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Water stresses reduce plant growth but there is no consensus on whether carbon
metabolism has any role in this reduction. Sugar starvation resulting from stomatal closure
is often proposed as a cause of growth impairment under long-term or severe water deficits.
However, growth decreases faster than photosynthesis in response to drought, leading to
increased carbohydrate stores under short-term or moderate water deficits. Here, we
addressed the question of the role of carbon availability on growth under moderate water
deficits using two different systems. Firstly, we monitored the day/night pattern of leaf
growth in Arabidopsis plants. We show that a moderate soil water deficit promotes leaf
growth at night in mutants severely disrupted in their nighttime carbohydrate availability.
This suggests that soil water deficit promotes carbon satiation. Secondly, we monitored the
sub-hourly growth variations of clementine fruits in response to daily, natural fluctuations in
air water deficit, and at contrasting source–sink balances obtained by defoliation. We show
that high carbohydrate levels prevent excessive, hydraulic shrinkage of the fruit during
days with high evaporative demand, most probably through osmotic adjustment.Together,
our results contribute to the view that growing organs under moderate soil or air water
deficit are not carbon starved, but use soluble carbohydrate in excess to partly release a
hydromechanical limitation of growth.

Keywords: leaf growth, fruit growth, water deficit, carbon starvation, carbon satiation, starch metabolism,VPD

INTRODUCTION
Water stress critically impairs plant growth and affects primary
productivity worldwide (Boyer, 1982; Zhao and Running, 2010).
Understanding the mechanisms by which growth decreases under
water stress is a long-standing matter of debate (Hsiao, 1973;
Tardieu et al., 2011). Growth can be both defined as an irreversible
increase in volume – expansive growth – and an accumulation
of biomass into new structures – structural growth (reviewed
in Pantin et al., 2012). During expansive growth, turgor pres-
sure exceeds the resistance offered by the cell walls, leading to
an enlargement of the walls and a net influx of water into the
growing cells (Lockhart, 1965; Cosgrove, 1993). Structural growth
is tightly dependent upon carbon supply to growing tissues, which
are sites of intensive respiration (Bidel et al., 2000) and biosynthe-
sis of carbon compounds essential for cell growth, such as cellulose,
hemi-cellulose, or proteins (Smith and Stitt, 2007; Gibon et al.,
2009). Under water stress, both water relations and carbon balance
are impaired, because plants close their stomata to limit transpi-
rational water loss, which also limits the carbon entry required
for photosynthesis. Accordingly, plant growth under water stress

could be reduced either because its water relations are unsuitable
for growth – hydromechanical limitation – or because its carbon
balance is low – metabolic limitation.

It has been often proposed that growth under water stress was
modulated by hydromechanical constraints. Under water scarcity,
water flux to growing cells is reduced because water potential
gradients are disrupted (Tang and Boyer, 2002). Aquaporin clo-
sure by drought signals may also worsen the delivery of water to
the growing tissues (Parent et al., 2009; Shatil-Cohen et al., 2011;
Pantin et al., 2013). This leads to a drop in turgor pressure, that
plants may counteract through osmotic adjustment, which partly
relies on recruiting carbon solutes in the vacuole. Finally, water
deficits tend to stiffen the cell walls (Fan et al., 2006; Zhang et al.,
2011), making turgor pressure less efficient in driving growth.
Thus, the hydromechanical limitation of growth by water deficits
arises from an imbalance between the force required to enlarge the
cell walls and the turgor pressure, which can be modulated by the
mobilization of organic solutes.

The growth rate of sink organs is also tightly coordinated
with carbon availability and this holds for roots (Freixes et al.,
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2002; Yazdanbakhsh and Fisahn, 2010; Willaume and Pagès, 2011;
Yazdanbakhsh et al., 2011), fruits (Génard et al., 1998; Lescourret
et al., 1998; Léchaudel et al., 2005; Andriotis et al., 2012), flow-
ers (Smith and Stitt, 2007; Dosio et al., 2011), or young leaves
(Muller et al., 2001; Pantin et al., 2011). Moreover, under moder-
ate water deficits, carbohydrate concentrations increase in growing
tissues due to an uncoupling between growth rate and photosyn-
thesis, the former being more sensitive than the latter (Muller
et al., 2011). These differences of sensitivities have been reported
for a long time (Boyer, 1970), and observed in a variety of species
(Sadras and Milroy, 1996), including trees (Bogeat-Triboulot et al.,
2007). They may at least partly originate from the strong resilience
of the metabolic component of photosynthesis to water deficit
(Kaiser, 1987; Flexas et al., 2004), while expansive growth is prob-
ably the most sensitive process to water stress (Hsiao, 1973). As
a result, the correlations between growth rate and carbohydrate
concentrations disappear under moderate water deficits (Muller
et al., 2011).

These observations hold for moderate water deficits. Contrast-
ingly, under long-term or severe water deficit, photosynthesis can
be so severely reduced that plants may enter into carbon star-
vation, therefore provoking a metabolic limitation of growth or
even plant death (McDowell, 2011; Quirk et al., 2013; Sevanto
et al., 2013). Carbon starvation could be particularly critical for
isohydric species which prevent excessive drop of their leaf water
potential by an early closure of their stomata (McDowell et al.,
2008).

Increases in carbohydrate concentration following moderate
water stress raise the question of the role of carbohydrate avail-
ability on plant growth under water deficit. In this paper, we
addressed this question by analyzing how organs under moder-
ate water stress partition their growth at a sub-daily time-scale.
Plants experience a diurnal variation of carbon and water avail-
ability: during the night, metabolism relies on transitory pools of
carbon such as starch, which set a metabolic limit to nighttime
growth; these transitory pools are synthesized within the leaves
in the daytime, during which transpiration competes with growth
for water (Pantin et al., 2012). We thus took advantage of this daily
fluctuations using two different systems and contrasting regimes
of water and carbon availability. Firstly, we analyzed leaf growth at
a day/night time-step in Arabidopsis mutants impaired in carbohy-
drate metabolism and grown under soil water deficit. Secondly, we
studied the sub-hourly growth pattern of clementine fruits grown
under various source–sink regimes and exposed to daily, natural
fluctuations of air water deficit. Our results support the view that
water deficits promote carbon satiation of sink organs and that the
main effect of carbon availability on organ growth under moderate
water deficits is through the supply of organic osmotica for turgor
maintenance.

MATERIALS AND METHODS
DAY/NIGHT PATTERNS OF LEAF GROWTH IN Arabidopsis USING THE
PHENOPSIS PLATFORM
Arabidopsis thaliana plants were grown in soil at a 16-h pho-
toperiod (PAR = 170 μmol m−2 s−1) using the phenotyping
platform PHENOPSIS, that allowed both precise control of the
water content of each pot and imaging of the plant from the top

(Granier et al., 2006). The soil water content was maintained at a
well-watered level of 0.40 gwater g−1

dry soil (equivalent to a predawn
water potential of −0.2 MPa), the vapor pressure deficit (VPD) at
0.8 kPa, and the temperature at 20◦C. When plants reached the
phenological stage 1.02 (Boyes et al., 2001), for half of the plants,
irrigation was suspended until soil water content reached a tar-
get value corresponding to a moderate water stress (0.23 gwater

g−1
dry soil, equivalent to a predawn water potential of −0.7 MPa).

Photographs taken at the end of each day and night, combined to
a simplified version of the image analysis procedure described in
Pantin et al. (2011), allowed us to monitor the day/night relative
elongation rate of the sixth leaf during 8 days following leaf emer-
gence, corresponding to the time at which this leaf reaches the half
of its final size in the wild-type Col-0 under control conditions.

Both the wild-type accession Col-0 and mutants affected in car-
bon metabolism were studied. These mutants were affected either
in the daytime translocation of chloroplastic photosynthates (tpt),
in starch synthesis (pgm), or in starch utilization at night (sex1,
bam1, bam3, bam1 bam3, dpe1, mex1, dpe2). All mutants were in
the Col-0 background. The genotypes are shown in Figure 1 at
day 0 and day 7 following the emergence of the sixth leaf, in both
well-watered and water stress conditions.

DAILY PATTERNS OF FRUIT GROWTH IN CLEMENTINE USING
DISPLACEMENT TRANSDUCERS IN THE FIELD
We analyzed the growth pattern of clementine fruits in an
experimental orchard during the 2008–2009 season. We used
18-year-old clementine trees (Citrus clementina Hort. ex Tan.)
which were all clonal replicates grafted on Carrizo-citrange (Cit-
rus sinensis [L.] Osbeck × Poncirus trifoliata Raf.) and grown
near San Giuliano in Corsica (42◦ 18′ 55′′ N, 9◦ 29′ 29′′ E;
51 m a.s.l.). Trees were about 2.5 m high, and were spaced
at 4 m × 6 m. The plants were subjected to standard cultural
practices for commercial clementine production. Fertilizers were
supplied and insects and diseases controlled according to the rec-
ommendations of the local agriculture department. The trees
were irrigated at full water requirements using micro-sprinklers
under the canopy. Irrigation was scheduled based on evapo-
transpiration calculations estimated from the Penman–Monteith
equation (Monteith, 1965) and from information supplied by
the local weather station. Microclimate around the fruits was
monitored using thermocouples, sensors measuring global solar
irradiance (CES180, Cimel Electronique, Paris, France) and rel-
ative humidity sensors (HMP45C, Campbell, Scientific Inc., UT,
USA). Climate data were stored every 15 min. Fruit growth was
monitored using displacement transducers recording variations
in fruit diameter during 45 days between early September and
late November 2008. Climate sensors and displacement trans-
ducers were connected to the same control box and data-logger
(21X Micrologger, Campbell Scientific Inc., UT, USA), allow-
ing simultaneous measurements for growth and climate every
15 min.

To modify the carbon availability for the growing fruits, a defo-
liation treatment was applied on selected fruiting branches in order
to modify the leaf-to-fruit ratio. During the flowering period, the
plants were isolated from pollinators to prevent cross-pollination
and seed production. Only fully expanded flowers from May 5th

Frontiers in Plant Science | Functional Plant Ecology November 2013 | Volume 4 | Article 483 | 2

http://www.frontiersin.org/Functional_Plant_Ecology/
http://www.frontiersin.org/Functional_Plant_Ecology/archive


“fpls-04-00483” — 2013/11/28 — 12:37 — page 3 — #3

Pantin et al. Carbohydrates, growth and water deficit

FIGURE 1 | Photographs of representative plants of Arabidopsis

mutants affected in carbon metabolism grown in well-watered

conditions or under soil water stress. The wild-type Col-0 is shown at
day 0 and day 7 following emergence of the sixth leaf in well-watered
conditions or under moderate water stress (predawn water potential of
−0.7 MPa), together with a mutant affected in the daytime translocation of
chloroplastic photosynthates (tpt ), starch metabolism (pgm), or starch
utilization at night (sex1, bam1, bam3, bam1 bam3, dpe1, mex1, dpe2).

to May 15th 2008 were selected to obtain fruits of similar age. After
the completion of cell division in the fruit (at the end of July under
Mediterranean climate; Tadeo et al., 2008), the leaf-to-fruit ratio
was set to 30, 15, or 5 leaves per fruit to obtain a control, moderate
or low carbon availability (Poiroux-Gonord et al., 2013). The 120
selected fruiting branches were composed of 1-year shoots from
the spring flush of the previous season. Fruiting branches were
chosen among the trees as having similar initial stem diameter
(about 1 cm), height above ground (about 1.5 m), and exposure to

light in East orientation. Before the defoliation treatment, girdling
was applied on shoots with at least 30 leaves in July, after fruit
set. Girdling consisted of removing a 10 mm-wide band of bark
in the middle of the main stem of each selected branch to pre-
vent any movement of assimilates between the fruiting branch
and the rest of the tree. Leaves were all fully expanded at the time
of girdling. Fruit growth was monitored on at least three fruits
per level of leaf-to-fruit ratio. Displacement transducers were also
placed on three peeled fruits from girdled fruiting branches with
30 leaves.

The fresh and dry weight of the pulp and the peel were
recorded regularly from September to March, together with
glucose, fructose, and sucrose contents of the pulp. Immedi-
ately after harvest, fruits peel and pulp were weighed separately
for fresh mass determination. Aliquots were lyophilized for
dry mass measurements and sugar analyzes. Then, the pulp
material was ground to a fine powder and stored at −80◦C
for subsequent analyzes. Sugar analyzes of the pulp were per-
formed by HPLC according to the method previously described in
Poiroux-Gonord et al. (2013).

STATISTICAL ANALYZES
All graphics and statistical analyzes were performed with the R
software (R Development Core Team, 2012).

To analyze the day/night pattern of relative elongation rate
of the sixth leaf in the ten Arabidopsis genotypes under well-
watered conditions and under water stress, a heat map was
performed as follows. For each genotype × environment com-
bination, the difference between nighttime- and daytime-mean
relative elongation rate was computed at each of the 8 days
after leaf emergence, and assigned to a color between green

FIGURE 2 | Day/night pattern of leaf growth in Arabidopsis plants with

a disturbed hydraulic or metabolic status. The relative elongation rate of
the sixth leaf was monitored for 8 days following its emergence in the
wild-type Col-0 under well-watered conditions or under moderate soil water
stress (predawn water potential of –0.7 MPa), as well as in the starchless
mutant pgm under well-watered conditions. Black rectangles and gray
bands indicate the night periods. Error bars are 95% confidence intervals.

www.frontiersin.org November 2013 | Volume 4 | Article 483 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Functional_Plant_Ecology/archive


“fpls-04-00483” — 2013/11/28 — 12:37 — page 4 — #4

Pantin et al. Carbohydrates, growth and water deficit

(daytime growth) and red (nighttime growth). A hierarchi-
cal clustering of the kinetics was then performed using the
Euclidean distances. The original daytime and nighttime values
were further detailed for the days 4–6 following leaf emer-
gence, as a bar plot showing the means and the 95% confidence
intervals.

To analyze the effect of the natural variations in VPD on
clementine fruit growth, we took advantage of the natural vari-
ability in the daily patterns of VPD collected throughout the
experiment, which were highly variable from day to day. Each
day starting at 00:00 and ending at 23:59 was considered as an
individual with 96 variables, corresponding to the VPD collected
every 15 min. A k-means clustering analysis was performed on
these climate data, which allowed to statistically allocate the days
according to their similarity in VPD. Three clusters were obtained,
equivalent to a day with high (the daily maximal value of VPD,
VPDmax > 1 kPa), moderate (0.5 kPa < VPDmax < 1 kPa), and
low VPD (VPDmax < 0.5 kPa), respectively. The fruit growth pat-
terns (as well as PAR measurements) were then affected to one of

these three clusters according to the day they were collected, and
were averaged within each cluster on a 15 min basis.

RESULTS AND DISCUSSION
GROWTH LIMITATION UNDER SOIL WATER DEFICIT: INSIGHTS FROM
Arabidopsis LEAVES
Growth of young leaves is driven by carbon availability in
well-watered conditions
To analyze the impact of the day/night regime on leaf growth, we
monitored the elongation rate of the sixth leaf in Arabidopsis plants
during the first 8 days and nights following its emergence. In the
wild-type Col-0, nocturnal depressions of growth were observed
early after leaf emergence, but progressively vanished during leaf
development (Figure 2). In Arabidopsis leaves, metabolic demand
at night is sustained by the transitory starch synthesized in the
daytime, a period during which stomatal transpiration reduces
water availability. Accordingly, using developmental patterns of
leaf relative expansion rate collected on several Arabidopsis geno-
types grown under different environmental conditions, we showed

FIGURE 3 | Heat map of the day/night patterns of leaf growth in

Arabidopsis mutants affected in carbon metabolism and grown in

well-watered conditions or under moderate soil water stress. The
dendrogram represents a hierarchical clustering analysis (Euclidean distances)
of the difference between nighttime and daytime relative elongation rate of

the sixth leaf during 8 days following its emergence. The difference was
associated to a color, with closeness to green indicating growth preferentially
in the daytime and closeness to red indicating growth preferentially in the
nighttime. Note that moderate soil water stress increases nighttime growth
relative to daytime growth in all genotypes.
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previously that nighttime depressions of growth are associated
to a metabolic limitation, while daytime depressions of growth
are related to a hydraulic limitation (Pantin et al., 2011). Thus,
the result shown in Figure 2 are consistent with the idea that a
metabolic limitation exerting on leaf growth at night is progres-
sively released as the leaf switches from sink to source (Pantin et al.,
2011).

To study how a perturbation in carbon availability may affect
leaf growth, we analyzed the leaf growth pattern in several mutants
affected in starch metabolism or in photosynthate translocation.
Photographs of these mutants are shown in Figure 1. For all
genotypes, the difference between nighttime and daytime relative
elongation rate during leaf development is presented in Figure 3 as
a heat map. The genotypes were then ranked according to a cluster-
ing analysis performed on these day/night variations of elongation.
The daytime and nighttime leaf elongation observed during the
days 4, 5, and 6 following emergence of the sixth leaf were also
averaged and presented in Figure 4.

In well-watered conditions, the night reduction of elongation
of the tpt mutant in the early stages was less than in the wild-type
(Figure 3), as already observed in potato (Kehr et al., 1998). This is
consistent with the mutant’s impairment in the daytime transloca-
tion of chloroplastic photosynthates, which affects daytime carbon
availability but increases starch synthesis (Schneider et al., 2002;
Cho et al., 2011). Conversely, all mutants affected in nighttime
carbon availability (i.e., through an impaired starch synthesis or
breakdown) showed marked depressions of growth in the night-
time, as illustrated with pgm in Figure 2 and with all genotypes
in Figures 3 and 4. Compared to the wild-type, these nocturnal

depressions were both amplified in magnitude and extended to
later stages of leaf development. The most severe phenotype was
observed in pgm and sex1, namely the genotypes of our list which
were affected the most upstream in the starch metabolism pathway,
and which were the most dramatically impaired in starch turnover
(Zeeman et al., 2010; Stitt and Zeeman, 2012). The other starch
mutants, dpe1, dpe2, mex1, bam1, bam3, and the bam1 bam3 dou-
ble mutant, clustered closely together and showed a less extreme
phenotype than pgm or sex1 (Figure 3). Overall, this ranking of
mutants was in agreement with their intermediate impairment
in starch degradation (Critchley et al., 2001; Messerli et al., 2007;
Fulton et al., 2008), though bam1 was not expected to have a phe-
notype distinct from the wild-type since this mutant has a normal
day/night pattern of starch turnover and that BAM1 is presumably
active in guard cells during the daytime (Fulton et al., 2008; Valerio
et al., 2011). It may be argued that this classification could be biased
by an extended duration of leaf growth in these mutants. However,
a similar classification of starch mutants was obtained in Pantin
et al. (2011), where the growth patterns were normalized according
to the duration of development. Thus, in well-watered conditions,
the day/night pattern of leaf growth was globally dictated by the
severity of the impairment in daytime or nighttime carbohydrate
availability.

Soil water deficit releases the metabolic limitation on leaf growth
When Col-0 plants were grown under moderate soil water stress,
shoot area decreased (Figure 1). Elongation of the sixth leaf
decreased especially in the daytime (Figure 2), although this effect
was less significant than in Pantin et al. (2011) due to the higher

FIGURE 4 | Day/night leaf growth in Arabidopsis mutants affected in

carbon metabolism and grown in well-watered conditions or under soil

water stress. The bar plot shows the daytime and nighttime growth averaged

for the days 4, 5, and 6 following emergence of the sixth leaf under
well-watered conditions or under moderate soil water stress. Error bars are
95% confidence intervals.
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evaporative demand prevailing in the growth chamber used in the
latter study. Strikingly, under water stress, all mutants affected in
nighttime carbon availability increased nighttime growth relative
to daytime growth (Figure 3). This was achieved by maintain-
ing (dpe1, dpe2, bam1, bam3, bam1 bam3) or even increasing
(pgm, sex1, mex1) nighttime growth rates while decreasing day-
time growth rates (Figure 4). As a consequence, water-stressed
pgm and sex1 clustered with the well-watered genotypes less
affected in nighttime carbon availability, while the latter geno-
types under water stress tended to cluster closer to the wild-type
(Figure 3). This result indicates that water stress partly releases
the carbon limitation on leaf growth that these mutations gener-
ate under well-watered conditions, either by providing structural
growth with molecular bricks or by fuelling expansive growth with
osmotica.

This result also shows that the accumulation of carbohydrates
observed under moderate water stress (e.g., Hummel et al., 2010)
in the wild-type does not translate into additional growth as it
does in the starch mutants at night. It could be argued that carbo-
hydrates are not available for structural growth if sequestered in
the vacuole for osmotic purposes, thereby generating a metabolic
limitation under water stress in the wild-type. However, in the
model plant Arabidopsis under moderate water deficit, osmotic
adjustment mobilizes only a minor part of the daily carbohy-
drate balance, which was largely in excess due to reduced growth
but maintained photosynthesis (Hummel et al., 2010). Thus, our
results support the conclusion that the reduction of leaf growth
observed in wild-type plants under moderate water stress does not
arise from carbon starvation; by contrast, moderate water deficits
induce carbon satiation.

GROWTH LIMITATION UNDER ATMOSPHERIC WATER DEFICIT:
INSIGHTS FROM CLEMENTINE FRUITS
Carbon availability positively affects fruit growth and sugar
contents
To further investigate the role of carbon availability on growth of
organs when exposed to moderate water deficit, we analyzed the
growth pattern of clementine fruits with contrasting leaf-to-fruit
ratio (30, 15, or 5) in an experimental orchard, namely in field
conditions. Trees were all well-watered and fertilized.

Carbon availability accelerated the onset of fruit color change
(Figure 5), consistent with the idea that sugar availability promotes
fruit ripening (Fanciullino et al., 2013). In the three treatments, full
expansion and maturity were reached in the middle of December,
as indicated by the plateau of fresh and dry weight, as well as
sugar content (Figure 6). At later stages, these variables showed
a moderate tendency to decrease, indicating over-maturity. These
patterns are consistent with data from previous studies on clemen-
tine fruits growing under Mediterranean climate (Cercós et al.,
2006; Tadeo et al., 2008). Whereas the defoliation treatment (per-
formed in July) did not affect the seasonal pattern of fruit growth,
it strongly affected fruit weight at maturity. For the 5 leaves per
fruit treatment, a decrease of about 60 and 50% was observed
in the pulp and peel fresh mass, respectively, when compared to
the control. A less severe treatment also affected fruit mass, since
a reduction in fresh mass up to 40% for both the pulp and the
peel was observed at 15 leaves per fruit, when compared to the

FIGURE 5 | Photographs of representative clementine fruits from

fruiting branches bearing 5, 15, or 30 leaves. The pictures illustrate the
effects of carbon availability on fruit growth and maturity. A low carbon
supply (five leaves per fruit) reduced fruit diameter and induced a delay in
fruit ripening.

control. The fruit dry mass followed similar trends. The defo-
liation treatment also modified soluble sugar contents in pulp
(Figure 6). The changes in soluble sugars were mainly due to vari-
ations in sucrose concentrations. The largest decrease in sucrose
was observed for the five leaves per fruit treatment in Novem-
ber, with a reduction of 80% when expressed on a fresh weight
basis.

The strong, positive impact of the leaf-to-fruit ratio on fruit
weight and sugar contents indicates that fruit growth is positively
controlled by carbon availability, as repeatedly observed in other
tree species (e.g., Berman and DeJong, 1996, on peach; Léchaudel
et al., 2007, on mango). These results are consistent with the fruit
as a sink organ relying on proximal leaves for its supply with
photoassimilates.

Atmospheric water deficit highlights the osmotic role of
photoassimilates on fruit growth
To evaluate how moderate water deficit may affect the relationship
between fruit growth and carbon availability, we took advantage
of the daily, natural fluctuations in the VPD of the atmosphere.
Daily growth variations were monitored in fruits at the three levels
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FIGURE 6 | Developmental changes in clementine fruit growth and

soluble sugar contents according to carbon availability. To probe
the effect of carbon availability on fruit growth in field conditions, a
defoliation treatment was applied on girdled fruiting branches from
adult clementine trees to obtain three levels of leaf-to-fruit ratio: 5,
15, and 30 leaves per fruit. The leaf-to-fruit ratio 30 corresponds to

conditions of non-limiting carbon availability, and was considered as
the control (Poiroux-Gonord et al., 2013). For masses and carbohydrate
measurements, five fruits per level of leaf-to-fruit ratio were collected
regularly in the morning (10:00, local time) from September to March
during the 2008–2009 season. Error bars are 95% confidence
intervals.

of carbon availability previously described. In addition, growth
was monitored on fruits which were carefully peeled and grown
at high carbon availability, in order to increase fruit exposure
to evaporative demand. Our growth analysis covered 45 days
between early September and late November. Throughout this
period, daily patterns of VPD were highly variable from day to
day, exhibiting a peak at midday during the driest days, and

remaining almost constant during the wettest days. A k-means
clustering analysis was performed to partition the days accord-
ing to their similarity in VPD and three clusters were obtained
gathering days with the highest (VPDmax > 1 kPa), intermediate
(1 kPa <VPDmax < 0.5 kPa), and lowestVPD (VPDmax < 0.5 kPa),
respectively. The fruit growth patterns were then averaged within
each of these three clusters (Figure 7).
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Consistent with the negative effect of VPD on fruit water poten-
tial, strong, negative depressions of fruit growth were observed
at high VPD whatever the leaf-to-fruit ratio. Negative expan-
sive growth is typically due to a water loss that leads to fruit
shrinkage (Fishman and Génard, 1998). The strongest depres-
sions of growth were observed in the peeled fruits even though
they were associated with the high leaf-to-fruit ratio, suggesting
a prevailing hydraulic origin of these depressions. Furthermore,
these depressions were attenuated at moderate VPD and com-
pletely abolished at low VPD. After these brutal depressions, fruit
diameter progressively recovered from ca. 11:00 in the morning,
and diameter variation became positive again 3 h later. This rapid
recovery was probably due to either a midday depression of stom-
atal conductance (Hu et al., 2009), a rapid osmotic adjustment
permitted either by newly synthesized photoassimilates or by ion
uptake from the cell wall (Thorpe et al., 1993), or a rapid soften-
ing of cell walls (Bogoslavsky and Neumann, 1998). Remarkably,
the strongest depressions of fruit growth were observed during
the periods of highest irradiance, which co-occurred with the
periods of highest VPD (Figure 7). This result suggests that,
at least on the short-term, the negative effect of evaporative

demand on fruit growth dominates over the positive effect of
irradiance.

Interestingly, a high leaf-to-fruit ratio reduced the maximum
fruit shrinkage. Moreover, this effect was clearly visible at high
VPD, but was strongly reduced at intermediate VPD and no longer
visible at low VPD (Figure 7). An explanation for the positive
effect of carbon availability on preventing fruit shrinkage under
atmospheric water deficit is that higher concentrations of photoas-
similates contribute to lower osmotic potential and reduce water
loss. Such a hypothesis is supported by literature data. In peach
fruit, a high leaf-to-fruit ratio increased the osmotic pressure of the
fruit and reduced the transpiration-induced fruit shrinkage, either
during experiments (McFadyen et al., 1996) or in silico using a bio-
physical model of fruit growth (Fishman and Génard, 1998). In
line with this, although pulp sugar contents were relatively unaf-
fected by the leaf-to-fruit ratio when expressed per unit of dry
weight, they were clearly increased by a high leaf-to-fruit ratio
when expressed per unit of fresh weight, i.e., when considered as
solutes (Figure 6). These concentrations were high enough to pos-
tulate an osmotic effect. Thus, our results suggest that the positive
effect of carbon availability on short-term fruit growth under air

FIGURE 7 |The relationship between carbon availability and fruit

growth is conditional on atmospheric water stress in clementine.

Fruit growth was monitored using displacement transducers on at least
three fruits per level of leaf-to-fruit ratio during 45 days between early
September and late November. Some displacement transducers were
also placed on peeled fruits from girdled fruiting branches with 30
leaves. Climate data (air humidity, temperature and irradiance) were

collected every 15 min together with changes in fruit diameter. A
k-means clustering was performed to group days of the experiment on
the basis of their similarity in VPD. Three clusters were statistically
obtained, equivalent to days with a dry (top), intermediate (middle), and
wet (bottom) atmosphere. Irradiance as well as fruit growth was then
averaged according to these three clusters. Error bars are 95%
confidence intervals.
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water deficit is not linked to a limitation of structural growth by
carbon under these conditions but rather the result of a soluble
carbohydrate-induced lower osmotic potential which buffers the
variations in fruit diameter generated by the fluctuations in water
potential.

CONCLUSION
Increases in carbohydrate concentration following moderate water
stress raise the question of the role of carbohydrate availability
on plant growth under water deficit. In this study, we addressed
this question using two different species under either soil or air
water deficits. In growing Arabidopsis leaves, soil water deficit
induces an accumulation of carbohydrates which contributes to
shift growth during the nighttime, a period when water balance is
much less affected by transpiration. In mutants impaired in starch
metabolism, growth at night is even promoted by water deficit,
suggesting that water stress induces carbon satiation in these grow-
ing leaves. In clementine fruits, atmospheric water stress-induced
depressions of growth are of hydraulic nature and deepen dur-
ing dry days despite higher irradiance. A high carbohydrate status
reduces these depressions, suggesting that photoassimilates are
rapidly mobilized and used as osmotica to buffer turgor pressure
against the variations in fruit water balance. These two rather dif-
ferent systems illustrate that plants under moderate water stress do
not suffer from carbon starvation which would impair structural
growth, but instead make an efficient use of their carbohydrates
to buffer expansive growth variations against the environmental
fluctuations in water availability.
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