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Abstract

Background

Genes located in the same chromosome region share common evolutionary events more often than
other genes (e.g. a segmental duplication of this region). Their evolution mayalso be related if they
are involved in the same protein complex or biological process. Identifying co-evolving genes can
thus shed light on ancestral genome structures and functional gene interactions.

Results

We devise a simple, fast and accurate probability method based on species tree-gene tree reconcilia-
tions to detect when two gene families have co-evolved. Our method observes the number and location
of predicted macro-evolutionary events, and estimates the probability of having the observed number
of common events by chance.

Conclusions

Simulation studies confirm that our method effectively identifies co-evolving families. This opens
numerous perspectives on genome-scale analysis where this method couldbe used to pinpoint co-
evolving gene families and thus help to unravel ancestral genome arrangements or undocumented
gene interactions.

Background

Species from the same ecosystem may share common environmental factors (e.g. related to the local
climate or to the arrival of new species in the ecosystem) or be interdependent, and their evolution can
be related. In the vast majority of cases, the footprint of this dependenceis minimal, but in some cases,
such as predator-prey, host-parasite or symbiotic relationships, species influence each other so much that



their co-evolution can be detected [1-3]. Similarly, nucleotides and amino acids that are located close
to one another on the genome share common local factors (e.g. specific nucleotide composition bias or
underlying mutation rates due to the functional importance of the locus) and influence each other (e.g.
because they are in the same codon, part of the same active site of a proteinor because one is part of a
transcription factor controlling the transcription level of the other).

The problem of detecting co-evolution at the amino acid level has been extensively studied recently
( [4,5]; among others). However, at a broader level, neighbouring genes can also co-evolve, sharing
common evolutionary events such as segmental duplications [6] and local evolutionary factors such as
the proximity of recombination hotspots or centromeres [7]. Protein interactions, e.g. being part of the
same protein complex or biological pathway, can also induce co-evolution atthe gene level. Relatively
little work has been done on detecting co-evolution at the gene level [8-12].

To detect gene co-evolution, one has to observe it in a significant numberof species. As more and more
full genomes/transcriptomes are sequenced, more raw data needed to detect co-evolving genes becomes
available. Being able to accurately detect co-evolving genes would, amongother things, help to (a)
pinpoint possible functional interdependence, allowing us to annotate genomes from non-model species;
(b) infer ancestral proximity among genes, allowing us to reconstruct ancestral genome arrangements
[11]; or (c) cluster genes to reconstruct the Tree of Life in a divide-and-conquer framework [13,14].

In [12], Cohenet al. proposed a probabilistic method to detect co-evolutionary interactions fromphylo-
genetic profiles, using gain and loss events. They used their method to studya group of 4593 prokaryotic
gene families and construct a co-evolution network. This yielded severalclusters of genes which corre-
sponded to identifiable functional pathways.

In this paper, we propose a novel probabilistic method to detect co-evolution. Our method differs from
that of [12] in that it is based on species tree-gene tree reconciliations. Reconciliation methods construct
a mapping between a gene tree and a species tree to explain their incongruence by macro-evolutionary
events such as speciations, gene duplications, horizontal gene transfers etc. Several reconciliation meth-
ods have recently been developed following parsimonious or probabilistic paradigms (see [15] for a
review). By using reconciliations, we are able to distinguish between different types of events and take
into account uncertainties on such events [16,17].

Our method has advantages over that of [12] in that (a) it can measure co-evolution between genes with
small or different numbers of events; (b) it can take into account several possible evolutionary scenarios
for each gene, reflecting inference uncertainties; and (c) it uses a theoretical model-based framework
to computep-values for the co-evolution score, rather than bootstrapped simulations as done in [12].
Simulations show that our method is effective in detecting co-evolution betweengenes, even when it is
relatively weak. It is also time-efficient, which allows us to conduct genome scale analysis to search for
undocumented co-evolution among thousands of gene families.

Preliminaries

LetT = (V (T ), E(T )) be a (rooted) tree with labelled leaf vertices. We denote the leaves ofT byL(T )
and the (multi)set of all labels of those leaves byL(T ). Given a vertexx ∈ V (T ), we denote byxp its
parent and byy ≤ x the fact that a vertexy is a descendant ofx.

We define a gene treeG as a tree where each leaf represents an extant gene. Likewise, we define a
species treeS as a tree in which each leaf represents a distinct extant species. The labels of the leaves of
S are unique since they are the identifiers of these species. In gene trees,internal vertices may represent
various evolutionary events (e.g. speciation, duplication), while in the species tree they all represent



speciation events. In this paper, we suppose that gene and species trees are rooted and binary. Finally,
we assume that the genes ofG come from the genomes of species present inS, in particular that each
label ofL(G) appears inL(S) (denoted byL(G) v L(S)).

A species treeS is said to bedatedif it is associated to a functionθS which represents the time separating
a vertex from the current time, i.e.θS : V (S) → R

+ such that ify ≤ x thenθS(y) ≤ θS(x) and if
x ∈ L(S) thenθS(x) = 0. Using asubdivisionof S rather thanS itself when computing reconciliations
has been proven to ensure time-consistency of gene transfers in polynomial time [18]. The subdivision
S′ of S together with an associated time functionθS′ is constructed as follows: firstly, for each node
x ∈ V (S) \ L(S) and each edge(yp, y) ∈ E(S) s.t. θS(yp) > θS(x) > θS(y), anartificial nodew is
inserted along the edge(yp, y), with θS′(w) = θS(x); secondly, for nodesx ∈ V (S′) corresponding to
nodes already present inS, we setθS′(x) = θS(x).

In this paper, we use the combinatorial reconciliation model of Doyonet al.[18], called theDTL model.
We refer the reader to this paper for a formal definition of reconciliations.This model considers (as
possible macro-events that shape the genome) speciations, duplications, transfers and losses of genes.
For algorithmic reasons losses are never considered alone, so the atomic events of this model are: a
speciation (S), a duplication (D), a transfer (T), a transfer followed immediately by the loss of the non-
transferred child (TL), a speciation followed by the loss of one of the two resulting children (SL), a no
event (∅) that only reflects the fact that a gene lineage has crossed a time boundary, and a contemporary
event (C) that associates an extant gene to its corresponding species.

The method of [18] calculates the most parsimonious reconciliation under this model. However, there
often exist several most parsimonious reconciliations. Those reconciliations constitute what we call
a reconciliation space, which can be efficiently stored in the reconciliation graph introduced by Scor-
navaccaet al. [16].

Methods

In this section we present our new methodology to detect whether or not twogene familes have co-
evolved. We take as input two gene treesG1 andG2 and a dated treeS such thatL(G1) v L(S) and
L(G2) v L(S).

Our co-evolution detection method consists of three main steps:

1. We reconcile each of the two gene trees toS′ (the subdivision ofS) to produce two corresponding
reconciliation spaces. Event sets are then extracted from these two spaces. Details are given in
the “Computing the weighted event sets” section.

2. We calculate aco-evolution scorewhich quantifies the similarity between the two event sets.
Details are given in the “Computing the co-evolution score” section.

3. We calculate thep-value of the calculated score under a model of independent evolution. If
this p-value is less than an appropriate threshold (reflecting the acceptable error rate for false
positive co-evolution detection) we consider thatG1 andG2 co-evolved. Details are given in the
“Computing thep-value” section.

Computing the weighted event sets

We use the method of [16] to reconcile each of the two gene trees to the subdivided species tree, using
equal costs forD, T andL events. This yields two reconciliation spacesRC1 andRC2 which contain all



of the most parsimonious reconciliations betweenG1 (respectivelyG2) andS. By taking the multiple
reconciliations ofRC1 andRC2 into account, we can explore a broad set of possible events, assess their
reliability and remove the danger of artifacts arising in a single reconciliation.

Each reconciliation, according to theDTL model, yields a set of events with types from
{S,D,T,TL, SL,∅,C}. However,S andC events are determined by the species tree, and∅ events
are artifacts due to the use of subdivision. Therefore, coincident events of these types are not an in-
dication of co-evolution, and we discard them. Likewise, we considerSL events only asL events.
Furthermore,TL events are considered as two separateT andL events.

We are now left with onlyD, T andL events which we extract from the reconciliation spaces. These
events are characterised by their type and their position in the considered gene and species trees. Here,
we “undo” the subdivision and consider the position of the event in the original species treeS rather
than the subdivided treeS′.

For each branchb ∈ E(S), geneu ∈ V (G1) and event typeE ∈ {D,T,L}, we definew1(b, u)E to be
the fraction of reconciliations ofRC1 in which u is mapped to an event of typeE on branchb. Note
that this means that transfers departing from the same branch ofS but reaching different branches are
considered identical, for simplicity (otherwise there are too many possible transfers to be time-efficient
in later computation). Then we define the set

W1(b)E =
⋃

u∈V (G)

{w1(b, u)E},

which contains the weights of all events of typeE on branchb.

Since the frequency of an event over most parsimonious reconciliations has been shown to be a good
indicator of its reliability [17], we usew1(b, u)E as an estimate of the probability that this event has
really occurred inG1. This provides us with a set of possible events together with their probabilities
according toG1. Another set is obtained fromRC2 in a similar way.

Note that these weighted event sets can be obtained from any reconciliationmethod, for example by
taking into account the set of Near-optimal Parsimonious Reconciliations (NPRs, see [17]), rather than
focusing only on most parsimonious reconciliations. Having a set of reconciliations is preferable, since
it reflects the inherent uncertainty of reconciliation inference and eventprediction. It also allows us to
have probability values associated to each event, whereas a single reconciliation only has the presence
or absence of events. If only given a single reconciliation, one can alsoobtain a set of associated
(sub-)optimal reconciliations, e.g. reconciliations that are reachable by asmall number of the operators
described in (Chan, Ranwez, Scornavacca: Exploring the space of gene/species reconciliations with
transfers. Submitted toJ Math Biol).

In fact, we use reconciliations only as a tool to produce the weighted eventsets, which are the input to
the remainder of the method. In theory, any method which produces a weighted set of genetic events
(even if they are notDTL events) can replace this step. We use reconciliations because they provide a
straightforward way to calculate the event sets, and there are already efficient algorithms for computing
the reconciliation spaces.

Computing the co-evolution score

Events of the same type which occur at approximately the same time in bothG1 andG2 support a hy-
pothesis of co-evolution. Therefore, we calculate a statistic which measures the amount of co-evolution
based on the number of such events which are inferred from the reconciliations.



Given two reconciliations — one forG1 and one forG2 — we could define theco-evolution scoreto be
the number ofD, T orL events which occur in both reconciliations on the same branch.

However, since we have computed a set of weighted events for each gene resulting from several recon-
ciliations, the co-evolution score betweenG1 andG2 is computed as follows:

1. We consider the weight associated to each eventw1(b, u)E to be the probability that this event has
occurred inG1. We make the (strong) assumption that any such event is independent from any
other event represented bywi(b

′, u′)E′ for i = 1, 2.

2. For all branchesb ∈ E(S) and element typesE, we calculate the probability of having 0, 1, . . . ,
n events of typeE on b, wheren = |W1(b)E|. This is done via recursion as follows: suppose
W1(b)E = {p1, . . . , pn}. LetXi be a variable representing the number of actual events from the
first i possible events represented in this set. Then fori = 1, . . . , n andx = 0, . . . , i, we have

P (Xi = x) = piP (Xi−1 = x− 1) + (1− pi)P (Xi−1 = x),

where the initial conditions areP (Xi = −1) = 0 andP (X0 = x) = I(x = 0).

3. We do the same forG2, using the notationsY andm instead ofX andn. The variablesXn and
Ym represent the total number of actual events of typeE on this branch.

4. For all branchesb of S and element typesE, we compute the expected number of events in
common:

E(number of events in common) =
n
∑

x=0

m
∑

y=0

min(x, y)P (Xn = x)P (Ym = y).

We define the co-evolution score betweenG1 andG2 givenS as the sum of this value over all
branches ofS and event types.

As an example, suppose that for a particular branchb ∈ E(S), we haveW1(b)D = {1, 0.5, 0.5} and
W2(b)D = {0.6, 0.2}. The distributions ofX3 andY2 for this combination(b,D) are calculated using
the recursion formula above as detailed in Tables 1 and 2.

Table 1 Example probability calculation 1
G1 0 1 2 3
X1 0 1
X2 0 0.5 0.5
X3 0 0.25 0.5 0.25
Probabilities of having0, 1, 2, 3 duplications inG1 on a branchb ∈ E(S) with W1(b)D = {1, 0.5, 0.5}.

Table 2 Example probability calculation 2
G2 0 1 2
Y1 0.4 0.6
Y2 0.32 0.56 0.12
Probabilities of having0, 1, 2 duplications inG2 on a branchb ∈ E(S) with W2(b)D = {0.6, 0.2}.



The contribution of(b,D) to the co-evolution score is

contribution(b,D) = 0 (0× 0.32 + 0× 0.56 + 0× 0.12 + 0.25× 0.32 + 0.5× 0.32 + 0.25× 0.32)

+1 (0.25× 0.56 + 0.25× 0.12 + 0.5× 0.56 + 0.25× 0.56)

+2 (0.5× 0.12 + 0.25× 0.12)

= 0.77.

Computing the p-value

The co-evolution score measures the dependence between two gene trees given a species tree. However,
its distribution is highly dependent on the number of events in each reconciliation space. In order to
assess the significance of the score, we compute thep-value associated to it.

To do so, we count the average number of events in each event set, which we denote (rounded up) byN1

andN2. For each branchb ∈ E(S) and event typeE, we call the combination(b,E) a bin, and denote
by B the (arbitrarily) ordered vector containing all possible bins, over all branchesb of the treeS and
the 3 element types ofE. We denote the lengths (representing duration) of the respective branches in
S by l1, . . . , lN , whereN = 3|E(S)| is the number of bins. In this sequence, each branch length will
occur 3 times, once for each event type.

We compute thep-value under a model that assumes that the genes do not co-evolve and all D, T andL
events are distributed at random among the elements ofB, with probabilities proportional to the branch
lengths. Using a theoretical model allows us to efficiently calculatep-values without simulations which
rely on bootstrapped data (as was done in [12]). This increases the reliability of the calculations and
mitigates the influence of the independence assumption made when computing the co-evolution score
(previous section, step 1 of the procedure).

Definition 1. We definef(x;n1, n2, n) to be the probability that, ifn1 and n2 events are randomly
placed on the firstn bins ofB, there will be at leastx events in common between the two event sets.

Given a co-evolution score ofX, our p-value is thereforef(X;N1, N2, N). We again calculate this
statistic by recursion. Firstly, we define

πn =

(

n
∑

i=1

li

)

−1

ln

to be the probability that an event is randomly assigned to binn out of the firstn bins, and

BPr(x;π, n) =

(

n

x

)

πx(1− π)n−x

to be the binomial probability mass function with parametersn andπ. Then we have the initial condi-
tions

f(x;n1, n2, n) = 1 if x ≤ 0,

f(x;n1, n2, n) = 0 if x > min(n1, n2),

f(x;n1, n2, 1) = I(x ≤ min(n1, n2)).



The recurrence is

f(x;n1, n2, n) =

min(n1,n2)
∑

i=0

[

BPr(i;πn, n1)BPr(i;πn, n2)f(x− i;n1 − i, n2 − i, n− 1)

+

n1
∑

j=i+1

BPr(j;πn, n1)BPr(i;πn, n2)f(x− i;n1 − j, n2 − i, n− 1) (1)

+

n2
∑

j=i+1

BPr(i;πn, n1)BPr(j;πn, n2)f(x− i;n1 − i, n2 − j, n− 1)

]

.

The variablei in the outside sum denotes the number of events in common between the two eventsets
in bin n. The first term considers the case where there are exactlyi events in this bin in both sets. The
second term accounts for the case where the first set hasj > i events in this bin, but the second set only
hasi such events — the number of events in common is stilli. The third term considers the mirrored
version of the second term.

To calculatef(X;N1, N2, N), we calculatef(x;n1, n2, n) for all x ≤ X,n1 ≤ N1, n2 ≤ N2, n ≤ N ,
in order of increasingn. We can do this because (1) expressesf(x;n1, n2, n) in terms off values where
the fourth argument isn− 1 and the other arguments are not increased. The lowerf(X;N1, N2, N) is,
the stronger the evidence against the hypothesis that the genes did not co-evolve. To test the co-evolution
hypothesis, we compare this number to a pre-defined threshold level, in general 0.05.

Note that the functionf itself depends only on the species tree; only its arguments depend on the gene
trees and co-evolution score. Because of this, we only have to performthe recursion once for every
species tree, with the arguments set to the maximal values encountered in the set of genes. This allows
us to quickly compute the values of the function for many genes which belong tothe same species
(which occurs, for example, in our simulations), and so process whole genome analysis to scan for
undocumented gene family co-evolution.

Results and discussion

In this section, we first describe the simulation protocol used to mimic gene family co-evolution along
a species tree. We then provide and discuss the results obtained by our method on this dataset, which
confirm its ability to detect when two gene families co-evolve.

Gene tree simulation

We start with a dated species treeS. Every branch ofS has an associated activitya — representing the
overall rate at whichD/T/L events occur on this branch — and specific rates for each individual event
typerD, rT, rL, with a = rD + rT + rL. We simulate two gene trees simultaneously, with a parameter
c ∈ [0, 1] (which we call theco-evolution parameter) representing the dependence between the two
genes. Informally, an event in one gene tree has a probabilityc of also occurring in the other gene
tree. For example, ifc = 1 then the two trees must be identical, whereas ifc = 0 they are completely
independent.

To simulate the gene trees, we use a modified birth-and-death process whichexplicitly controls the co-
evolution between the two genes. At the beginning of the process, the two genes are located at the root
of S andpaired (identified) to each other. At any time, the timetnext of the nextD/T/L event in every
existing unpaired gene is calculated by simulating an exponential variable with parameter equal to the
activity of the branch(x, y) containing that gene. For gene pairs, this activity must be multiplied by



a factor of 2
1+c

for reasons that will be explained shortly. Then, iftnext ≤ θS(y), the next event is
determined to be aC event ify is a leaf, and anS event otherwise. Iftnext > θS(y), the next event is a
D/T/L event and we rely on the relative ratesrD, rT, rL to determine its type. If this event affects a gene
pair, then:

• If it is anS, both genes in the pair must speciate. The left (respectively right) child ofone resulting
gene is then paired to the left (resp. right) child of the other.

• If it is a D, the event will occur in one gene of the pair with probability 1, and in the otherwith
probabilityc. If it occurs in both genes, the children are paired to each other as in theS case. If
it occurs in only one gene, one of the resulting children is paired to the othergene (it does not
matter which child).

• If it is a T, we treat it the same as for aD event, with the added conditions that if it occurs in both
genes, the transfer targets must be the same, and if it occurs in only one gene, the child which
remains in the originating branch is paired to the other gene.

• If it is an L, the event will occur in one gene of the pair with probability 1, and in the otherwith
probabilityc. If it occurs in only one gene, the other gene is now unpaired.

It is now clear why the activity of a gene pair above is multiplied by21+c
: eachD/T/L event in a pair

results in1 + c actual gene events on average between the two trees. To achieve the correct marginal
activity in each gene tree, we must multiply by the correcting factor.

We repeat this process until we reach the time of the extant species. This produces two (correlated) gene
trees. An example of this process is given in Figure 1.

Figure 1 Example simulation. Example of simulating a pair of correlated gene trees, with0 < c < 1.
(a) The dated species tree.(b) The first speciation happens at date 2.(c) A duplication occurs at date
1.42. This duplication only occurs in the left gene tree; the right child of the duplication is paired to the
original branch in the right gene tree.(d) Another speciation happens at date 1.(e) A transfer occurs in
both trees at date 0.55.(f) There are no further events and we reach the time of the leaves (date 0).(g)
The resulting gene trees.

Simulation results

We ran simulations using a phylogeny of 37 proteobacteria over a period of500 million years as a
species tree. We generated duplication, transfer and loss rates for each simulated gene independently,
using the same scheme as [19]: the loss rate was randomly chosen in the interval [0.001, 0.0018], where
the units are events per gene per million years; the ratio between the “birth” rate (sum of the duplication
and transfer rates) and the loss rate was randomly chosen in the interval [0.5,1.1]; finally the proportion
of the duplication rate to the birth rate was randomly chosen in the interval [0.7,1]. Both the species tree
and the event rates were chosen in accordance with real dataset observations [20].

We simulated 10 000 pairs of gene trees for each of the values of the co-evolution parameterc ∈
{0, 0.1, . . . , 1}. We then applied the procedure described in the “Methods” section to calculate the
p-values for the co-evolution score. The results forc = 0, 0.2, 0.5, 0.7 are shown in Figure 2.

Figure 2 p-value distributions. Sample distributions of thep-value forc = 0, 0.2, 0.5, 0.7.



We observe that thep-value 1 is over-represented in all plots. This arises from the granularityof the
simulations. More specifically, thep-value does not come from a continuous distribution, but from a
variety of discrete distributions depending onN1 andN2, each with a moderate number of possible
values. 1 is always one of these values (for whenX = 0, i.e. there are no events in common), and so
it is over-represented. This effect is more noticeable asc becomes smaller, because the likelihood of
having no event in common grows larger.

It is apparent from Figure 2 that thep-value statistic is effective in distinguishing between co-evolving
gene families and independent gene families. Even with quite low values ofc such as 0.2, the distribution
of thep-values is noticeably skewed towards 0. At higher levels ofc, almost all thep-values are very
close to 0.

If our underlying model is correct, then the casec = 0 in Figure 2 should have a uniform distribution.
Even if we ignore thep-values of 1, our sample distribution is clearly not uniform (aχ2 goodness-of-fit
test to a uniform distribution rejects this hypothesis with ap-value of less than10−15). This is almost
certainly due to the fact that our model assumptions are not an exact match for reality (or, indeed, our
simulation protocol). However, the distribution is close enough to uniform thatour assumptions appear
to be reasonable. In fact the false positive rate for a threshold of 0.05 isonly 0.024, less than expected
under the underlying model.

In Figure 3, we plot the power of the test (the true positive rate) for various values of the co-evolution
parameter. As expected the power rises withc; it is greater than 0.8 (a standard threshold value for
power measurement) for approximatelyc > 0.52.

Figure 3 Test power. Power of the test for various values ofc.

Further simulations (which we do not show the results of here) indicate that varying the event costs used
in the reconciliation algorithm does not significantly impact these results.

Comparison with the method of Cohenet al.

For a complete assessment of the effectiveness of our co-evolution detection algorithm, we compare it
to the method of Cohenet al. [12] (henceforth referred to as Cohen’s method) on our simulated data.

We must stress that the two methods accept different input formats; while our algorithm takes gene
trees as input, Cohen’s method only uses phyletic patterns of gene presence/absence in extant species,
which can be extracted from the gene trees but do not contain all of their information. As such, we
should expect our method to outperform Cohen’s method as it uses more information. On the other
hand, the fact that our method requires more information as input is not a huge drawback, as full gene
tree information is becoming more and more available in recent times.

We ran Cohen’s method on smaller test sets (1000 gene tree pairs) of simulated data for the co-evolution
parameter valuesc = 0, 0.2, 0.5, 0.7; the smaller size was for efficiency reasons and is not expected to
skew the results. Firstly, because Cohen’s method only compares two genes with similar “exchangeabil-
ity” (number of inferred gain/loss events), only a small proportion (less than 15%) of the gene families
were actually compared. Our method, which can compare any two gene trees, is clearly superior in this
respect.

Even considering only those families which are compared by Cohen’s method,our method is still more
sensitive. In Table 3 we show the proportion of gene tree pairs which were detected to have co-evolved,
for each value ofc. While we do have a slightly higher false positive rate, our method detects existing co-



evolution more often for every value ofc. We feel confident in asserting that if gene trees are available,
our method performs better than Cohen’s method.

Table 3 Comparison with the method of Cohenet al. [12]
c Number of pairs compared

by Cohen’s method (out of
1000)

Proportion of pairs with
p-value < 0.05 (Cohen’s
method)

Proportion of pairs with p-
value< 0.05 (our method)

0 68 0 0.024
0.2 80 0.08 0.247
0.5 133 0.56 0.762
0.7 144 0.92 0.930

Conclusion

In this paper, we have devised an algorithm to detect and measure the strength of co-evolution between
two gene families. It takes two gene trees as input, and uses their reconciliations to a common species
tree to assess the co-evolution of the gene families. Simulation studies, and a comparison with the
method of Cohenet al. [12], show that this test is an effective way of detecting co-evolution.

The detection of strong co-evolution among gene families can signal either a proximity or a functional
relationship between the families. If working on a fully sequenced genome, the identification of co-
evolution signals between distant genes could pinpoint ancestral genome rearrangements and/or strong
functional links between those genes. If the genome is not fully sequenced, further study may be re-
quired to investigate the reason for co-evolution and to distinguish between proximity and functional
relationships.

Further work includes the design of a clustering method based on co-evolution scores to provide bi-
ologists with clusters of co-evolving gene families rather than just pairwise co-evolution information.
Another possible avenue for exploration includes extending the currentmethod to include 3 or more
gene families. We also plan, in collaboration with experts in bacterial evolution,to apply this method to
the bacterial gene trees available in the HOGENOM database [21] to detect existing co-evolution among
distant genes and to use this information to provide functional insights on un-annotated gene families.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The method was jointly devised by all the authors. YBC and CS programmed the method and ran the
simulations. All authors wrote and revised the paper. All authors read andapproved the final manuscript.

Acknowledgments

We thank Eric Tannier and Vincent Daubin for fruitful discussions, andOfir Cohen for his help with
the method in [12]. This work was partially funded by the FrenchAgence Nationale de la Recherche
Investissements d’avenir / Bioinformatique(ANR-10-BINF-01-02,Ancestrome). This publication is
contribution no. 2013-162 of the Institut des Sciences de l’Evolution de Montpellier (ISEM, UMR
5554).



References

1. Huelsenbeck JP, Rannala B, Yang Z:Statistical tests of host-parasite cospeciation.Evolution
1997,51(2). http://dx.doi.org/10.2307/2411113

2. Legendre P, Desdevises Y, Bazin E:A statistical test for host-parasite coevolution.Syst Biol2002,
51(2):217+. http://dx.doi.org/10.1080/10635150252899734

3. Page RDM (Ed): Tangled Trees: Phylogeny, Cospeciation, and Coevolution, 1 edition.
Chicago: University Of Chicago Press; 2002. http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20&path=ASIN/0226644677

4. Dutheil J, Pupko T, Jean-Marie A, Galtier N:A model-based approach for detecting coevolv-
ing positions in a molecule.Mol Biol Evol2005,22(9):1919–1928. http://mbe.oxfordjournals.org/
content/22/9/1919.abstract

5. Ashkenazy H, Kliger Y:Reducing phylogenetic bias in correlated mutation analysis.Protein
Eng Des Sel2010,23(5):321–326. http://peds.oxfordjournals.org/content/23/5/321.abstract

6. Koszul R, Caburet S, Dujon B, Fischer G:Eucaryotic genome evolution through the spontaneous
duplication of large chromosomal segments.Embo J2004,23:234–243. [Koszul et al 2004 eu-
caryotic genome evolution through duplic large segments.pdf 0261-4189 Journal Article].

7. Zhang L, Gaut BS:Does recombination shape the distribution and evolution of tandemlyar-
rayed genes (TAGs) in the arabidopsis thaliana genome?Genome Res2003,13(12):2533–2540.
http://www.genome.org/cgi/content/abstract/13/12/2533

8. Barker D, Pagel M:Predicting functional gene links from phylogenetic-statistical analyses of
whole genomes.PLoS Comput Biol2005,1:e3. http://dx.doi.org/10.1371%2Fjournal.pcbi.0010003

9. Ané C, Larget B, Baum DA, Smith SD, Rokas A:Bayesian estimation of concordance among
gene trees.Mol Biol Evol 2007, 24(2):412–426. http://mbe.oxfordjournals.org/content/24/2/412.
abstract

10. Cordero OX, Snel B, Hogeweg P:Coevolution of gene families in prokaryotes.Genome Res2008,
18(3):462–468. http://genome.cshlp.org/content/18/3/462.abstract

11. Birin H, Tuller T: Efficient algorithms for reconstructing gene content by co-evolution. BMC
Bioinformatics2011,12(Suppl 9):S12. http://www.biomedcentral.com/1471-2105/12/S9/S12

12. Cohen O, Ashkenazy H, Burstein D, Pupko T:Uncovering the co-evolutionary network among
prokaryotic genes.Bioinformatics2012, 28(18):i389–i394. http://bioinformatics.oxfordjournals.
org/content/28/18/i389.abstract

13. Gordon AG:Consensus supertrees: the synthesis of rooted trees containing overlapping sets of
labelled leaves.J Classif1986,3:335335.

14. Bininda-Emonds ORP:Supertree construction in the genomic age.Methods Enzymol2005,
395:745–757.

15. Doyon JP, Ranwez V, Daubin V, Berry V:Models, algorithms and programs for phylogeny rec-
onciliation. Brief Bioinform2011,12(5):392–400.

16. Scornavacca C, Paprotny W, Berry V, Ranwez V:Representing a set of reconciliations in a com-
pact way.J Bioinform Comput Biol2013,11.



17. Nguyen T-H, Ranwez V, Berry V, Scornavacca C:Support measures to estimate the reliability
of evolutionary events predicted by reconciliation methods.PLoS ONE 2013,8(10): e73667.
doi:10.1371/journal.pone.0073667.

18. Doyon JP, Scornavacca C, Gorbunov KY, Szöllősi GJ, Ranwez V, Berry V:An efficient algorithm
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