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Abstract

Background

Genes located in the same chromosome region share common evolutionas/revea often than
other genes (e.g. a segmental duplication of this region). Their evolutioralsaye related if they
are involved in the same protein complex or biological process. ldentifydrgvolving genes ca
thus shed light on ancestral genome structures and functional gerectiges.

=)

Results

We devise a simple, fast and accurate probability method based on speeiggire tree reconcilia
tions to detect when two gene families have co-evolved. Our method obsbeseumber and locatig
of predicted macro-evolutionary events, and estimates the probability imightine observed number
of common events by chance.

>

Conclusions

Simulation studies confirm that our method effectively identifies co-evohémgilfes. This opens
numerous perspectives on genome-scale analysis where this methodeauded to pinpoint cg
evolving gene families and thus help to unravel ancestral genome amantge or undocumented
gene interactions.

Background

Species from the same ecosystem may share common environmental fagjonelated to the local
climate or to the arrival of new species in the ecosystem) or be interdemteade their evolution can
be related. In the vast majority of cases, the footprint of this dependena@imal, but in some cases,
such as predator-prey, host-parasite or symbiotic relationships, sjigtience each other so much that



their co-evolution can be detected [1-3]. Similarly, nucleotides and aming #téd are located close
to one another on the genome share common local factors (e.g. specifotieccomposition bias or
underlying mutation rates due to the functional importance of the locus) aneme# each other (e.g.
because they are in the same codon, part of the same active site of a prdietgause one is part of a
transcription factor controlling the transcription level of the other).

The problem of detecting co-evolution at the amino acid level has beensesbnstudied recently
( [4,5]; among others). However, at a broader level, neighbourimggean also co-evolve, sharing
common evolutionary events such as segmental duplications [6] and latatiemary factors such as
the proximity of recombination hotspots or centromeres [7]. Protein interacténg. being part of the
same protein complex or biological pathway, can also induce co-evolutite gene level. Relatively
little work has been done on detecting co-evolution at the gene level [8-12]

To detect gene co-evolution, one has to observe it in a significant nushbpecies. As more and more
full genomes/transcriptomes are sequenced, more raw data needectt@dateolving genes becomes
available. Being able to accurately detect co-evolving genes would, aotbeg things, help to (a)
pinpoint possible functional interdependence, allowing us to annotatergeEnfrom non-model species;
(b) infer ancestral proximity among genes, allowing us to reconstrugsamat genome arrangements
[11]; or (c) cluster genes to reconstruct the Tree of Life in a dividé-eonquer framework [13,14].

In [12], Cohenet al. proposed a probabilistic method to detect co-evolutionary interactionsgfhgio-
genetic profiles, using gain and loss events. They used their method tasguolyp of 4593 prokaryotic
gene families and construct a co-evolution network. This yielded sesleisikrs of genes which corre-
sponded to identifiable functional pathways.

In this paper, we propose a novel probabilistic method to detect co-eval@ior method differs from
that of [12] in that it is based on species tree-gene tree reconciliati@rankiliation methods construct
a mapping between a gene tree and a species tree to explain their incaegoyenacro-evolutionary
events such as speciations, gene duplications, horizontal gene tsaatsfeSeveral reconciliation meth-
ods have recently been developed following parsimonious or probabilstadigms (see [15] for a
review). By using reconciliations, we are able to distinguish between diftéypes of events and take
into account uncertainties on such events [16,17].

Our method has advantages over that of [12] in that (a) it can measw@adion between genes with
small or different numbers of events; (b) it can take into account akpessible evolutionary scenarios
for each gene, reflecting inference uncertainties; and (c) it useeettoal model-based framework
to computep-values for the co-evolution score, rather than bootstrapped simulatiodsre in [12].
Simulations show that our method is effective in detecting co-evolution betgerses, even when it is
relatively weak. It is also time-efficient, which allows us to conduct genarakesanalysis to search for
undocumented co-evolution among thousands of gene families.

Preliminaries

LetT = (V(T), E(T)) be a (rooted) tree with labelled leaf vertices. We denote the leavBbpi (T')
and the (multi)set of all labels of those leaves({I"). Given a vertex: € V(T'), we denote by, its
parent and by < x the fact that a vertey is a descendant of.

We define a gene tre@ as a tree where each leaf represents an extant gene. Likewise, we aefi
species treé& as atree in which each leaf represents a distinct extant species. Theolitihe leaves of

S are unique since they are the identifiers of these species. In gendriteesl vertices may represent
various evolutionary events (e.g. speciation, duplication), while in theiepéree they all represent



speciation events. In this paper, we suppose that gene and spedcesr&reeoted and binary. Finally,
we assume that the genes@fcome from the genomes of species presert,im particular that each
label of £(G) appears inC(.S) (denoted by (G) C L(.5)).

A species treé is said to balatedif it is associated to a functiofls which represents the time separating
a vertex from the current time, i.és : V(S) — RT such that ify < z thenfs(y) < 6s(x) and if

x € L(S) thenfs(z) = 0. Using asubdivisiorof S rather tharS itself when computing reconciliations
has been proven to ensure time-consistency of gene transfers in gidyione [18]. The subdivision
S’ of S together with an associated time functiég is constructed as follows: firstly, for each node
xz € V(S)\ L(S) and each edg@y,,y) € E(S) s.t. 05(yp,) > 0s(z) > 05(y), anartificial nodew is
inserted along the eddg,, v), with 65/ (w) = 0s(z); secondly, for nodes € V(S’) corresponding to
nodes already present ) we setds/ (z) = Og(x).

In this paper, we use the combinatorial reconciliation model of D@ta@h.[18], called theDTL model.
We refer the reader to this paper for a formal definition of reconciliatidifis model considers (as
possible macro-events that shape the genome) speciations, duplicatosfers and losses of genes.
For algorithmic reasons losses are never considered alone, so the atemiic ef this model are: a
speciation$), a duplication D), a transferT), a transfer followed immediately by the loss of the non-
transferred childTL), a speciation followed by the loss of one of the two resulting childgér),(a no
event @) that only reflects the fact that a gene lineage has crossed a time bguarttha contemporary
event () that associates an extant gene to its corresponding species.

The method of [18] calculates the most parsimonious reconciliation under thislmdowever, there
often exist several most parsimonious reconciliations. Those reconciBationstitute what we call
a reconciliation space, which can be efficiently stored in the reconciliatiaphgintroduced by Scor-
navacceet al.[16].

Methods

In this section we present our new methodology to detect whether or nagéwe familes have co-
evolved. We take as input two gene trégsandG» and a dated tre§ such thatC(G1) C £(S) and
L(Ga) C L(S).

Our co-evolution detection method consists of three main steps:

1. We reconcile each of the two gene treest¢the subdivision of5) to produce two corresponding
reconciliation spaces. Event sets are then extracted from these twasspietails are given in
the “Computing the weighted event sets” section.

2. We calculate ao-evolution scoravhich quantifies the similarity between the two event sets.
Details are given in the “Computing the co-evolution score” section.

3. We calculate the-value of the calculated score under a model of independent evolution. |
this p-value is less than an appropriate threshold (reflecting the acceptablgagedor false
positive co-evolution detection) we consider thatandG, co-evolved. Details are given in the
“Computing thep-value” section.

Computing the weighted event sets

We use the method of [16] to reconcile each of the two gene trees to thevisidobspecies tree, using
equal costs fob), T andLL events. This yields two reconciliation spades; and RC> which contain all



of the most parsimonious reconciliations betwégn(respectivelyG,) and.S. By taking the multiple
reconciliations ofRC, andRC5 into account, we can explore a broad set of possible events, assess the
reliability and remove the danger of artifacts arising in a single reconciliation.

Each reconciliation, according to thBTL model, yields a set of events with types from
{S,D, T, TL,SL, &, C}. However,S andC events are determined by the species tree, @amalents
are artifacts due to the use of subdivision. Therefore, coincidemitgwé these types are not an in-
dication of co-evolution, and we discard them. Likewise, we consideevents only ad. events.
FurthermoreTIL events are considered as two sepafagndlL events.

We are now left with onlyD, T andLL events which we extract from the reconciliation spaces. These
events are characterised by their type and their position in the considamedgd species trees. Here,
we “undo” the subdivision and consider the position of the event in thenaligpecies tre& rather
than the subdivided tre#’.

For each branch € E(S), geneu € V(G;) and event typ& < {D, T, L}, we definew; (b, u)g to be
the fraction of reconciliations oRC; in which u is mapped to an event of tyfd on branchh. Note
that this means that transfers departing from the same brangtbof reaching different branches are
considered identical, for simplicity (otherwise there are too many possibleférarto be time-efficient
in later computation). Then we define the set

Wile = |J {wi(b,ws},

ueV(G)

which contains the weights of all events of typen branchb.

Since the frequency of an event over most parsimonious reconciliatasbéden shown to be a good
indicator of its reliability [17], we usev; (b, u)r @s an estimate of the probability that this event has
really occurred inG;. This provides us with a set of possible events together with their probabilities
according taiG;. Another set is obtained frolRC, in a similar way.

Note that these weighted event sets can be obtained from any reconcitisibiod, for example by
taking into account the set of Near-optimal Parsimonious ReconciliationRgN§ee [17]), rather than
focusing only on most parsimonious reconciliations. Having a set of oilétions is preferable, since
it reflects the inherent uncertainty of reconciliation inference and gwexliction. It also allows us to
have probability values associated to each event, whereas a singleiliation only has the presence
or absence of events. If only given a single reconciliation, one canddtn a set of associated
(sub-)optimal reconciliations, e.g. reconciliations that are reachablestnall number of the operators
described in (Chan, Ranwez, Scornavacca: Exploring the spacenefspecies reconciliations with
transfers. Submitted td Math Bio)).

In fact, we use reconciliations only as a tool to produce the weighted see&)twhich are the input to
the remainder of the method. In theory, any method which produces a webiggtt®f genetic events
(even if they are ndDTL events) can replace this step. We use reconciliations because theyepaovid
straightforward way to calculate the event sets, and there are alrdaigreefalgorithms for computing
the reconciliation spaces.

Computing the co-evolution score

Events of the same type which occur at approximately the same time irqadind G, support a hy-
pothesis of co-evolution. Therefore, we calculate a statistic which mesahwa@amount of co-evolution
based on the number of such events which are inferred from the iigéatioos.



Given two reconciliations — one fdr; and one foiG5; — we could define theo-evolution scoréo be
the number o), T or L. events which occur in both reconciliations on the same branch.

However, since we have computed a set of weighted events for eaehlr@giiting from several recon-
ciliations, the co-evolution score betwe€h andGs is computed as follows:

1. We consider the weight associated to each ewe(it, u)g to be the probability that this event has
occurred inG;. We make the (strong) assumption that any such event is independenaifip
other event represented by (b, u/)g fori =1, 2.

2. For all branches € E(S) and element typeR, we calculate the probability of having 0, 1, ...,
n events of typel on b, wheren = W, (b)g|. This is done via recursion as follows: suppose
Wi(b)e = {p1,-..,pn}. Let X; be a variable representing the number of actual events from the
firsti possible events represented in this set. Them forl, ..., nandxz =0, ..., 4, we have

P(XZ = x) = piP(Xi—l =T — 1) + (1 _pi)P(Xi—l = (L‘),
where the initial conditions arB(X; = —1) = 0 andP(Xy = z) = I(z = 0).

3. We do the same fakis, using the notation¥” andm instead ofX andn. The variablesX,, and
Y, represent the total number of actual events of t§pn this branch.

4. For all branche$ of S and element typeE, we compute the expected number of events in
common:

n m
E(number of events in common= Y~ " min(z, y) P(X, = ) P(Y;, = y).
=0 y=0

We define the co-evolution score betwa&n and Gs given S as the sum of this value over all
branches of and event types.

As an example, suppose that for a particular braneh E(.S), we haveW, (b)p = {1,0.5,0.5} and
Ws(b)p = {0.6,0.2}. The distributions ofX's andY5 for this combination(b, D) are calculated using
the recursion formula above as detailed in Tables 1 and 2.

Table 1 Example probability calculation 1

G, 0 1 2 3
X, 0 1

Xo 0 0.5 0.5

X3 0 0.25 0.5 0.25

Probabilities of having, 1, 2, 3 duplications inG; on a brancth € E(.S) with Wy (b)p = {1,0.5,0.5}.

Table 2 Example probability calculation 2

G2 0 1 2
Y1 0.4 0.6
Y, 0.32 0.56 0.12

Probabilities of having), 1, 2 duplications inG2 on a branch € E(S) with W» (b)p = {0.6,0.2}.



The contribution of b, D) to the co-evolution score is

contribution(,D) = 0(0x 0.32+0 x 0.56 4+ 0 x 0.12 + 0.25 x 0.32 + 0.5 x 0.32 4+ 0.25 x 0.32)
+1(0.25 x 0.56 + 0.25 x 0.12 + 0.5 x 0.56 4+ 0.25 x 0.56)
+2(0.5 x 0.12 4+ 0.25 x 0.12)
= 0.77.

Computing the p-value

The co-evolution score measures the dependence between two gergivieeea species tree. However,
its distribution is highly dependent on the number of events in each recondilispi@ce. In order to
assess the significance of the score, we computg-tladue associated to it.

To do so, we count the average number of events in each event sdt,wédienote (rounded up) by,
andN,. For each branch € E(S) and event typ&, we call the combinatiofb, E) abin, and denote

by B the (arbitrarily) ordered vector containing all possible bins, over alidtash of the treeS and

the 3 element types d. We denote the lengths (representing duration) of the respectivehasirc
Sbyli,...,In, whereN = 3|E(S)| is the number of bins. In this sequence, each branch length will
occur 3 times, once for each event type.

We compute the-value under a model that assumes that the genes do not co-evolvié Bnd andIL
events are distributed at random among the elemenft wfith probabilities proportional to the branch
lengths. Using a theoretical model allows us to efficiently calcylatalues without simulations which
rely on bootstrapped data (as was done in [12]). This increases theiligliaf the calculations and
mitigates the influence of the independence assumption made when computingetb@wution score
(previous section, step 1 of the procedure).

Definition 1. We definef (x;n1,n2,n) to be the probability that, if.; and ne events are randomly
placed on the first bins of B, there will be at least events in common between the two event sets.

Given a co-evolution score of, our p-value is thereforef (X; N1, N2, N). We again calculate this
statistic by recursion. Firstly, we define

n —1
=1

to be the probability that an event is randomly assigned ta:lmnt of the firstn bins, and

n

BPr(z;m,n) = ( . ) (1 — )

to be the binomial probability mass function with parametesd=«. Then we have the initial condi-
tions

flxyni,na,n) = 1ifx <0,
f(z;ni,ne,n) = 0if z > min(ny,na),

f(xz;ni,ne, 1) = I(x < min(ng,ng)).



The recurrence is

min(ni,n2)
f(z;n1,ne,n) = Z BPr(i;m,,n1)BPr(i;m, ne) f(z —i;n1 —i,ng —i,n — 1)
i=0

n
+ Z BPr(j;my,n1)BPr(i;mp,no) f(x —i;ng — j,ne —i,n—1) (1)
j=i+1
ny
+ Z BPr(i;mp,n1)BPr(j;mp,no) f(x —i;ng —i,ng —j,n—1)|.
j=it1

The variablei in the outside sum denotes the number of events in common between the twaeatgent
in bin n. The first term considers the case where there are exaetlgnts in this bin in both sets. The

second term accounts for the case where the first set basevents in this bin, but the second set only
hasi such events — the number of events in common is &tillhe third term considers the mirrored

version of the second term.

To calculatef (X; N1, N, N), we calculatef (x; ny,ng,n) forall z < X, ny < Ni,ng < Noyn < N,
in order of increasing. We can do this because (1) expresges n1, n2, n) in terms off values where
the fourth argument is — 1 and the other arguments are not increased. The IgW&t N1, N2, N) is,
the stronger the evidence against the hypothesis that the genes didavate®. To test the co-evolution
hypothesis, we compare this number to a pre-defined threshold level,erad)€r05.

Note that the functiorf itself depends only on the species tree; only its arguments depend on the gen
trees and co-evolution score. Because of this, we only have to petf@mecursion once for every
species tree, with the arguments set to the maximal values encountered ihahgesees. This allows

us to quickly compute the values of the function for many genes which belotiteteame species
(which occurs, for example, in our simulations), and so process whaolenge analysis to scan for
undocumented gene family co-evolution.

Results and discussion

In this section, we first describe the simulation protocol used to mimic gene famiyaution along
a species tree. We then provide and discuss the results obtained by oud mettiis dataset, which
confirm its ability to detect when two gene families co-evolve.

Gene tree simulation

We start with a dated species tr8eEvery branch of5 has an associated activity— representing the
overall rate at whiclD/T/LL events occur on this branch — and specific rates for each individeat ev
typerp, rr, rL, With a = rp + r7 + r. We simulate two gene trees simultaneously, with a parameter
¢ € [0,1] (which we call theco-evolution parametgmrepresenting the dependence between the two
genes. Informally, an event in one gene tree has a probabilifyalso occurring in the other gene
tree. For example, if = 1 then the two trees must be identical, whereas4 0 they are completely
independent.

To simulate the gene trees, we use a modified birth-and-death processewpiiditly controls the co-
evolution between the two genes. At the beginning of the process, the tves gee located at the root
of S andpaired (identified) to each other. At any time, the timyg,; of the nextD/T/L. event in every
existing unpaired gene is calculated by simulating an exponential variable aviimpter equal to the
activity of the branch(z, y) containing that gene. For gene pairs, this activity must be multiplied by



a factor ofl%c for reasons that will be explained shortly. Thent,jf,; < 6s(y), the next event is
determined to be & event ify is a leaf, and af$ event otherwise. If,...; > 6s(y), the next eventis a
DIT/L event and we rely on the relative ratgs r, v, to determine its type. If this event affects a gene

pair, then:

e Ifitisans, both genes in the pair must speciate. The left (respectively right) childefesulting
gene is then paired to the left (resp. right) child of the other.

e Ifitis a D, the event will occur in one gene of the pair with probability 1, and in the okl
probability c. If it occurs in both genes, the children are paired to each other as fhdhse. If
it occurs in only one gene, one of the resulting children is paired to the gérer (it does not
matter which child).

e Ifitisa T, we treat it the same as follaevent, with the added conditions that if it occurs in both
genes, the transfer targets must be the same, and if it occurs in only negtige child which
remains in the originating branch is paired to the other gene.

e Ifitis an L, the event will occur in one gene of the pair with probability 1, and in the oliidr
probability c. If it occurs in only one gene, the other gene is now unpaired.

It is now clear why the activity of a gene pair above is multipliedﬁyg: eachD/T/LL event in a pair
results inl + ¢ actual gene events on average between the two trees. To achievertet nwrginal
activity in each gene tree, we must multiply by the correcting factor.

We repeat this process until we reach the time of the extant species. dtigps two (correlated) gene
trees. An example of this process is given in Figure 1.

Figure 1 Example simulation. Example of simulating a pair of correlated gene trees, Withc < 1.

(a) The dated species treéh) The first speciation happens at date(@ A duplication occurs at date
1.42. This duplication only occurs in the left gene tree; the right child of tigdichtion is paired to the
original branch in the right gene tre) Another speciation happens at datdd).A transfer occurs in
both trees at date 0.5%) There are no further events and we reach the time of the leaves (ddtgp 0).
The resulting gene trees.

Simulation results

We ran simulations using a phylogeny of 37 proteobacteria over a perid@0mmillion years as a
species tree. We generated duplication, transfer and loss rates lfosigadated gene independently,
using the same scheme as [19]: the loss rate was randomly chosen in tha! 0t@@1, 0.0018], where
the units are events per gene per million years; the ratio between the “biteh(stan of the duplication
and transfer rates) and the loss rate was randomly chosen in the in@ebyal {]; finally the proportion
of the duplication rate to the birth rate was randomly chosen in the interval JOBGth the species tree
and the event rates were chosen in accordance with real dataseftaioses [20].

We simulated 10000 pairs of gene trees for each of the values of theotdien parameter: <
{0,0.1,...,1}. We then applied the procedure described in the “Methods” section tola@dhe
p-values for the co-evolution score. The resultsdet 0,0.2,0.5,0.7 are shown in Figure 2.

Figure 2 p-value distributions. Sample distributions of thg-value forc = 0,0.2,0.5,0.7.




We observe that thg-value 1 is over-represented in all plots. This arises from the granulzritye
simulations. More specifically, the-value does not come from a continuous distribution, but from a
variety of discrete distributions depending &4 and N5, each with a moderate number of possible
values. 1 is always one of these values (for wher= 0, i.e. there are no events in common), and so
it is over-represented. This effect is more noticeable bscomes smaller, because the likelihood of
having no event in common grows larger.

It is apparent from Figure 2 that thevalue statistic is effective in distinguishing between co-evolving
gene families and independent gene families. Even with quite low valuesigh as 0.2, the distribution
of the p-values is noticeably skewed towards 0. At higher levels, @lmost all thep-values are very
close to O.

If our underlying model is correct, then the case: 0 in Figure 2 should have a uniform distribution.
Even if we ignore the-values of 1, our sample distribution is clearly not uniformyfagoodness-of-fit
test to a uniform distribution rejects this hypothesis with-@alue of less than0~'°). This is almost
certainly due to the fact that our model assumptions are not an exact mataality (or, indeed, our
simulation protocol). However, the distribution is close enough to uniformahaassumptions appear
to be reasonable. In fact the false positive rate for a threshold of 0d@8yi€.024, less than expected
under the underlying model.

In Figure 3, we plot the power of the test (the true positive rate) for uari@lues of the co-evolution
parameter. As expected the power rises withit is greater than 0.8 (a standard threshold value for
power measurement) for approximately 0.52.

Figure 3 Test power. Power of the test for various values of

Further simulations (which we do not show the results of here) indicatedhghg the event costs used
in the reconciliation algorithm does not significantly impact these results.

Comparison with the method of Cohenet al.

For a complete assessment of the effectiveness of our co-evolutiartidetalgorithm, we compare it
to the method of Coheet al.[12] (henceforth referred to as Cohen’s method) on our simulated data.

We must stress that the two methods accept different input formats; whilalgorithm takes gene
trees as input, Cohen’s method only uses phyletic patterns of gene qefdesence in extant species,
which can be extracted from the gene trees but do not contain all of thiermation. As such, we
should expect our method to outperform Cohen’s method as it uses mormatfon. On the other
hand, the fact that our method requires more information as input is naiedrawback, as full gene
tree information is becoming more and more available in recent times.

We ran Cohen’s method on smaller test sets (1000 gene tree pairs) of sthudtador the co-evolution
parameter values = 0,0.2,0.5,0.7; the smaller size was for efficiency reasons and is not expected to
skew the results. Firstly, because Cohen’s method only compares twegghaimilar “exchangeabil-

ity” (number of inferred gain/loss events), only a small proportion (less i) of the gene families
were actually compared. Our method, which can compare any two gengisrelesrly superior in this
respect.

Even considering only those families which are compared by Cohen’s methodhethod is still more
sensitive. In Table 3 we show the proportion of gene tree pairs which detected to have co-evolved,
for each value of. While we do have a slightly higher false positive rate, our method detectseas-



evolution more often for every value of We feel confident in asserting that if gene trees are available,
our method performs better than Cohen’s method.

Table 3 Comparison with the method of Coheret al. [12]

c Number of pairs compared  Proportion of pairs with Proportion of pairs with p-
by Cohen’s method (out of p-value < 0.05 (Cohen’s  value < 0.05 (our method)

1000) method)
0 68 0 0.024
0.2 80 0.08 0.247
0.5 133 0.56 0.762
0.7 144 0.92 0.930
Conclusion

In this paper, we have devised an algorithm to detect and measure thgilstwéno-evolution between
two gene families. It takes two gene trees as input, and uses their reconudiiiia common species
tree to assess the co-evolution of the gene families. Simulation studies, amdparsmn with the
method of Coheret al.[12], show that this test is an effective way of detecting co-evolution.

The detection of strong co-evolution among gene families can signal eithexinity or a functional
relationship between the families. If working on a fully sequenced genoreadémtification of co-
evolution signals between distant genes could pinpoint ancestral geeramangements and/or strong
functional links between those genes. If the genome is not fully seqdehagher study may be re-
quired to investigate the reason for co-evolution and to distinguish betweemity and functional
relationships.

Further work includes the design of a clustering method based on catiewosicores to provide bi-
ologists with clusters of co-evolving gene families rather than just pairwissvotution information.
Another possible avenue for exploration includes extending the cumetttod to include 3 or more
gene families. We also plan, in collaboration with experts in bacterial evolutapply this method to
the bacterial gene trees available in the HOGENOM database [21] to deitgtigeco-evolution among
distant genes and to use this information to provide functional insights amnotated gene families.
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