of the best local reconciliation encountered so far for Tv

3 on(v)/false; // whether or not this node is part of the global optimal reconciliation tree

4 for e[E(G) do

5 on(e)/false; // whether or not this node is part of the global optimal reconciliation tree

6 for each vertex v of V (G) in post-order do

7 if v is an event node then

8 SCORE(v)~
P

u[ch(v)

SCORE(u)zfG(v);

9 else

10 SCORE(v)~ max
u[ch(v)

SCORE(u);

11 r/ a root of G such that SCORE(r) is maximum among all roots of G;

12 BACKTRACK(r);

13 TA/ the subtree of G obtained by keeping nodes and edges which are ‘‘on’’;

14 return TA ;

doi:10.1371/journal.pone.0073667.t001

Estimating the Reliability of Reconciliations

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e73667



Filtering out unreliable events
Both support measures considered above, i.e. computing the

frequency of events either from MPRs or from NPRs, can be used

to filter a reconciliation event set by retaining only events whose

frequency is not smaller than a given threshold (called filtering

threshold in the following). This may be used to prune poorly

supported events from proposed reconciliations. A very similar

process is applied in phylogenetics where branches whose support

is lower than a chosen confidence threshold are discarded, being

considered as unreliable. In phylogenetics, a clade is removed by

collapsing the edge of the tree above the clade, with the filtering

process still outputting a (partially resolved) tree. With reconcil-

iations, this is not so simple, as there is no guarantee that the

events having a threshold above 50% together form a reconcil-

iation. Thus, such event subsets have to be considered as a partial

history of events, still allowing us to interpret part of the gene tree

(with some of its nodes being assigned to these events). This

however suffices to deduce orthology and paralogy relationships

among some leaves or to qualify some edges of the gene tree as

representing a transfer.

Results and Discussion

In this section, we report an experimental evaluation of the

ideas outlined in the previous sections to answer several questions.

Mainly, how can an optimal reconciliation be selected when

several are available? Does filtering out the least supported events

in a reconciliation improve the accuracy of the inference? Does

considering near optimal reconciliations as well as optimal ones

lead to more reliable support estimates?

Generating data
Experiments were conducted on the basis of a phylogeny of 37

proteobacteria. Along this species tree, 1000 evolutionary histories,

composed of D, T, L and S and events (ETrue), were simulated

according to a birth and death process, leading to 1000 simulated

gene trees (GTrue). Rates for macro-evolutionary events were

chosen using the same scheme as [14]: (a) the loss rate was

randomly chosen in the [0.001, 0.0018] interval, where the units

are events per gene per million years. Moreover, the ratio between

the ‘‘birth’’ rate (sum of the duplication and transfer rates) and the

loss rate was randomly chosen in the [0.5,1.1] interval, while the

proportion of the duplication rate to the birth rate was randomly

chosen in the [0.7,1] interval. The Seq-Gen program [29] has

been used to simulate the evolution of DNA sequences of 1500–

3000 bp length along each GTrue under the Generalised time-

reversible (GTR) model [30], the sequences in turn have been

given as input to RAxML [31] to infer a maximum likelihood gene

tree (GML). Thus, the simulation protocol delivered a dataset of

1000 gene trees to reconcile with the proteobacteria phylogeny.

ML trees contain on average 29 leaves and have an average

Robinson-Foulds distance of 17.7% with respect to the true gene

trees. The species tree is reconciled with GML trees instead of GTrue

trees to take the fact that gene trees are only an indirect estimation

of the true gene histories into account. For more details on the

simulation protocol please refer to [14].

As done in [14], the initial elementary cost for a duplication was

chosen as follows:

Cost~log
DD(ETrue)DzDT(ETrue)DzDL(ETrue)

DD(ETrue)D

� �
ð4Þ

where D(ETrue), respectively T(ETrue) and L(ETrue), stands for the

sets of duplication, respectively transfer and loss events, in the

simulated history ETrue. The elementary costs of a transfer and of a

loss, CostT and CostL, were computed in the same way.

Speciation events were not penalized, i.e. CostS~0, as often done

[5,7,12].

Compared strategies to infer events in gene histories
We tested the relevance of several event prediction strategies, on

the basis of four choices:

i) Which set of reconciliations to choose from: the set

containing the most parsimonious reconciliations only, or

a broader set containing non-optimal ones computed by

altering the value of event costs given as input to the

reconciliation algorithm via the D parameter, see previous

section. In the experiments, we studied D values in the 0%–

40% range, i.e. going from strictly optimal to loosely

optimal parsimonious reconciliations.

ii) How to compute the support fD for events of the selected

reconciliation set, i.e. on the basis of MPRs only (D= 0) or

also from NPRs (D= 10% to 40%);

iii) How to pick a reconciliation among those of the selected

reconciliation set, i.e. a random one, the asymmetric or the

symmetric median reconciliation;

iv) Under which T threshold to filter out events from the

chosen reconciliation. In the experiments, we considered

the following filtering thresholds: T = 100%, T = 90%, 50%

and T = 0%. Note that the last case corresponds to applying

no filter at all.

To test the above mentioned strategies, for each gene family

(GML), we used Algorithm 3 of Scornavacca et al. [18] to compute

a reconciliation graph G containing all MPRs. We first did this

using the event costs computed by Equation (4) – that we consider

to be our best candidate for the ‘‘real’’ costs – and then did this for

altered values of these costs (according to the noise level D), giving

rise to a graph containing more and more non-optimal reconcil-

iations (NPRs) as increasing D values were used (see Section

Considering suboptimal reconciliations by altering the elementary event costs).

A note on the running time. For each gene family, computing

the fD(e) support for all events took at most 15 min, while

computing the median reconciliations took only a few seconds.

Measuring the accuracy of compared strategies
In order to compare the performance of those event prediction

strategies, we studied the accuracy of the resulting predicted events

with respect to those of the true (simulated) history. Following Def.

Table 2. Algorithm 2: BACKTRACK(v).

1 on(v)/true;

2 if v is an event node then

3 for any outgoing edge e of v do on(e)/true;

4 for each child u of v do

5 BACKTRACK(u);

6 else

7 u/ a child of v such that SCORE(u)~SCORE(v);

8 on((v,u))/true;

9 BACKTRACK(u);

doi:10.1371/journal.pone.0073667.t002
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1 a D event of ETrue is said to be correctly predicted (i.e. is a true

positive or TP) when the reconciliation places the corresponding

node of GTrue on the correct branch of the species tree. Similarly, a

T event is said to be correctly predicted when the corresponding

edge of GTrue goes from the same donor to the same receiver

branch of the species tree as in the correct gene history. An L event

is correctly predicted by a reconciliation when it is placed in the

species tree branch where it occurred in the true history of the

family. A predicted event absent from ETrue is a false positive event

(FP), while events which are not within the inferred set of events

are either true negatives (TN) if they are not in ETrue or false

negatives (FN) otherwise. For GML, only the type of an event (S,

D, T, or L) and its predicted location on the species tree are taken

into account in the computation of TP, FP, TN and FN values (i.e.

the location in the gene tree is disregarded).

As done in previous papers [5,14], the reconciliation error was

measured on T, D and L events, i.e. events causing a gene tree to

differ from the species tree. The error of a predicted set ÊE

estimating an event set ETrue is then measured by the symmetric

evolutionary distance between these sets:

ds(ÊE,ETrue) : ~DÊE\ETrueDDTLzDETrue\ÊEDDTL

where the first and second term respectively correspond to FP and

FN, and where the DTL subscript recalls the events taken into

account. This simple measure was used on the dataset composed

of 1000 GML families to compare the competing strategies to

estimate a gene true history, a strategy being all the more accurate

when its average error is low.

To obtain a more detailed comparison between competing

strategies, one often resorts to a Receiver Operating Characteristic

curve (ROC-curve), allowing us to represent the performances of

alternative methods on a number of datasets in a single 2D

graphic. As we currently do not have any practical solution to

compute the number of true negatives (TN) for the problem

considered here, we considered Precision-Recall curves (PR-

curves) instead. PR-curves are very similar to ROC-curves [32]

and can be drawn while disregarding TN. Precision and Recall

values are defined as follows:

Precision : ~
TP

TPzFP
ð5Þ

Recall : ~
TP

TPzFN
ð6Þ

Each competing strategy gives rise to a PR curve, which are then

compared on a single common plot. According to (5) and (6), the

higher the PR curve is for a given recall level, the better accuracy

the corresponding method displays.

Results

Filtering out the least supported events increases the
accuracy

We first focus on strategies for filtering events of a randomly

chosen MPR. Table 3 reports the average error performed by such

strategies depending on whether all the events in the random

MPR are considered, or only those appearing in at least T percent

of the MPRs, i.e. events for which f0§T . We tested several

filtering thresholds T, namely 0%, 50%, 90% and 100%. Note

that T = 0% corresponds to the behavior of current reconciliation

tools, which do not use supports.

Table 3 shows that the support values computed through the

tool presented in [18] allow us to filter out one to two events on

average (where the unfiltered ÊE contains on average 20.2 events).

An analysis of the FP and FN components of the error shows that

three out of four times the removed events are indeed erroneous

events. The total error thus decreases from 11.3, when no filtering

step is applied (T = 0%), to 10.4, when keeping only the events

present in all MPRs (T = 100%). Note that each filtering

statistically leads to a significant reduction in the distance between

the predicted and true event sets, as compared to a less restrictive

filtering (bold-faced numbers in the table). The only exception is

when going from T = 90% to T = 100%, since both strategies

output the same event set ÊE.

Although being lowered by the filtering process, one can

wonder why the error is at such a non-negligible level. Looking at

the large number of events in an unfiltered reconciliation (right

column of first row in Table 3) provides an explanation: with 20.2

events in ÊE on average compared to 13.7 events in ETrue, the

predicted reconciliation contains many more events than the

correct one. Yet as parsimony is penalized for each extra event it

proposes, it tries to propose as few events as possible. Thus, it is

much more likely that the gap between the sizes of ÊE and ETrue is

due to errors in the gene trees. Indeed, each wrong branch

contained in GML leads to contortions in the reconciliation to

explain the discrepancy with the shape of the species tree. This

matches findings of a previous paper showing that the inference

error of reconciliations grows exponentially with the distance

between the estimated and correct gene trees [14]. Looking in

detail at FP shows that among the 20.2 events present in a full

reconciliation, only half are correct, which indicates that a good

filtering process is indeed needed before exploiting the inference

results, e.g. to decide the orthology or paralogy of current

sequences. The pattern observed for FN shows that even though

GML trees may be an imprecise estimation of the true gene trees,

MPRs usually exhibit most of the correct events. Indeed, a random

MPR misses only 2.4 of the 13.7 correct events. The good news is

that the filtering process only loses a small proportion of these

correct events, with FN increasing from 2.4 to 2.9 (going from

T = 0 to T = 100%).

Table 3. Impact of event filtering on random MPRs.

Filtering Threshold T ds(ÊE,ETrue) FP FN DÊEDDTL

0 11.3 8.9 2.4 20.2

50% 10.9 8.2 2.7 19.2

90% 10.4 7.5 2.9 18.2

100% 10.4 7.5 2.9 18.2

This table shows the accuracy of filtering events from a random MPR, when
varying the filtering threshold T. The event supports have been computed from
MPRs only, i.e. D= 0. Thus, for each line, the set ÊE contains all events e from the
chosen random MPR having f0(e)§T . Column 2 (resp. Column 3 and 4) reports

the accuracy as measured by the average symmetric distance dS (resp. FP and

FN) between ÊE and ETrue . A bold-faced value indicates that the accuracy of the
corresponding strategy is significantly better than that of the previous row (p-
values of the paired t.tests are lower than 2:2e{16). Column 5 reports the
average numbers of predicted, D, T, and L events with or without filtering. On
average, the true evolutionary history of a gene family contains 13.7 such
events.
doi:10.1371/journal.pone.0073667.t003
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Low variability in events among MPRs
The Table 3 results confirm the relevance of the filtering process

proposed by Scornavacca et al. [18]. However, this filtering

strategy filters out very few events. The l ast column of the table

shows that on the <20 events composing a random reconciliation,

<18 on average have a support of 100%. This implies that on

average there is very low variability in the event sets from one

MPR to another. F urther analysis reveals that for 53% of the

1000 gene families there is only a single MPR. In such cases, all

event have a 100% support value, thus preventing any filtering.

Note that even in cases where several MPRs are available, the

variability among their respective event sets is relatively small:

different MPRs on average share at least two thirds of their event

sets. Indeed, relying on half of the dataset to explain an average

gap of 2 events (20.2-18.2) between a full reconciliation and one

containing only events of maximum support, shows that even in

cases where several MPRs are available, they share at least 11

events over the 18 they contain on average. The significant

reduction in the distance between filtered events and the true

reconciliation observed in Table 3 is then obtained thanks to only

half of the considered gene families. This shows that this approach

is very powerful but also indicates that there is room for further

improvement.

The low average variability of events among different MPRs

leads to many events having maximum support; together with the

fact that for T = 100% filtered event sets still contain too many

events (18.2 compared to 13.7), this explains that filtering at the

extreme T = 100% value leads to the lowest error rate. Moreover,

the low variability among MPRs also explains why no significant

difference in accuracy was observed in choosing an MPR at

random or one of the two median reconciliations described earlier

on in the paper (data not shown, p-value = 0.7223 and 0.1689):

these strategies usually propose the same reconciliation, and

otherwise propose very close event sets. This is a call to examine

more elaborate ways to determine the support of events, and to

consider larger reconciliation sets. For both of these tasks, more

variability needs to be introduced among considered reconcilia-

tions. For this, we will resort to NPRs.

Considering near-optimal reconciliations indeed
increases the variability

Recall that nearly optimal reconciliations (NPRs) can be

obtained by reconstructing most parsimonious reconciliations

along with noisy event costs. Increasing the noise level D allows us

to more broadly sample the suboptimal reconciliation space, and

incidentally to consider new events: the set of MPRs spans 57.3

events on average, while 76.7 (D= 10%), 119 (D= 20%) and 430

(D= 40%) events are spanned when considering 1000 NPR

graphs. Inferring the support of an event on the basis of its

frequency among near-optimal reconciliations in addition to

optimal ones generates more variability in the obtained event

supports. As Table 4 shows, even for a moderate noise level

(D= 10%), there is a significant difference in the average size of ÊE

when varying the filtering threshold: DÊED~12:2 (T = 100%, Table 4)

compared to 17.8 (T = 50%, Table 4) and to 20.2 when no filtering

is applied (T = 0%, Table 3). These differences are to be compared

with the small filtering effect that was observed in Table 3. More

significant differences are obtained for higher noise levels (D= 20

and D= 40%). Fixing the filtering threshold allows us to measure

the variability introduced when increasing the D noise level: fewer

optimal reconciliations are obtained and the support of events is

thus progressively reduced, as shown by smaller events sets being

proposed. For example, for T = 50%, DÊED~19:2 if D= 0% (Table 3)

and drops to 17.8 when D= 10% (Table 4) and drops further to

5.6 when D= 40% (Table 4).

Accounting for near-optimal reconciliations provides
more reliable event supports

Considering NPRs increases the chance of finding correct

events that are absent from MPRs, but at the risk of both

introducing incorrect events and lowering the support of correct

events already present among MPRs. However, as Table 4 shows,

the overall effect on the error terms is positive. The new supports

are more reliable in the sense that filtering out events with low

supports when the supports have been computed from NPRs

decreases the inference error more significantly than when

computing supports from MPRs only: the minimum error is

10.4 in Table 3, but decreases to 7.1 (D= 10%, T = 100%) and 7.0

(D= 20%, T = 90%) in Table 4. Compared to the 11.3 error level

of the state of the art reconciliation methods (first row of Table 3),

an overall improvement of 38% is achieved when combining the

idea of filtering events and computing the event support by

sampling near-optimal reconciliations. Thus, the latter idea really

allows us to have a more accurate estimation of the inferred event

robustness.

Note that there is a limit in the level of noise that is useful to

introduce in the event costs, i.e. in the level of non-optimality to

consider: the exaggerated D= 40% noise level always leads to

higher error terms than those obtained when computing supports

on the basis of MPRs alone (compare row 3, respectively 6 and 9

of Table 4 with row 2, respectively 3 and 4 of Table 3).

Thus, we can conclude that for a reasonable noise level,

considering NPRs is a successful idea: having more reliable

support values – and possibly also considering new correct events –

easily offsets the fact that more erroneous events may be

considered (most of these additional erroneous events are probably

detected and filtered out thanks to the filtering step).

Table 4. The accuracy of event prediction strategies when
inferring the support of events in MPRs from sets of NPRs.

Filtering threshold T
Noise level
(D) ds(ÊE,ETrue) DÊEDDTL

50% 10% 10.0 17.8

20% 9.1 16.2

40% 10.6 5.6

90% 10% 8.5 15.2

20% 7.0 11.5

40% 11.8 2.6

100% 10% 7.1 12.2

20% 7.4 7.4

40% 12.6 1.1

This table shows the average symmetric distance (dS ) between predicted and
true event sets when computing event supports fD from their frequency in
optimal and near-optimal reconciliations, and filtering the events with fDvT

(Column 3), where T is the filtering threshold. The degree of non-optimality in
reconciliations is indirectly measured by the noise level D introduced in the
event elementary costs. Column 4 reports the average number of predicted D,
T, and L events, depending on both the filtering threshold and noise level. On
average, the true evolutionary history of a gene family contains 13.7 such
events.
doi:10.1371/journal.pone.0073667.t004
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Filtering non-optimal reconciliations leads to more
accurate event sets

Relying on MPRs only to infer a set of events seems too

restrictive, as shown by the results in Table 5. This table provides

the accuracy results when selecting a symmetric, asymmetric, or a

random reconciliation not only among MPRs but also considering

NPRs. Comparing results of Tables 4 and 5 indeed shows that

selecting a reconciliation at random from NPRs instead of MPRs

alone almost systematically decreases the error, e.g. from 9.1 (row

2, Table 4) to 8.9 (row 4, Table 5) or from 8.5 (row 4, Table 4) to

8.4 (row 5, Table 5). The same trend is generally observed when

selecting the symmetric and asymmetric median reconciliations

(data not shown).

Other remarks on the filtering thresholds when
considering NPRs

Rows 1 and 2 in Table 5 show that when no filtering is applied

(i.e. T = 0%), broadening the event set by considering fewer

optimal reconciliations (i.e. increasing D) only leads to fewer

accurate reconciliations, whatever reconciliation is kept – random,

symmetric or asymmetric median. This is confirmed for D values

greater than 20% (data not shown). This results from the fact that

more and more erroneous events are considered when the

deviation from the original cost (measured by D) increases.

Overall, considering NPRs introduces variability in reconcilia-

tions, which is very useful for filtering out incorrect events as we

have discussed above, but applying no filtering amounts to

retaining only the cons of the increased variability.

Another remark concerns the extreme filtering threshold

(T = 100%). Results for this threshold were not included in

Table 5 as they are identical among all reconciliation selection

methods and identical to those displayed in Table 4. The latter

point indicates that once supports are established from NPRs,

selecting a reconciliation among MPRs or among NPRs is the

same thing if we focus on events with 100% support. Indeed, each

MPR event with 100% support must be found in at least one NPR

among the 1000 replicates performed to sample near-optimal

reconciliations. Thus, in our experiments, all MPR events are most

likely also NPR events. Moreover, for the same reason, no new

event with 100% support can appear in an NPR and not be

referenced in MPRs. Lastly, note that such an extreme threshold

leads to results of a quite good accuracy – 7.1 to 7.4 for D= 10% to

20%, Table 4 – compared to that of the 7.0 and 7.1 of the last row

in Table 5.

Advantages of symmetric median reconciliations
Table 5 also allows us to compare event inferring strategies on

the basis of the procedure they use to select a reconciliation among

NPRs.

The asymmetric median procedure selects on average a

reconciliation with the same accuracy as the random selection

procedures for T = 0%, 90% and 100%, but is significantly worse

for T = 50%. By maximizing the sum of the events in the chosen

reconciliation, the asymmetric median rather chooses a larger set

of events – although each can be individually of lower support

than events in another reconciliation (see example detailed in the

Methods section). This is illustrated by the fact that the size of the

predicted event set (DÊEDDTL columns, Table 5) is almost always

larger for asymmetric medians than when choosing a reconcili-

ation by another procedure. This behavior might penalize the

asymmetric median, as all the results reported above show that

only events with a quite high support can be trusted. For T = 90%,

the asymmetric median performs similarly to choosing a recon-

ciliation at random as the events it specifically proposes are usually

more poorly supported, hence have been filtered out. For

T = 100%, all methods constantly output the same event set, so

no difference can be observed in their accuracy.

The symmetric median procedure is the only reconciliation

selection procedure that displays a significantly better accuracy

than other procedures. As the bold-faced values in Table 5 are

significantly lower than other terms in the row (at the 95%

confidence level), it can be seen that in four out of the six studied

conditions, the symmetric median procedure outperforms the

other two. The only case where its accuracy is lower than another

procedure is for T = 90% and D= 20%, where its error reaches 7.1

compared to 7.0 displayed by the random selection procedure –

but this difference is not statistically significant.

More detailed accuracy profile of competing strategies
Finally, Figure 5 represents the PR curves corresponding to the

main event prediction strategies we mentioned above: 1)

outputting a random MPR and applying no filtering (approach

of the state of the art methods); 2) filtering events of a random MPR

when computing supports from MPRs only (as proposed in [18])

with 50% and 90% filtering thresholds (curves random MPR

Table 5. The accuracy of strategies for selecting events from NPRs depending on various parameters.

as-median NPRs random NPRs s-median NPRs

Filtering
Threshold T D ds(ÊE,ETrue) DÊEDDTL ds(ÊE,ETrue) DÊEDDTL ds(ÊE,ETrue) DÊEDDTL

0% 10% 11.3 20.3 11.3 20.1 10.1 17.7

20% 11.8 20.0 11.5 20.3 11.5 16.0

50% 10% 10.0 18.0 9.8 17.4 8.2 14.9

20% 9.3 15.9 8.9 15.7 7.5 10.9

90% 10% 8.5 15.2 8.4 15.1 7.7 13.5

20% 7.1 11.4 7.0 11.4 7.1 9.4

Parameter T denotes the filtering threshold and D denotes the noise level for generating sets of NPRs. Columns 3, 5, and 7 report the accuracy as measured by the
average symmetric distance dS to the event set in the true gene history. Note that the bold-faced dS values indicate the method (among (a)s-median and random NPRs)
having the symmetric distances of 1000 gene families GML being significantly less than that of the other methods, i.e. p-value of the paired t.test being less than 0.05.
Columns 4, 6 and 8 report the average numbers of predicted D, T, and L events with or without filtering. On average, the true evolutionary history of a gene family
contains 13.7 D,T, and L events.
doi:10.1371/journal.pone.0073667.t005
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f0%§50% and random MPR f0%§90%); 3) filtering events of a

random MPR when computing supports from NPRs (curve random

MPR f20%§90%); 4) selecting an s-median reconciliation among

NPRs obtained for D= 20%: one curve for the strategy outputting

all events in such a reconciliation (curve s-median NPR f20%§0),

then two curves for strategies combining all the ideas presented in

this paper (i.e. selecting an s-median reconciliation among NPRs,

computing support from NPRs and filtering low-support events),

for 50% and 90% thresholds (curves s-median NPR f20%§50% and

$90%). Displayed curves are interpolations obtained on the

inferences done on 990 gene families – ten out of the 1000 gene

families contained no D, T, and L events having support above the

studied thresholds, hence were excluded to avoid undefined values

in the Precision and Recall computation.

This visual representation of event prediction accuracy high-

lights several important points. First, when outputting event sets

corresponding to a full reconciliation – but leading to a similar

average accuracy (see previous sections) – the profiles of the

strategy choosing a random reconciliation (curve 1) is different

from that choosing an s-median one (curve 5), i.e. the two methods

will likely propose different event sets in general.

Filtering out the least supported events usually has a beneficial

effect, as can be observed by comparing curve 1 to curves 2 and 3.

On the basis of all the experiments, it can be concluded that the

lowest symmetric evolutionary distance is obtained when fixing a

high filtering threshold (e.g. 90%).

The most striking feature of Figure 5 is the supremacy of

strategies filtering low support events while relying on NPRs to

compute the support (curves 4, 6 and 7) which for the same recall

level reach a much higher precision level than strategies not

filtering events and a significantly higher precision level than

strategies relying on MPRs only to compute event supports. In

other words, the proportion of correct events among inferred

events is substantially increased by such a combination of

techniques. Note that the best results are obtained when

D= 20% and T = 90%, but other combinations not studied here

could give even better results.

Remarks on the dataset of the true gene trees
Although considering only randomly chosen reconciliations,

Doyon et al. [5] showed that parsimony reconciliation methods

can correctly recover large parts of the true evolutionary histories

of gene families when the true gene trees are given as input. This is

confirmed on our dataset where the existence of multiple optimal

solutions is also taken into account. In fact, among <44 events

predicted per gene family when using GTrue instead of GML, 94%

of them are present in all MPRs, i.e. having 100% support, and

96% of these latter events are correct. Hence, inferring event

supports from a set of nearly-optimal reconciliations will likely

introduce wrong events. In our opinion, our proposed approach

should be applied only when the performance of reconciliation

methods is degraded due to erroneously constructed gene or

species trees.

Conclusion

In this paper, we achieved several goals:

Figure 5. The accuracy of competing strategies to infer events in a gene history. Curves are plotted from experiments on 990 gene
families. Strategies are defined by a considered reconciliation set – most parsimonious reconciliations (MPRs) or near-optimal reconciliations (NPRs),
by a way to select one of these reconciliations – at random or through the s-median procedure, by the method to compute event supports fD(:)–
D= 0% (i.e. computing supports from MPRs) or 20% (i.e. computing supports from NPRs obtained for a noise level of 20% in event costs), and by the
subset of events output depending on their support ($0%, $50% or $90%). See main text for a description of the proposed strategies.
doi:10.1371/journal.pone.0073667.g005
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Firstly, we showed the importance of not focusing only on one

random optimal reconciliation. Indeed, given a gene and species

tree to be reconciled, we introduced the median reconciliation

concept to best summarize a set of reconciliations by choosing a

central reconciliation rather than a random one. We provided

algorithms to compute median reconciliations in polynomial time.

In the experiments, the symmetric median reconciliation often

performed significantly better than the strategy of choosing a

random most parsimonious reconciliation. We showed the benefit

of considering all optimal reconciliations to compute a simple

support measure for each event in an inferred reconciliation. The

tool provided by Scornavacca et al. [18] here nicely plays its role

in managing, in polynomial time and space, the potentially

exponential number of such reconciliations. Moreover, we showed

that filtering out the least supported events significantly reduces

the inference error. Finally, we showed how near-optimal

reconciliations can be obtained and how sampling such reconcil-

iations allows us to compute more reliable supports than those

obtained by just considering most parsimonious reconciliations.

When aiming to estimate a set of events shaping a gene family

history, the combined ideas discussed in this paper achieved an

overall 38% increase in accuracy, as compared to the practice of

considering just a single optimal reconciliation. This leaves little

doubt on the use of the support values presented here. Lastly, we

would like to stress that when focusing on a particular gene tree

node, e.g. to decide on the orthology or paralogy of extant

sequences, the support seems to be a reasonable estimate of the

node’s robustness. Our first experiments indicate that only events

showing the highest support should be trusted, and that 90% and

100% filtering thresholds should be considered. Further study is

needed to fully understand the link between this support measure

and the confidence level in a statistical test, as for instance studied

for bootstrap values in the phylogenetic context [33–35].

An implementation of the algorithms presented in this paper

will be provided in the new version of the graphDTL software,

available at http://mbb.univ-montp2.fr/MBB/subsection/downloads.

php?section = all.

Supporting Information

Appendix S1 The formal definition of a DTL reconcili-
ation [5] and the proofs of Lemma 1 and Theorem 1.

(PDF)
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21. Szőllösi GJ, Daubin V (2012) Modeling gene family evolution and reconciling

phylogenetic discord. Methods Mol Biol 856: 29–51.

22. Merkle D, Middendorf M, Wieseke N (2010) A parameter-adaptive dynamic

programming approach for inferring cophylogenies. BMC Bioinformatics 11:
S60.

23. Than C, Ruths D, Innan H, Nakhleh L (2007) Confounding factors in HGT

detection: statistical error, coalescent effects, and multiple solutions. Journal of

computational biology 14: 517–35.

24. Barthelemy JP, McMorris FR (1986) The median procedure for n-trees. Journal
of Classification 3: 329–334.

25. Margush T, Mcmorris FR (1981) Consensus n-trees. Bulletin of Mathematical
Biology 43: 239–244.

26. Bryant D (2003) A classification of consensus methods for phylogenetics.

DIMACS Series in Discrete Mathematics and Theoretical Computer Science

61: 163–184.

27. Nguyen TH, Doyon JP, Pointet S, Chifolleau AMA, Ranwez V, et al. (2012)
Accounting for gene tree uncertainties improves gene trees and reconciliation

inference. In: Raphael B, Tang J, editors, Algorithms in Bioinformatics.

SpringerLink, volume 7534 of LNCS, pp. 123–134.

28. Capella-Gutierrez, Silla-Martinez J, Gabaldon T (2009) trimAl: a tool for
automated alignment trimming in large-scale phylogenetic analyses. Bioinfor-

matics 25: 1972–1973.

29. Rambaut A, Grass NC (1997) Seq-gen: an application for the Monte Carlo

simulation of DNA sequence evolution along phylogenetic trees. Bioinformatics
13: 235–238.
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