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Genetic structure and ecogeographical
adaptation in wild barley (Hordeum chilense
Roemer et Schultes) as revealed by microsatellite
markers
Almudena Castillo1, Gabriel Dorado2, Catherine Feuillet3, Pierre Sourdille3, Pilar Hernandez1*

Abstract

Background: Multi-allelic microsatellite markers have become the markers of choice for the determination of
genetic structure in plants. Synteny across cereals has allowed the cross-species and cross-genera transferability of
SSR markers, which constitute a valuable and cost-effective tool for the genetic analysis and marker-assisted
introgression of wild related species. Hordeum chilense is one of the wild relatives with a high potential for cereal
breeding, due to its high crossability (both interspecies and intergenera) and polymorphism for adaptation traits. In
order to analyze the genetic structure and ecogeographical adaptation of this wild species, it is necessary to
increase the number of polymorphic markers currently available for the species. In this work, the possibility of
using syntenic wheat SSRs as a new source of markers for this purpose has been explored.

Results: From the 98 wheat EST-SSR markers tested for transferability and polymorphism in the wild barley
genome, 53 primer pairs (54.0%) gave cross-species transferability and 20 primer pairs (20.4%) showed
polymorphism. The latter were used for further analysis in the H. chilense germplasm. The H. chilense-Triticum
aestivum addition lines were used to test the chromosomal location of the new polymorphic microsatellite
markers. The genetic structure and diversity was investigated in a collection of 94 H. chilense accessions, using a set
of 49 SSR markers distributed across the seven chromosomes. Microsatellite markers showed a total of 351 alleles
over all loci. The number of alleles per locus ranged from two to 27, with a mean of 7.2 alleles per locus and a
mean Polymorphic Information Content (PIC) of 0.5.

Conclusions: According to the results, the germplasm can be divided into two groups, with morphological and
ecophysiological characteristics being key determinants of the population structure. Geographic and ecological
structuring was also revealed in the analyzed germplasm. A significant correlation between geographical and
genetic distance was detected in the Central Chilean region for the first time in the species. In addition, significant
ecological influence in genetic distance has been detected for one of the population structure groups (group II) in
the Central Chilean region. Finally, the association of the SSR markers with ecogeographical variables was
investigated and one marker was found significantly associated with precipitation. These findings have a potential
application in cereal breeding.

Background
Wild species usually exhibit large genetic variability,
which serves as a resource for adaptability to changing
environments. On the contrary, cultivated plants are

usually more limited in number and display less genetic
variability, as a result of the genetic bottlenecks occur-
ring at domestication, translocation and transition from
landraces to modern breeding [1]. A consequence of
such genetic erosion is genetic uniformity, which may
result in the loss of relevant traits, such as resistance to
biotic and abiotic stresses.
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Thus, wild species related to cultivated crops represent
interesting sources of genetic variation, through the
introgression of new and better performing alleles. The
large genetic variability present in the wild cereals is an
invaluable resource for cereal crop improvement.
Hordeum chilense Roemer et Schultes, a native South
American diploid wild barley (2n = 2x = 14), offers a
high potential for cereal breeding among the species of
the genus Hordeum, because of its high crossability with
other members of the Triticeae tribe and its agronomi-
cally interesting characteristics. Crosses between wheat
and H. chilense lead to fertile amphiploids named tritor-
deums. They represent the basic genetic material for
introducing genetic variability from H. chilense into
wheat breeding programs [2] and for transferring useful
genes from H. chilense to wheat. The analysis of the
germplasm genetic structure is the basis of management,
research and utilization of such germplasm [3], since it
is critical to identify and correctly interpret the associa-
tions between functional and molecular diversity [4,5].
H. chilense has been found in a wide range of environ-
ments, and shows high genetic as well as phenotypic
diversity [6]. The analysis of the structure of such high
variations is important for breeding purposes, especially
to identify genes or genomic regions involved in envir-
onmental adaptation and showing high diversity. The
genetic structure of populations has been widely docu-
mented in most of the studies investigating the diversity
of elite crop germplasm, especially in self-pollinating
cereals [7-9]. Molecular markers and development of
statistical techniques to analyze such data have been the
subject of recent intensive studies [10-21], allowing the
analysis of the genetic structure in several species and
eliminating many of the problems linked with spurious
associations. However, although significant efforts to
increase the availability of genomic tools, such as mole-
cular markers for cereal crops, have been undertaken in
the last years, these developments were not made for
wild species with scarce direct agronomic interest, like
H. chilense. To solve this problem, the transferability of
wheat and barley microsatellite markers (or Simple
Sequence Repeats; SSR) to wild related species was eval-
uated [22,23]. Comparative genomic analyses have indi-
cated a good conservation of coding regions across
genomes of different grass species, suggesting that this
part of the genome can be used to develop transferable
molecular markers [24-27]. The development of high
throughput sequencing technologies in recent years has
allowed the generation of large Expressed Sequence Tag
(EST) datasets in a number of plant species, including
cereals, which can be systematically searched for SSR
[28]. For example, Yu et al. [29] tested EST-SSR primers
originating from hexaploid wheat and rice ESTs on four
cereal crops (wheat, rice, barley and maize) and found

that 62% of the primer pairs produced Polymerase
Chain Reaction (PCR) amplicons on at least two species.
Similarly, Zhang et al. [30] reported the transferability of
116 wheat EST-SSRs on 168 accessions, representing 18
grass species. The transferability among the Triticeae
ranged from 73.7% for Aegilops longissima to 100% for
wheat subspecies (Triticum compactum), but was also
good for less related species such as rye (72.8%) or
maize (40.4%). In barley, Varshney et al. [31] reported
that 78.2% of the SSR markers used (165) showed
amplification in wheat, followed by 75.2% in rye and
42.4% in rice. Finally, Gupta et al. [32] reported that
55.12% of wheat EST-SSRs were transferable to barley.
Recently, it was shown that the barley EST-SSRs repre-
sent a promising source of molecular markers to screen
the H. chilense genome [33].
In addition of their high degree of transferability across

species, it was recently demonstrated that EST-SSRs are
useful for genetic variability studies. For example, Gupta
et al. [32] assessed the genetic diversity of EST-SSRs in a
collection of 52 elite exotic wheat genotypes. Their
results indicate that EST-SSRs are more useful for diver-
sity analyses than genomic microsatellites (g-SSRs). Yang
et al. [34] also used EST-SSRs to measure the genetic
diversity among three hexaploid wheat populations. They
concluded that EST-SSR markers are ideal markers for
assessing genetic diversity in wheat. In addition, Balfour-
ier et al. [35] used 38 g-SSRs or 44 EST-SSRs to analyze
the structure and the diversity of a collection of 372
wheat varieties and obtained identical results with both
types of markers. Recently, Hübner et al. [21] studied the
genetic analysis of a new collection of the wild barley
H. spontaneum with a set of 42 EST-SSRs, revealing that
wild barley populations can be divided into seven major
genetically differentiated clusters, as well as the evidence
of temperature and precipitation as environmental cues
that have shaped the genetic makeup of wild barley. Pan
et al. [36] investigated the genetic diversity among 15
wild emmer wheat (T. dicoccum) populations using 25
EST-SSRs, detecting a considerable amount of genetic
variation, partly related to ecological factors.
The goals of the current study were to determine:

(i) the transferability level of wheat EST-SSR markers
and their usefulness for H. chilense; (ii) the genetic
diversity of the H. chilense species, using a wide set of
available microsatellite markers; (iii) the genetic struc-
ture of a natural collection of 94 H. chilense accessions;
and (iv) the possible influence of spatial, morphological
and environmental factors in the observed structure.

Results
Transferability and polymorphism of wheat EST-SSRs
The transferability of the 98 wheat EST-SSRs was evalu-
ated on a set of eight accessions of H. chilense. A SSR
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was considered as transferable when the PCR amplifica-
tion of a band of the expected size and SSR pattern was
observed. The primers that showed null alleles in some
samples were tested at least twice, in order to avoid
false negatives (eg., non-amplification due to PCR
failure).
Among the 98 wheat EST-SSRs, 53 (54%) showed

cross-species transferability. The percentage of trans-
ferred markers was about 50% on each chromosome,
thereby indicating a uniform distribution across the gen-
ome. Among the 53 transferable SSRs, 20 PCR primer
pairs (20.4%) showed polymorphism in the accessions
studied and were used for further analysis in the H. chi-
lense germplasm. Between two and 10 alleles per primer
pair were observed and only 11.7% of the total alleles
had the same size as the allele found in Triticum aesti-
vum cv. ‘Chinese Spring’, confirming the good potential
of H. chilense for wheat and barley genetic diversity
improvement. These markers were first assigned to
H. chilense chromosomes using the available set of
wheat-H. chilense addition lines ([37]). Fifteen of the 20
polymorphic primer pairs were located on the same
linkage group as in wheat. One of them was located on
chromosome 7 D in wheat (CFE135), while it amplified
a product on chromosome 1Hch in H. chilense. Four
markers showed the same PCR amplicon sizes in both
species, and thus their locations could not be confirmed.

Genetic variability analysis
To perform the genetic variability analysis, 21 barley
EST-SSRs and 8 gSSRs previously identified as useful for
the genetic analysis in H. chilense ([33,38]) were added
to the 20 polymorphic wheat EST-SSRs transferred in
this work. A total of 351 alleles were detected over the
whole sample of 94 accessions for the 49 SSR loci.
Among the 351 alleles, 162 originated from the 21 bar-
ley EST-SSRs, 94 from the 20 wheat EST-SSRs and 95
from the eight g-SSRs. The number of alleles per locus
ranged from two (for GBM1411, GBM1323, GPW7425,
CFE10 and CFE23) to 27 (for GBM1464), with a mean
of 7.2 alleles and Polymorphic Information Content
(PIC) of 0.5 per locus (Table 1). The highest (0.91) and
lowest (0.04) PIC values were observed for GBM1464
and GPW7213, respectively. Generally, wheat EST-SSRs
exhibited lower PIC values and fewer number of alleles
than barley EST-SSRs. Barley EST-SSRs detected almost
twice more alleles and higher PIC values than wheat
EST-SSRs.
Additionally, several rare or specific alleles were found

among the analyzed germplasm. Out of the 351 alleles,
184 were found at a frequency lower than 5%, and were
therefore considered as rare. Clustering showed that the
germplasm can be separated into two groups (see
below) with a total of 66 specific alleles found in group

Table 1 Summary of the genetic parameters shown by 49
SSR markers used for the characterization of the
H. chilense accessions.

Marker ID Chromosome location Allele No. PIC

GPW7577 1B 5 0.140

CFE023 1B 2 0.331

GPW7296 1D 3 0.189

GBM1029 1H 7 0.606

GBM1002 1H 5 0.574

GBM1411 1H 2 0.369

GBMS14 1H 14 0.832

CFE175 2A 3 0.177

GPW7438 2B 6 0.153

CFE068 2D 7 0.679

GBM1047 2H 4 0.396

GBM1036 2H 7 0.515

GBM1462 2H 6 0.673

GBMS233 2H 13 0.736

GPW7213 3A 3 0.042

GPW7335 3B 8 0.581

GWM1047 3D 19 0.883

GPW7553 3D 8 0.700

GPW7663 3D 6 0.144

GBM1069 3H 6 0.605

GBMS198 3H 8 0.633

CFE188 4B 3 0.193

GWM1302 4D 10 0.800

GBM1055 4H 8 0.627

GBM1067 4H 9 0.485

GBM1020 4H 6 0.638

GBM1465 4H 5 0.222

GBM1323 4H 2 0.361

GBM1350 4H 19 0.906

GBMS214 4H 3 0.402

CFE037 5A 4 0.093

GPW7425 5B 2 0.078

CFE239 5B, 5D 3 0.072

GBM1064 5H 5 0.603

GBMS154 5H 10 0.674

GPW7455 6A 6 0.511

CFE002 6A, 6B, 6D 8 0.497

CFE080 6A, 6B, 6D 2 0.172

GWM1103 6D 18 0.873

GBM1008 6H 13 0.744

GBM1076 6H 6 0.701

GBM1400 6H 3 0.557

CFE010 7A, 7B, 7D 2 0.198

CFE100 7A, 7B, 7D 10 0.820

CFE135 7D 3 0.390

GBM1060 7H 13 0.838

GBM1058 7H 3 0.217

GBM1464 7H 27 0.913

GBM1432 7H 6 0.724

Mean 7.163 0.4951
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I (39 being rare) and 134 specific alleles found in group
II (82 being rare). The gene diversity, polymorphic infor-
mation content (PIC), and the number of specific alleles
was lower in group I than in group II (Table 2).

Analysis of genetic structure and differentiation among
inferred groups
The genotyping data obtained from the 49 SSRs were
used to analyze the genetic structure of the germplasm,
using the Bayesian clustering model implemented in the
Structure software. The natural logarithm of the prob-
ability of the data, proportional to the posterior prob-
ability of K, showed no clear peak between 1 and 10 for
K, and therefore it was difficult to determine the true
number of populations (K) (Figure 1a). We applied the
rate of change in the Napierian logarithm probability
relative to standard deviation (ΔK), as described by
Evanno et al. [39]. The results showed the highest peak
at 2 (Figure 1b), which was confirmed by the clustered-
ness index [40], showing the highest median level at K =
2 (Figure 1c). Moreover, using the Geneland software,
we observed that the posterior distributions of the esti-
mated number of populations (K) across 10 replicates
displayed a clear mode at K = 2 in all of them (addi-
tional file 1), corroborating again the previous data.
Thus, these results suggest that the analyzed H. chilense
germplasm can be divided into two genetically distinct
groups.
To find the key determinants to the inferred structure

of these two groups, we investigated the geographical
proximity, as well as the morphological, agronomical
and ecological characteristics in the accessions belong-
ing to each group. Figure 2a shows the distribution of
each accession into the two populations (identified by
the Structure software, and designated as group I and
group II, hereafter) and the three clusters (according to
morphological and agronomical data as classified by Vaz
Patto et al. [6]). Geographic origins divided in 8 zones
(Figure 2b) and ecological regions (Figure 2c) according
to the classification established by DiCastri and Hajek
[41] at K = 2 populations, are also shown.
The genetic structure analysis, according to the geo-

graphical origins of the accessions (Figure 2b) revealed
that, in some regions, the accessions were grouped
according to the geographical location. The zones 2, 4, 5
and 7 showed a uniform structure, while the rest of the
zones were more or less admixed. Uniform structure

was considered when more than 80% of the accessions
in one group had more than 80% of membership in this
group. The geographical origin of the accessions and
their membership to the inferred groups are represented
in Figure 3. We calculated the correlation coefficient (r)
between the geographic and the genetic distance
matrices using the Mantel test [42]. We observed an r
value of 0.21 (Figure 4a), revealing a low but significant
correlation (p < 0.001). The correlation was then ana-
lyzed separately for both inferred groups (I and II), and
the results showed that group I had a uniform distribu-
tion in the Center of the country, yet group II expanded
across the North, Center and South of the country.

Table 2 Number of accessions and specific alleles, gene diversity and its standard deviation (SD), calculated for 49
microsatellite loci typed for the H. chilense germplasm, per genetic structure group.

Structure groups No. of accessions No. of specific alleles Gene diversity Gene diversity SD

Group I 41 66 0.3811 0.0428

Group II 53 134 0.4874 0.0387

Figure 1 Estimation of the most probable number of clusters
(K), based on 20 independent runs and K ranging from 1 to
10. (a) Evolution of the natural logarithm probability of the data
against K; (b) magnitude of ΔK for each K value; and (c)
clusteredness analysis of the H. chilense accessions.

Castillo et al. BMC Plant Biology 2010, 10:266
http://www.biomedcentral.com/1471-2229/10/266

Page 4 of 13



Therefore, group II was analyzed separately for the
North, the Center and the South regions. We found a
significant correlation between geographical proximity
and genetic distance for group I and for group II Cen-
tral. Thus, our results demonstrate a geographical influ-
ence in population structure in the Central Chilean
region for both structure groups (additional file 2). Such
influence was not detected for the group II accessions,
either at the North or South regions (the latter is prob-
ably due to the scarcity of accessions).
To investigate the impact of ecological characteristics

in the inferred structure (K = 2), the accessions were
grouped according to bioclimatic parameters. The
results revealed admixed populations, except for some
provinces that showed a more uniform structure (like
humid Mediterranean, very arid Mediterranean, very

(a) 

(b) 

 
(c)

 

Figure 2 Membership of H. chilense accessions. Model-based
populations when K = 2, and in the predefined groups according
to: (a) agro-morphological data; (b) geographic origins; and (c)
ecological regions.

Figure 3 Geographical and environmental distribution of the
H. chilense accessions, according to their classification in two
populations(group I and group II). Symbol size represents more
than one sample at the same location.

Figure 4 Mantel test showing the relationship of genetic,
geographic and environmental distances. (4a) Relationship
between Nei’s genetic distance and Napierian logarithm of
geographic distances; and (4b) relationship between Nei’s genetic
distance and environmental distance.
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humid Mediterranean, and sub-humid Mediterranean;
see Figure 2c). Comparative analyses between ecogeo-
graphical data (latitude, longitude, altitude, mean tem-
perature of coldest and warmest month, and rainfall of
driest and wettest month) and genetic data (Nei’s
genetic distance matrix) revealed a weak but significant
correlation (r = 0.108; p = 0.0017) (Figure 4b). When
analyzing the influence of the same ecogeographical
data in both structured groups separately, the group I
did not show any ecogeographical influence, whereas
the group II Central exhibited a significant ecogeogra-
phical influence (additional file 3). In addition, the eco-
geographical data were used to separate the H. chilense
accessions through Principal Component (PC) analysis.
The first component (PC1, Figure 5 and Table 3) was
explained by variation in latitude and rainfall, account-
ing for 42.9% of the variation. The second component
(PC2) accounted for 35.4% of the variation, being
explained by variation in temperature and longitude.
PC3 accounted for 12.3% of the variation, and was
explained by the variation in elevation.
The unrooted Neighbor-Joining (NJ) tree (Figure 6) dis-
tinguished two groups of accessions, corresponding to
the structure grouping. Neither geographical nor ecolo-
gical evidence was detected in the grouping. Results of
distance and Bayesian cluster analyses evidenced the
presence of a structured genetic diversity among the
groups. The Analysis of MOlecular VAriance (AMOVA)
of the two inferred groups by the Structure software
revealed a 33.16% of the genetic variation among
groups, with the remaining 66.84% due to differences

within groups. The genetic variances within and among
groups were significant (FST = 0.331, p < 0.001; being
FST the variance among subpopulations relative to the
total variance), supporting the presence of a genetic
structure.

Association between markers and ecogeographical
factors
>We identified 12 outlier loci that detected high or
low variability with respect to the expected neutrality.
Among those, 11 loci (GBM1350, GBM1064, GBM1008,
GBM1060, GBM1464, GWM1047, GBMS14, GWM1302,
CFE135, GPW7335, GPW7663 and GPW7577) are can-
didates for balanced selection, while the locus CFE135 is
a candidate for being subjected to positive selection. The
12 markers were assayed for their association with eco-
geographical data. The marker GWM1302 exhibited four
different alleles (188, 190, 192 and 194 bp) among 10
alleles that were associated with low rainfall (Figure 7).
The other markers did not show any significant associa-
tion with any of the ecogeographical traits.

Discussion
Transferability and polymorphism of wheat EST-SSR
The transferability of EST-SSRs across related species
has been demonstrated in several species and genera
[24,26,29-32,43-45]. Recently, we reported on the useful-
ness of barley EST-SSRs for genetic analysis in H. chi-
lense [33]. In the present work, we show that more than
half (54%) of the assayed wheat EST-SSRs can be trans-
ferred to H. chilense, which is lower than the transfer-
ability of the barley EST-SSRs (66%). This is likely due
to the fact that wheat is evolutively more distant from
H. chilense than barley. This result is relatively consis-
tent with the findings of Zhang et al. [30] and Gupta
et al. [46], who reported higher transferability of wheat
EST-SSRs to barley than to more evolutively distant spe-
cies, such as maize, rice, sorghum, lolium (ryegrass), oats
and purple false brome (Brachypodium).

Figure 5 Principal Component Analysis based on ecogeographic
values. The samples shapes are displayed according to the groups
defined by the Structure software.

Table 3 Principal component analysis based on
ecogeographical data of H. chilense accessions.

Variable Principal Component

PC1 PC2 PC3

Elevation 0.126 -0.586 0.755

Warmest month −0.445 0.779 0.389

Coldest month −0.568 0.763 0.253

Latitude 0.906 0.327 0.171

Longitude 0.213 0.865 −0.147

Wettest month 0.896 0.181 0.148

Driest month 0.893 0.236 −0.038

Variance (%) 42.9 35.4 12.3
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Despite of the evolutive distance, the overall conserva-
tion of the wheat EST-SSRs linkage groups in H. chi-
lense was high, indicating a good level of synteny
between these two species. Only one disagreement was
observed, that may be due to chromosomal rearrange-
ments, which may be frequent during speciation [47].
Thus, the wheat EST-SSRs markers transferred to
H. chilense have an added value as intergeneric syntenic
markers, in addition to their direct application to ana-
lyze gene diversity. Since numerous additional wheat
EST-SSRs are available in the public databases (eg.,
GrainGenes http://wheat.pw.usda.gov/GG2/index.shtml;
[48]), this number could be further increased.
Among the 53 wheat EST-SSRs showing good trans-

ferability to H. chilense, about 40% exhibited polymorph-
ism between at least two accessions, which represents
20% of the initial set of wheat EST-SSRs. This was
lower compared to what was previously observed
between wheat and barley (60% of the transferable EST-
SSRs; [30]). This is also lower compared to what was
found using barley EST-SSRs (36%), because barley is
more closely related to H. chilense than wheat. Thus,
the markers transferred from wheat to H. chilense are
only those that are more conserved, and therefore likely

to show lower polymorphism. Similarly, the number of
alleles detected in H. chilense with wheat EST-SSRs was
lower compared to the number obtained when using
barley EST-SSRs (94 vs 162, respectively). On the other
hand, due to their wheat origin, they are not suitable for
direct in-tube detection methods [49]. Nevertheless
these drawbacks are largely overcome by the fact that
they provide valuable anchors for synteny inference [50].
Therefore, we conclude that both wheat and barley
represent a good source of markers for genetic diversity
and structure studies of H. chilense germplasm collec-
tions. In addition, they represent an invaluable tool for
the introgression of H. chilense alleles to other cereal
species.

Genetic variability analysis
The microsatellite markers revealed a total of 351 alleles
across all the 49 loci. The high level of genetic diversity
detected could be an adaptive strategy in response to a
heterogeneous environment. According to the marker’s
origin, the SSRs identified in EST databases detected a
lower number of alleles and PIC than those obtained
through general genomic libraries, including non-
transcribed regions. Such is an expected result, due to

 

Figure 6 Unrooted neighbor-joining tree based on the Nei’s genetic distances obtained using 49 microsatellites. The sample shapes
indicate the two groups, inferred by the Structure software.
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the more conserved nature of EST-SSRs. The number of
alleles detected and PIC found when using EST-SSRs
from wheat was lower than with barley EST-SSR and
non-transcribed genomic microsatellites, as expected,
due to the evolutionary distance between species.
Despite these facts, our results show a sufficient level of
variation when using EST-SSRs (both from barley and
wheat origins) to carry out genetic structure and future
association mapping analysis. Therefore, this is one
more case where the EST-SSR markers provide an
opportunity to examine the functional diversity of germ-
plasm collections, as shown by Eujayl et al. 2002 [51].
The group I identified by Structure was fixed to one

allele in eight loci. Seven of these loci could be assumed
as being non-neutral, due to their origin from EST data-
bases. The higher number of fixed alleles in non-neutral
SSRs could be explained by temporal variation of exter-
nal factors, generating selection pressures that maintain
variation within populations [52]. This may also be due
to the fact that not all nucleotide bases on a transcribed
DNA are of selective nature. In fact, the third base of

the mRNA triplets is less specific (wobble hypothesis,
[53]). Furthermore, some amino acids may share similar
chemical properties (eg., nonpolar or polar, including
acidic or basic), thus being less prone to generate a phe-
notypic change. A high number of specific alleles were
identified, which could be an indication of the relatively
high rate of mutation at SSR loci [54], or to a germ-
plasm with a rich genetic diversity and a divergent
population structure. The gene diversity is significantly
lower in group I than in group II (Table 2). Therefore,
the group II is genetically more diverse, corresponding
to accessions present in a wider ecogeographical range.
The Spearman correlation showed that genetic diver-

sity is influenced negatively by altitude and positively by
temperature. Accessions in group II showed a higher
number of alleles. Besides, they were found mainly in
places with low altitude and higher temperature than
accessions in group I. Therefore, accessions stressed by
cold showed less genetic variation.
In this genetic variability analysis of H. chilense germ-

plasm using wheat and barley gSSRs and EST-SSRs, we
have defined two main germplasm groups (group I and
group II). A previous analysis based on AFLP markers
and a Principal-CoOrdinate analysis ([6]) divided the
same germplasm into three clusters. The group II
defined in this work contains two subgroups, corre-
sponding to the clusters II and III described by Vaz
Patto et al. ([6]).

Genetic structure in H. chilense
The analysis of the genetic structure using both Bayesian
approaches (Structure and Geneland software) and
genetic distance approaches (cluster analysis) of a set of
94 H. chilense accessions, using 49 microsatellite
markers, revealed two genetically differentiated groups.
The ‘admixture model’ implemented by Structure gave

a better fit to the species ecophysiological clusters, as
defined by Vaz Patto et al. [6], and it was chosen for
further association analysis. Therefore, the morphologi-
cal and agronomic characteristics, which determined the
ecophysiological clusters, were key determinants of the
population structure of the H. chilense germplasm.
Thus, the two inferred groups are mainly in accordance
with the agro-morphological clusters described by Vaz
Patto et al. [6], as the group I corresponds to cluster I,
while the group II (with the exception of three lines)
includes clusters II and III (see Figure 2a). According to
the geographical origins and the ecological distribution,
the inferred genetic structure showed both uniform and
admixed populations (Figure 2b and 2c). The accessions
included in the geographical zones 1 and 2 showed a
uniform genetic structure. They were found in the driest
places of these zones, corresponding with Mediterranean
arid environments. The accessions grouped in the

Figure 7 Distribution of alleles associated with rainfall .
Distribution of alleles 188 (○), 190 (Δ), 192 (□), 194 (*) of the
GWM1302 locus associated with rainfall. Non-associated alleles are
also shown (●).
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geographical regions 7 and 8 revealed also a uniform
genetic structure, and were found in the wettest places,
corresponding to and Mediterranean humid and very
humid environments. This points to an influence of the
rainfall in shaping the population structure.
Several studies have been carried out to detect

the population structure in barley. In most of them,
the key factors affecting the genetic structure were
growth habit or spike morphology and geographic origin
[15,16,19,20,55-57]. In our study, the morphological and
agronomic characteristics also have appeared as the main
factors to affect the population structure, although we
have also shown that geographic locations and ecological
patterns of distribution also affect this structure. The
analysis of the total germplasm set revealed low but sig-
nificant associations between geographical and genetic
distance, as well as between ecological and genetic dis-
tance. By analyzing separately the three main geographi-
cal regions of provenance of the species (North, Center
and South), a more significant correlation between geo-
graphical and genetic distance was detected for the acces-
sions from Central Chile, but no association was found
either in Northern or in Southern Chile accessions. This
is in agreement with the basal phylogenetic position of
H. chilense in South America, established initially in Cen-
tral Chile from a long-distance continental dispersal from
North America, followed by two independent dispersals
to the North and to the South [58]. On the other hand,
by analyzing both population structure groups separately,
a higher correlation between ecological and genetic dis-
tance could be detected for group II accessions, but no
correlation was found for group I accessions. In fact,
group II accessions have shown a better ability to colo-
nize the North and the South Chilean regions (see Figure
3). Thus, the adaptation to geographic and ecological fac-
tors may be one of the causes of the genetic structure in
the studied germplasm. Thus, the results of our work
illustrate the interest to further investigate how morpho-
logical characteristics and ecophysiological traits affect
the species selection and the population structure. More-
over, the presence of a high level of structure within the
H. chilense germplasm should be considered in future
association mapping studies. The AMOVA detected
higher differences among individuals within-population
structure groups than among groups, which is consistent
with findings from other studies, indicating that consid-
erable genetic diversity is partitioned within rather than
between wild barley populations [59-63]. The proportion
of genetic variation within population groups reflected
high levels of genetic diversity.

Association of markers with ecogeographical factors
The loci that show unusually low or high levels of
genetic differentiation are often assumed to be under

natural selection [64]. The accessions that show associa-
tion of alleles of the locus GWM1302 with low precipi-
tation belong mainly to the group I, and were collected
from dry places, thereby suggesting that this environ-
mental factor is involved in a local adaptation after
colonization.
Significant correlations between microsatellite markers

and ecogeographical factors have been observed in sev-
eral studies in wild wheat [65] and in wild barley [66],
suggesting the impact of natural selection on these mar-
kers by creating regional divergence.
Genetic clustering in a principal component analysis

revealed that the combination of geographic and ecolo-
gical data, such as the latitude with rainfall, as the main
contributor to the genetic structure of the H. chilense
germplasm. The second principal component explained
by longitude and temperature significantly contributed
to the separation of the two groups. Hübner et al. [21]
studied the population structure in Hordeum sponta-
neum and found a strong correlation of population
structure with temperature and precipitation. In our
study, the genetic structure of the analyzed germplasm
showed a correlation with morphological and ecophysio-
logical characteristics, influenced also to a minor extent
by geographic and ecological factors.

Conclusions
Our study shows the utility of barley EST-SSR for the
genetic analysis of H. chilense, with a remarkably high
level of polymorphism within this species, despite of the
evolutionary distance between the wheat and barley gen-
era. The current set of SSR markers available for Hor-
deum chilense, which includes wheat and barley gSSRs
and EST-SSRs, is useful to analyze the genetic structure
and ecogeographical adaptation of H. chilense wild bar-
ley populations. Both wheat and barley represent a good
source of markers for genetic diversity and structure
studies of H. chilense germplasm collections. In addition,
they represent an invaluable tool for the introgression of
H. chilense alleles into other cereal species, and are use-
ful as anchors for the syntenic maps. The analyzed
germplasm can be divided into two groups, with mor-
phological and ecophysiological characteristics being key
determinants of the population structure. Geographic
and ecological structuring was also revealed in the ana-
lyzed germplasm. A significant correlation between geo-
graphical and genetic distance was detected in the
Central Chilean region for the first time in the species.
In addition, significant ecological influence in genetic
distance has been detected for one of the population
structure groups (group II) in the Central Chilean
region. Finally, one marker was found significantly asso-
ciated with precipitation. These findings have a potential
application in cereal breeding.
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Methods
Plant material and DNA sampling
The DNA collection, isolated by Castillo et al. [38], con-
sisted of 94 samples of H. chilense collected during sev-
eral expeditions to Chile [67,68]. This germplasm is
maintained at the Germplasm Bank of the Institute for
Sustainable Agriculture (Prof. A. Martín, IAS, CSIC,
Cordoba, Spain). Eight samples of H. chilense DNA were
used for selecting transferable and polymorphic microsa-
tellite markers, using Triticum aestivum cv. ‘Chinese
Spring’ DNA as control, to corroborate the pattern of
the microsatellites and the fragment sizes. In addition, a
DNA set of T. aestivum-H. chilense addition lines devel-
oped by Miller [37] were used to determine the chromo-
somal locations of the polymorphic SSR. The addition
lines for chromosomes 4Hch, 5Hch, 6Hch and 7Hch were
disomic, whereas the addition lines for chromosomes
1HchS, 2Hch alpha arm, 5Hch, 6HchS arm and 7Hch

alpha and beta arm were ditelosomic.

Amplification and transferability of wheat EST-SSRs
A selection of 98 SSRs derived from wheat ESTs [69,70]
uniformly distributed across wheat chromosomes were
initially screened for their transferability and poly-
morphism in H. chilense genome, and 20 were selected
for germplasm analysis. A set of 21 barley EST-SSRs
and eight wheat and barley g-SSRs, previously identified
as useful for the genetic analysis in H. chilense [33,68]
was added. In total, 49 polymorphic microsatellite
markers were applied for fingerprinting H. chilense
accessions. The polymerase chain reaction (PCR) ampli-
fication and fragment analysis were as previously
described [43,71,72], or PCR was carried out using the
M13 protocol as described in Nicot et al. [69], with an
annealing temperature of 60°C for 30 cycles (30 s at
94°C, 30 s at 60°C, and 30 s at 72°C) and 56°C annealing
for eight cycles. Amplification products were visualized
using an ABI PRISM 3700 Genetic Analyzer from Life
Technologies (Carlsbad, CA, USA). The fragment sizes
were calculated using GeneMapper software from the
same manufacturer.

Ecogeographical data
The geographic data (altitude, latitude and longitude) of
76 accessions were available [6], and thus they were
used to project the data using the DIVA-GIS software
http://www.diva-gis.org. The geographic location of the
study area was between 28°15’ and 38°42’ South latitude
and between 70°18’ and 73°24’ West longitude. The alti-
tude on the sites varied within a wide range, from sea
level to high mountains (> 2000 m). Since only one
accession is available in some provinces, the accessions
were grouped in eight zones along Chile, from North to

South, including in some cases various close provinces
with similar ecological characteristics. The ecological
data like rainfall of wettest and driest month and mean
temperature of the warmest and coldest month were
obtained for each site using DIVA-GIS. The ecological
regions were described following the bioclimatic classifi-
cation of DiCastri and Hajek [41].

Statistical analysis
The summary statistics including the number of alleles
per locus, polymorphism information content (PIC)
values and gene diversity were determined using the
application PowerMarker version 3.25 [73]. The
unrooted neighbor-joining (NJ) tree was constructed
using the Nei’s index distance [74]. One thousand
matrices were obtained by bootstrapping, and the con-
sensus tree was constructed with the program Consense
of the Phylip package (version 3.66) [75]. The dendro-
gram was visualized using the TreeView 1.6.6 software
[76]. We performed a Mantel test correlation [42]
between Nei’s genetic distance and the natural (Napier-
ian) logarithm of the geographic distances, using the
library ade4 in the R package (version 2.10.1; R Develop-
ment Core Team 2008) [78].
A Bayesian model-based analysis for inference of

population structure was performed using the program
Structure (version 2.2) [78] to estimate the number of
groups (K) represented by all sampled individuals and
the individual admixture proportions. The Structure
software assumes a model in which there are K popula-
tions (where K may be unknown), each being character-
ized by a set of allele frequencies at each locus.
Individuals in the sample are probabilistically assigned
to a particular population, or associated to two or more
populations (if their genotypes indicate that they are
admixed). The number of clusters was inferred using 20
independent runs with 100,000 burn-ins and 100,000
iterations after burn-ins, following the admixture ances-
try model and correlated allele frequencies, with K ran-
ging from 1 to 10. We have followed the procedure by
Evanno et al. [39] to better detect the real number of
clusters determined by Structure. Also, the clusteredness
index [40] was calculated, which is based on the Q
matrix of Structure, being 1 when individuals are
assigned completely to a single cluster and 0 when they
are equally assigned to all clusters. The individuals can
have membership coefficients summing 1 across
clusters.
The Distruct 1.1 software [40] was used to graphically

represent the estimated population structure, according
to geographic proximity, ecological region and agrono-
mical data. Each individual was represented by a thick
line, which was partitioned into K colored segments,
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representing the individual’s estimated membership frac-
tions in K clusters.
The genetic structure of the population was also inferred

by the Geneland package [79], implemented in the R soft-
ware. The Geneland software uses geographic coordinates
and does not assume admixture, whereas the Structure
software does not use geographic coordinates and does
assume admixture. We carried out five independent runs
using independent allele frequencies with 100,000 itera-
tions, from which each 100th observation was sampled
from the Markov chain, with minimum and maximum K
being 1 to 10. The run with the highest likelihood was
post-processed to obtain the posterior mode of population
membership. The genetic differentiation among genetic
groups inferred by Structure was estimated by hierarchical
analysis of molecular variance (AMOVA), implemented in
the Arlequin 3.0 software [80].
We used the Lositan software [81] to identify outlier

loci that had excessively high or low Fst compared to
neutral expectations. The basic rationale is that (i) loci
influenced by directional (also called adaptive or posi-
tive) selection will show a larger genetic differentiation
than neutral loci; and that (ii) loci that have been sub-
ject to balancing (also called negative or purifying) selec-
tion will show a lower genetic differentiation. Thus, the
methods generally consist of identifying loci that present
Fst coefficients that are “significantly” different from
those expected under neutral theory (they are called
outlier loci). To avoid false positives caused by popula-
tion structure, the Fst was calculated for the inferred
structure groups (the significance level chosen was
0.001, which corresponds to a statistical significance
level of 0.05), applying a Bonferroni standard correction.
The association of alleles of outlier loci with ecogeogra-
phical factors was assayed by linear regression analyses,
using the SPSS package version 17.0.0 from SPSS (Chi-
cago, IL, USA). Alleles with frequencies below 5% were
excluded. Alleles of each locus were introduced as
dependent variables in the model and ecogeographical
factors were the independent variables. Significance was
calculated for the model, which included only one allele,
with the significance threshold set at 0.05, using a Bon-
ferroni correction, as already mentioned.
Values of environmental variables were first standar-

dized and the Euclidean distance between the samples was
computed using SPSS. The correlation between genetic
distance and environmental distance in the collection was
calculated by the Mantel test. Also, the Principal Compo-
nent Analysis (PCA) was computed from environmental
values, and the samples were plotted in genetic structure
grouping. The Spearman rank correlation was used to
assess differences in mean number of alleles and ecogeo-
graphic variables among the inferred groups.

Additional material

Additional file 1: Estimated number of populations from Geneland
analysis. (a) Posterior density distribution of the number of clusters
estimated from analysis in five replicates; and (b) genetic assignment of
H. chilense individuals.

Additional file 2: Mantel test showing the relationship between
genetic distance and geographic distance. (B1) Relationship between
Nei’s genetic distance and Napierian logarithm of geographic distances
for group I accessions; and (B2) relationship between Nei’s genetic
distance and Napierian logarithm of geographic distances for group II-
Center accessions.

Additional file 3: Mantel test showing the relationship between
genetic distance and environmental distance for group II
accessions. Plot of genetic distance vs. Ln (environmental distance).
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