
HAL Id: hal-01189720
https://hal.science/hal-01189720

Submitted on 1 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Another Brick in the Cell Wall: Biosynthesis Dependent
Growth Model

Adelin Barbacci, Marc Lahaye, Vincent Magnenet

To cite this version:
Adelin Barbacci, Marc Lahaye, Vincent Magnenet. Another Brick in the Cell Wall: Biosynthesis
Dependent Growth Model. PLoS ONE, 2013, 8 (9), �10.1371/journal.pone.0074400�. �hal-01189720�

https://hal.science/hal-01189720
https://hal.archives-ouvertes.fr


Another Brick in the Cell Wall: Biosynthesis Dependent
Growth Model
Adelin Barbacci1*, Marc Lahaye1, Vincent Magnenet2*

1 Biopolymers Interactions Assembly UR 1268 (BIA), Institut National de la Recherche Agronomique (INRA), Nantes, France, 2 Laboratoire des sciences de l’ingnieur, de

l’informatique et de l’imagerie (ICube), Université de Strasbourg, UMR CNRS 7357, Illkirch, France

Abstract

Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a
tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its
mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be
synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between
mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the
interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and
theoretical framework to model growth in function of energy forms and their coupling. This framework is based on
irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by
changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in
term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on
Lockhart’s equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general
growth equation developed in this paper.
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Introduction

Plant growth implies cell divisions and irreversible expansion of

cell wall s. For the latter to occur, two concomitant conditions are

required. The first one is the cell wall mechanical deformation in

response to the cell turgor pressure build up. The latter results

from the aquaporins regulated flow of water in the vacuole driven

by osmotic gradient [1,2]. The second condition is the cell capacity

to synthesize, export and incorporate other bricks at the inner face

of the cell wall to maintain its integrity [3,4] and to cause its

mechanical relaxation. This chemically mediated deformation

consists in the reorganization of load-bearing cross-links between

the different bricks in the cell wall and in the creation of new ones

by the incorporation of new elements.

The structure, organization and dynamics of the load-bearing

network remain open questions. The constitutive bricks in the

growing plant cell wall consist mainly in three groups of

polysaccharides: cellulose micofibrils embedded in a matrix of

hemicelluloses and pectins and some structural proteins. Cellulose

microfibrils orientation regulates the expansion anisotropy by

promoting cell growth along the perpendicular fibers direction [5]

in relation with local stress field [6,7]. Since the 199’s and the

‘‘tethered network’’ [8], xyloglucan (XG), the main growing cell

wall hemicellulose hydrogen bounded to cellulose is considered as

the main load-bearing network. The extensibility of the cell wall is

then controlled by proteins (expansin) and wall-bound enzymes

(xyloglucan endotransglycosylase) which dissociate and reorganize

the load-bearing cross-links. This chemorheological process [9,10]

promotes the creep of the cell wall. Apart from hemicellulose, the

cell wall matrix is composed of pectin. It is made of homo-

galacturonan (HG), rhamnogalacturonan I (RGI) and II (RGII)

rich polysaccharides which ionic interactions and hydrogen bonds

play roles in cell-cell adhesion, in the regulation of cell wall

porosity and mechanical properties [11]. The major pectic

polysaccharide, HG, is secreted in a highly methylesterified form

that is later on selectively de-esterification by pectin-methylesterase

(PME) [12]. Such modification determines HG cross-links

formation via calcium ions that were recently revealed to play

an equivalent load-bearing role in substitution of the hemicellu-

lose-cellulose network in an Arabidobsis double mutant xxt1/xxt2

[13] depleted in XG [14]. Such results reactivated debates on the

‘‘tethered network’’ model [3,14,15].

Usually, plant cell growth is investigated from a biophysical

point of view in the light of models based on Lockhart’s equation

[16] (equivalent to Bingham’s model) written:

_‘‘~

0 VPƒY

m(P{Y ) VPwY

8><
>:

with ‘ the length, _‘‘ the time derivative of the length (i.e. the growth

rate), m a factor controlling the longitudinal irreversible wall

extensibility, P the turgor pressure and Y the yield threshold. This

equation describes the cell as a non-newtonian fluid, which
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irreversibly flows when a pressure is applied above a critical yield

value. Lockhart’s equation describes only the irreversible defor-

mation of the cell and cannot model stress/pressure relaxation and

elastic deformation [17]. Thus Ortega [18] proposed a model

similar to Maxwell-Bingham equation to account for reversible

deformation:

_‘‘~

_PP=E|ffl{zffl}
reversible

VPƒY

m(P{Y )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
irreversible

z _PP=E|ffl{zffl}
reversible

VPwY

8>>>><
>>>>:

with E the longitudinal volumetric Young modulus and _PP the time

derivative of the turgor pressure.

The Lockhart/Ortega’s model describes growth rate as a

function of cell wall properties modelled initially by the empirical

parameters m, Y , E. Experiments demonstrated that none of the

parameters of Ortega’s equation are constant (e.g. [17,19,20]). At

least, the time dependency of each empirical parameter m, Y , E
need to be considered. This means that some physical, chemical

and biological mechanisms are not described by this equation.

Numerous models have been developed to relate the latter

missing mechanisms and to balance the almighty role of turgor

pressure. Relationships between load-bearing network and cell

wall mechanical properties received specific attention. The Wall-

gen software [21] allows the computation of the mechanical

properties of the wall in function of interacting cellulose-

hemicellulose cross-links. Veytsman and Cosgrove [22] proposed

a modified Lockhart’s equation to explore relationships between

mechanical and chemical energies and to predict right ‘‘trends’’ in the

composition dependency of the cell wall yielding. They found that the

concentration of glucans and cellulose determined the yield

threshold and not the strength of hydrogen bonding. The

deposition of new material and their kinetics were not addressed

by this thermodynamical approach. Dyson and Jensen [23] have

modeled the cell wall as a sheet of viscous fibre-reinforced fluid

and studied the impact of dynamical changes in its material

properties and passive microfibrills reorientation on cell elonga-

tion. The effect of proteins such expansin and other enzymes

activities was addressed by Pietruszka [24] who introduced time

and spatial dependency in Lockhart’s parameters. Dyson et al.

[25] proposed a dynamical model of hemicellulose cross-links in an

expanding wall incorporating strain enhanced breakage and

enzyme mediated cross-links kinetics. According to this vision,

the yield threshold in Lockhart’s equation appeared as dependent

of the rate of cross-links breakage over cross-links elongation. The

feedback between cell elongation and deposition of polymers in

pollen tubes was addressed by Kroeger et al. [26] who considered

turgor pressure not only as the driving force but also as a regulator

[27]. Rojas et al. [10] proposed a model coupling deposition of

new material and mechanical deformation to capture complex

pollen tube morphogenesis and to highlight the impact of

deposition.

In light of these efforts, the aim of this paper is to propose a

general and unified theoretical framework to model growth

considering the deformation due to turgor pressure and the

chemorheological process occurring in the cell wall. The idea is to

consider growth as a the result of the coupling effect between

different forms of energy: mechanical, chemical and thermal

(Fig. 1). Mechanical energy is provided by turgor pressure and by

stored energy in the load-bearing network regardless of its nature

[28]. Chemical energy, refers to the synthesis of new polymers and

their possible modifications by enzymes. Thermal energy partic-

ularly regulates all enzymatic mechanisms involved in cell wall

biosynthesis and modifications. The coupling effect between

mechanical and chemical energy reflects chemorheological pro-

cesses and describes the chemically mediated load-bearing

changes, the incorporation of new bricks of polymer at the inner

face of the cell wall, the effect of the amorphous matrix on

cellulose-hemicellulose network accessibility and enzymes or

polymers diffusion [29], the cell wall mechanical relaxation. The

coupling effect between chemical and thermal energy account for

the enzyme activity whereas the coupling between thermal and

mechanical energy for the thermal dilation.

In the next section, we present the general theoretical approach

based on an axiomatic thermodynamics proposed by Callen [30]

extended in the case of non-equilibrium by Cunat [31]. This

theoretical approach is then declined to model the internodal cell

growth of Chara corallina. This Charophycean alga is a member of

the closest relatives of lands plant [32]. Its cell wall peculiarity is

the synthesis and incorporation of pectic HG as mostly non-

methylesterified structures [33] that readily cross link via calcium

[32,34]. For this model, experimental data were extracted from

the work of Proseus and Boyer [34] emphasizing the coupling

effects between the mechanical, thermal and chemical energy by

changing manually turgor pressure and temperature while

measuring their effects on growth.

General Theoretical Framework
Steady state equations. The starting point of the present

approach is the axiomatic thermodynamics initially developed by

Callen [30]. In his contribution, Callen assumes the existence of a

potential function called internal energy (noted Y), containing all the

information of a system and depending a priori on all independent

extensive variables of the system. Let us recall that a variable is

called extensive if, in a composite system, the value of the variable

for the whole system is equal to the sum of this variable on every

sub-system. In the general case the extensive variables involved in

the growth process are: the volume of the representative element

Figure 1. Summary of the theoretical framework. Biological
growth is the resulting effect of 3 forms of energy and their coupling
(noted M/T, M/C and T/C with M for Mechanical, T for Thermal and C for
Chemical). For each energy, each couple of intensive and extensive
variables is linked by one component of Tisza’s matrix (defined in Eq. 5).
An example of the function of each form of energy and coupling is
provided.
doi:10.1371/journal.pone.0074400.g001
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V associated with the mechanical energy, the entropy S associated

with the thermal energy and the quantities of chemical species

N~fN1, . . . ,Nng such as enzymes, growth factors and polysac-

charides involved in the load-bearing network build-up and

reorganization. The latter are associated with the chemical energy

(Fig. 1). The internal energy is written:

Y~Y(V ,S,N): ð1Þ

The differentiation of Eq. 1 defines the intensive variables

associated with each extensive variable and by consequence to

each form of energy (Fig. 1). The dependency to extensive

variables is omitted to lighten equations.

dY~PdVzTdSzm:dN ð2Þ

with:

P:
LY
LV

T:
LY
LS

m:
LY
LN

ð3Þ

where P is the turgor pressure, T is the temperature and m are the

chemical potentials (Fig. 1). In the case of the cell, P is an internal

pressure with a positive sign.

The differentiation of the intensive parameters Eq. 2 leads to the

most general form of the constitutive equations written in matrix

form:

dP

dT

dm

0
B@

1
CA~

L2Y

LV2
L2Y
LVLS

L2Y
LVLN

L2Y
LSLV

L2Y

LS2
L2Y
LSLN

L2Y
LNLV

L2Y
LNLS

L2Y

LN
2

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tisza’smatrix

dV

dS

dN

0
B@

1
CA: ð4Þ

The matrix linking extensive to intensive parameters is called

Tisza’s matrix. It is symmetrical since Y satisfies the Maxwell

conditions on integrability involving the second order derivatives

of Y. Tisza’s matrix has to be positive definite. In the general case,

the coefficients of Tisza’s matrix are functions of the extensive

variables. Eq. 4 can be rewritten in the lighter form:

dP

dT

dm

0
B@

1
CA~

c a B
t

a b D
t

B D G

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Tisza’smatrix

dV

dS

dN

0
B@

1
CA: ð5Þ

Tisza’s matrix describes all the different forms of energy

involved in the biological growth process and their coupling. c

(respectively b or G) links the extensive to intensive variable

corresponding to the mechanical (respectively thermal or chem-

ical) energy. a, the thermal dilation, describes the coupling effect

between mechanical and thermal energies. B, accounting for the

chemorheological process, describes the coupling effect between

mechanical and chemical energies. D, describing the thermal

sensitivity of biochemical processes, refers to the coupling effect

between the thermal and the chemical energies (Fig. 1). G

describes the interactions between the different biochemical

reactions relative to the synthesis, the assembly of polymers,

enzymatic activities….

A very important property of the Tisza matrix is that its

components are interrelated via the extensity property of the

energy potential. Indeed, Callen [30] demonstrated that if we

suppose the internal energy Y extensive, then Gibbs-Duhem’s

relationships exist:

lY(V ,S,N)~Y(lV ,lS,lN) ð6Þ

by differentiation of Eq. 6 with respect to l and by taking l~1, we

get:

Y(V ,S,N)~PVzT Szm:N: ð7Þ

Hence,

dY(V ,S,N) ~ VdPzPdVzTdSz

SdTzm:dNzN:dm
: ð8Þ

By identification with Eq. 2, Gibbs-Duhem relation is deduced:

VdPzSdTzN:dm~0: ð9Þ

By injecting the relation Eq. 5 into Eq. 9 and collecting the

terms in dV , dS and dN we obtain Gibbs-Duhem relationships

written in matrix form

c a B
t

a b D
t

B D G

0
B@

1
CA V

S

N

0
B@

1
CA~0: ð10Þ

In practice, these relationships may be useful to express

unknown components of Tisza’s matrix from known ones.

The key aspect of the present framework is to extend the validity

of Eq. 1 outside equilibrium. This assumption has already been

formulated by Cunat [31] and gave rise to several successful

studies on polymers (e.g. [35]). However, Eq. 5 revealing coupling

effects of the different forms of energy does not contain

information on the relaxation kinetic of the system back to its

equilibrium after a mechanical or thermal solicitation. Thus, an

integration of kinetic equations is necessary to supplement the

previous thermodynamic equations.

Kinetic equations. Internal reorganizations of the cell wall

can be modeled by chemical reactions involving the chemical

species N and _�jj�jj, the chemical fluxes (or degrees of reactions)

associated with chemical reactions. As an illustration, we consider

the chemical reaction presented in Table 1 linking 4 species

denoted Spi~fSp1,Sp2,Sp3,Sp4g with quantities NSi
~fNS1

,
NS2

,NS3
,NS4
g. If the species are weighted by stoichiometric ratios

n~fn1,n2,n3,n4g then for the initial time t0 and the time t, the

following quantities NSi
are obtained in function of j (Table 1).

This degree of reaction can describe the entire state of the reaction

with the quantity of reagent at t0 and stoichiometric ratios known.

When stoichiometric ratios are equal to one, the degree of reaction

is the number of mole produced or consumed by the reaction at

the current time. More generally, we introduce the degrees of

Another Brick in the Cell Wall
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reactions j~fj1, . . . ,jpg and the affinities A~fA1, . . . ,Apg
driving the process (also called generalized non-equilibrium forces)

given by:

Ni~Ni(t0)z
X

reaction j

nijjj , Aj~{
X

species i

nijmi ð11Þ

or in matrix form:

N~N(t0)zn:j, A~{nt:m: ð12Þ

In Eq. 11, nij stands for the stoichiometric coefficient of the ith

species in the jth reaction, taken negative if the species is a reagent

and positive otherwise.

Rewriting Eq. 5 accounting for Eq. 11 yields:

_PP

_TT

{ _�AA�AA

0
B@

1
CA~

c a B
t:n

a b D
t:n

nt:B nt:D nt G n

0
B@

1
CA

_VV
_SS
_�jj�jj

0
B@

1
CA: ð13Þ

In general, in the context of irreversible thermodynamics the

relation of chemical fluxes can be written in the form [30,36]:

_�jj�jj~L(P,T ,A) ð14Þ

with L a vector of functions of the intensities (pressure,

temperature and affinities) that must be experimentally deter-

mined.

As we assume that L is only a linear function of affinities A (i.e.

L~L:A with L a constant matrix) then the third vectorial

equation of Eq. 13 rewrites:

_�AA�AAz (nt G nL)|fflfflfflfflffl{zfflfflfflfflffl}
t{1

:A~{(nt:B) _VV{(nt:D) _SS ð15Þ

and highlights the definition of the characteristic times

t~(nt G nL){1 for the system to reach back equilibrium after a

mechanical or thermal solicitation, the latter being driven by the

right hand side of Eq. 15. In this sense, it can be seen that the

submatrix G of the Tisza’s matrix partially governs the damping

behavior described by the constitutive equations (Eq. 13 and Eq.

14). In the more general case where L may depend on P and T

(Eq. 14), non linearities of mechanical or thermal kind can be

taken into account, symbolically t:t(P,T)

In the next section, a realistic case of growth is treated with the

general framework presented in this paragraph. More precisely,

Eq. 13 and Eq. 14 were used to model the growth of the internodal

cell of C. corallina.

Results and Discussion

Modeling Growth of Chara Corallina
Proseus and Boyer have experimentally demonstrated, by

supplying externally pectate, that a chemical mechanism, called

‘‘pectate cycle’’, controls the growth rate of the internodal cell of

C. corallina[37]. By changing externally the turgor pressure and

the temperature while measuring growth increment [34], the

authors also highlighted that the ‘‘pectate cycle’’ is pressure

dependant and not only controlled growth but account as well for

an efficient mechanism allowing to ‘‘store’’ growth for a while

during low pressure period. Data used below to model the cell

growth of C. corallina, have been extracted from the latter work

[34].

Phenomenological aspects. C. corallina cell wall is composed

of a high amount of mainly non-methylesterified HG pectin

(pectate) and a small amount of XG and cellulose [33,34,38,39].

The Ca2z-pectate links constitute the main load-bearing network

in the wall during growth. Incorporation of new pectate results in

the cell wall mechanical relaxation. In this particular case, wall

relaxation is a non-enzymatic process and is linked to a

temperature and pressure dependent ‘‘pectate cycle’’ (Fig. 2

adapted from [34]). At a given turgor pressure, the created tensile

stress in the cell wall increases the calcium mobility (Fig. 2 left) by

enlarging bound distances and thus, weakening calcium and

pectate bonds. The temperature affects the quantity of free pectate

synthesized (Fig. 2 center in which ‘‘U’’ denotes an unknown

reagent introduced in the next section). Thus, when temperature

and turgor pressure are not limiting factors, free pectates can be

incorporated in the extending cell wall and chelate calcium to

create new bonds (Fig. 2 right). The creation and the breakage of

Ca2z-pectate bounds occurs simultaneously providing a wall

loosening mechanism [10] driving the growth.

Despite the non-enzymatic bonding process, the extension and

the renewal of the cell wall is similar to terrestrial plant such as

pollen tubes [10,32].

Growth of the alga is diffuse, anisotropic (Fig. 3) and not

restricted to the cell tip. The direction of growth is perpendicular

to the direction of the cellulose microfibrils axis in the cell wall i.e.

along the longitudinal direction of the cell. The cell wall thickness

and the transverse section area (noted k) are considered constant

with time (which is true at least on the time range of the

experiment).

Representative volume. On a thermodynamic point of

view, the representative volume that need to be considered in

order to use the proposed framework is that of the cell wall. The

latter is assumed to be under an homogeneous stress state so that

the Cauchy stress tensor may be decoupled into two contributions,

as it is classically done for porous media (see e.g. [40]):

Table 1. Example of a chemical reaction linking 4 species Spi weighted by stoichiometric ratios ni .

n1Sp1 z n2Sp2 ? n3Sp3 z n4Sp4

t~t0 NS1
(t0) NS2

(t0) NS3
(t0) NS4

(t0) moles
t NS1

(t0){n1j(t) NS2
(t0){n2j(t) NS3

(t0)zn3j(t) NS4
(t0)zn4j(t) moles

The degree of reaction j(t) describes the entire state of the reaction if the quantity of reagent at t0 and stoichiometric ratios are known.
doi:10.1371/journal.pone.0074400.t001
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��ss�ss~��ss�ss0zP��11�11:

In this equation, ��ss�ss0 stands for the so-called effective stress, that is

the stress exerted on the solid part of the cell wall, while the

contribution P��11�11 is due to the fluid bathing it. If an infinitesimal

change occurs on P, that is P?PzdP, the mechanical response

of the cell wall will be characterized by a change on the effective

stress d��ss�ss0 so that the total stress ��ss�ss keeps satisfying the boundary

conditions on the cell and the equilibrium equation div��ss�ss~0 (in

this case reducing to srr~shh). In the cylindrical coordinates

(r,h,z) associated with the cell, we can consider that the Cauchy

stress tensor has the form

��ss�ss~

srr 0 0

0 shh 0

0 0 szz

0
B@

1
CA~

s’rr 0 0

0 s’hh 0

0 0 s’zz

0
B@

1
CAz

P 0 0

0 P 0

0 0 P

0
B@

1
CA:

If we assume that the cell grows only in its longitudinal

direction, a change in the turgor pressure implies only a

deformation Ezz, and we have szz~s’zzzP. If no longitudinal

stress is applied to the boundary of the cell, that is szz~0, we

obtain s’zz~{P, and P becomes the only mechanical intensive

variable describing the solid part of the cell wall. Its extensive

counterpart is the length ‘, up to a factor k being equal to the

section of the cell wall. Note that in this first approach, the radial

components srr and shh have not been modeled. Finally, the

system to which our thermodynamic framework is applied is the

solid part of the cell wall, which is submitted to the turgor pressure

P.

Constitutive equations. Based on the previous section,

extensive variables describing the system are the volume of the

cell wall V proportional to the length of the cell ‘ (the transverse

section k of the cell wall k~p(R2
2{R2

1) remains constant Fig. 3),

the entropy S, the quantity of free pectate Nf , bound pectate Nb

i.e. pectate in the cell wall and Nu reagents involved in the

synthesis of free pectate. Nu is an arbitrary variable used to

describe the complex synthesis processes of pectate. The internal

energy then reads:

Y~Y(V ,S,Nf ,Nb,Nu): ð16Þ

The differentiation of Eq. 16 leads to a similar equation to Eq. 2

and to a similar form of constitutive equation presented in Eq. 5.

In the specific case of C. corallina cell growth, Tisza’s matrix is

simplified thanks to the latter experimental evidences. We assumed

that the elongation rate was only function of bound pectate

(B
t
~f0,Bb,0g), that the assembling process was not function of

temperature (D
t
~fDf ,0,Dug) and that the number of free pectate

synthesized is not dependent on the amount of bound pectate

(Gbu~0 in G). The thermal dilation a is neglected because of the

small range of variation of the temperature. Hence, the final form

of the constitutive equations for the growing C. corallina cell is:

dP

dT

dmf

dmb

dmu

0
BBBBBB@

1
CCCCCCA~

c 0 0 Bb 0

0 b Df 0 Du

0 Df Gff Gfb Gfu

Bb 0 Gfb Gbb 0

0 Du Gfu 0 Guu

0
BBBBBB@

1
CCCCCCA

dV

dS

dNf

dNb

dNu

0
BBBBBB@

1
CCCCCCA: ð17Þ

The Gibbs-Duhem relationships (Eq. 10) allow expressing c, Bb,

b and Df in function of the chemical coupling matrix G:

c~
Nb Gbb NbzGfb Nf

� �
V2

, ð18Þ

Figure 2. ‘‘Pectate cycle’’ (adapted from [34]). Turgor pressure P
(left) creates a tensile stress in the cell wall. The bounding distance
between calcium and pectate increases with pressure inducing a higher
mobility of calcium. A non-optimal temperature T (centre) can reduce
the number of free pectate produced by the alga (‘‘U’’ denotes an
unknown reagent introduced in section). When the temperature is
optimal for pectate synthesis then free pectate are produced. When P
and T allow growth (right), free pectate are bound with calcium to form
new cell wall and involve its mechanical relaxation.
doi:10.1371/journal.pone.0074400.g002

Figure 3. Diffuse and anisotropic growth of the internodal cell
of C. corallina. Growth occurs in the longitudinal direction at every
point of the cell wall whereas the thickness (e) and the internal R2 and
external R1 radii of the cell remain constant in time (t1wt2).
doi:10.1371/journal.pone.0074400.g003
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Bb~{
Gbb NbzGfb Nf

V
, ð19Þ

b~
Du

2 GfbNf NbzGuuNu
2z2GfuNf NuzGff Nf

2
� �

GuuNuzGfuNf

� �2
, ð20Þ

Df ~
Du GfbNbzGfuNuzGff Nf

� �
GuuNuzGfuNf

: ð21Þ

Thus, the number of unknown parameter of Tisza’s matrix

decreases from 10 to 6.

Kinetics. To model growth of C. corallina internodal cell, two

chemical reactions are considered in a simple manner because the

exact reactions are unknown. Such chemical model and approx-

imation have already been used to model the mechanical

expansion of pollen tubes cell wall [10].

The first one describes the synthesis of new pectate. A simple

way to model the reaction is to suppose that an unknown reagent

(noted Xu) produces free pectate:

Xu?(Pectate)f ð22Þ

The sign of the affinity of the reaction gives the direction of the

reaction As~mu{mf . If Asw0 then free pectate are produced and

unknown reagents are consumed. A priori, As is positive. The

second reaction describes the cell wall elongation i.e. the

incorporation of new pectate within the existing cell wall by

creation of Ca2z-pectate load-bearing cross links.

(Pectate)f '(Pectate)b ð23Þ

The direction of the reaction is still determined by the sign of

the reaction affinity Acw~mf {mb. A priori, Acw is positive.

Considering Eq. 22 and Eq. 23 the quantity of chemical

components of the growing cell wall is defined as follows.

Nu ~ Nu0{js

Nf ~ Nf 0{jcwzjs

Nb ~ Nb0zjcw

8>>><
>>>: ð24Þ

with Nu0, Nf 0, Nb0 the initial quantities of unknown reagents, free

and bound pectate. In addition js and jcw are the degrees of the

two reactions i.e. the number of mole of synthesized and bound

pectate. In the context of irreversible thermodynamics such as

treated by Prigogine and Kondepudi [36], the relation between

chemical fluxes and intensities (Eq. 14) can be written

_�jj�jj~L(A): ð25Þ

This form depends only on the affinity of reactions and allows

exploring the chemical part of the energy and its coupling. As

concerns kinetics laws, we consider, in this first approach, a first

order Taylor’s development of the general relations presented in

Eq. 25, viz.

_jjcw ~ L1,cw Acw

_jjs ~ L1,s As

8><
>: ð26Þ

in which L1,cw and L1,s are constant coefficients. Eq. 17 then

becomes:

_PP

_TT

{ _AAs

{ _AAcw

0
BBB@

1
CCCA~

c 0 0 Bb

0 b D’ {Df

0 D’ G’11 G’12

Bb {Df G’12 G’22

0
BBB@

1
CCCA

_VV
_SS
_jjs

_jjcw

0
BBB@

1
CCCA ð27Þ

with

D’~Df {Du,G’11~GuuzGff {2Gfu

G’12~GfbzGfu{Gff ,G’22~Gff zGbb{2Gfb:

Note that the matrix of Eq. 27 is still symmetrical.

Growth equation. By expressing the rate of entropy in Eq.

27.

_SS~(1=b) ( _TT{D’ _jjszDf
_jjcw)

Eq. 27 becomes.

_VV ~ (1=c)( _PP{Bb
_jjcw)

{ _AAs ~ (D’=b) _TTz(G’11{D’2=b) _jjs

z(G12zD’Df =b) _jjcw

{ _AAcw ~ Bb
_‘‘{(Df =b) _TTz(G’12zD’Df =b) _jjs

z(G’22{D2
f =b) _jjcw

8>>>>>>>>><
>>>>>>>>>:

:

By replacing expressions of c, Bb, b, Df by Eq. 18, Eq. 19, Eq.

20, Eq. 21 and V by k‘ we obtain the growth equation system

written in matrix form:

_‘‘
_AAs

_AAcw

0
B@

1
CA~

c1=k 0 0 c4=k

c5 c6 c7 0

c9 c5 c11 c12

0
B@

1
CA :

_jjcw

_jjs

_TT

_PP

0
BBB@

1
CCCA ð28Þ

with ci function of Tisza’s matrix coefficients and extensities

(expressions of ci are given in Table 2) and rates of reactions _jjs,
_jjcw expressed in kinetic equations (Eq. 26).

The growth equation system (Eq. 28) is constituted by non-

linear differential equations. In broad outlines, it describes growth

increment _‘‘ as always dependent on the synthesis rate of Ca2z-

pectate cross link _jjcw and, when P is not constant also dependant
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of a deformation induced by the turgor pressure change. In other

word, the two conditions needed for cell growth (a tensile stress

due to pressure and the capacity to incorporate new bricks at the

inner face of cell wall to lengthen it and to relax the tensile stress)

are modeled naturally by such thermodynamics framework. A

rational of the system is presented on Fig. 4. The core of the model

is composed by the two chemical reactions relative to the synthesis

of free pectate and their assembly in the cell wall. The rate of

pectate incorporation _jjcw drives directly the growth _‘‘ (c1=0),

influences the synthesis of free pectate _jjs (c5=0) and its future

evolution _AAcw (c9=0). The kinetics of chemical reactions are

dependant on changes of turgor pressure and temperature

(c7,c11,c12=0). Thus, when temperature and pression are not

limiting factors and do not vary ( _PP~0 and _TT~0), growth occurs

depending on the rate of pectate incorporation. This incorporation

of new bricks in the wall involves its mechanical relaxation [10].

Pressure rate has a double role. It can influence growth rate

directly by deforming the wall (c4 in Eq. 28 and on Fig. 4) but is

also a regulator of growth since it influences directly (c12 in Eq. 28)

and implicitly (c5 in Eq. 28) the kinetics of chemical response of the

equation system (loops in core graph Fig. 4). This complex role of

pressure which is a necessary and not sufficient growth condition,

has already been observed and studied on pollen tubes [10,26].

Result of the fit. The value obtained for each parameter is

presented in Table 3 and the result of the fit is depicted on Fig. 5

(depicted in orange in the Fig. 5, data extracted from Proseus and

Boyer [34] are depicted in black). The agreement between length

increment modeled and experimental data is quite good (R2�
w

0.998). Tisza’s matrix obtained with the set of parameters is

positive definite since all the eigenvalues are positive

(l~f2|109,1|108,5|106,8|105,1|10{3g).
The amount of pectate presents in the cell wall and synthesized

is globally growing (Fig. 5 jcw, js).

The temporal evolution of the internal entropy, defined as the

sum of the temporal evolution of entropy of the two reactions [36].

_SSi~ _SScwz _SSs~Acw

_jjcw

T
zAs

_jjs

T
: ð29Þ

is growing too (Fig. 5 _SSiw0). The direction of reactions accounting

for synthesis and new material incorporation is never inverted

during the experiment since the sign of Acw and As is always

positive. When both pressure and temperature decrease (Fig. 5

Z2), the number of free pectate grows (Fig. 5 _NNf w0) and stops

when pressure and temperature reach the low level (Fig. 5 Z3).

Growth does not occur during Z3 since the flux of cell wall

produced is close to 0 ( _NNb and _jjcw Fig. 5 Z3). As the pectate

synthesis reaction is stopped ( _NNu~0 Fig. 5 Z3) the number of free

pectate remains constant ( _NNf ~0 Fig. 5 Z3) until pressure and

temperature reach their initial levels (T Fig. 5 Z4). During this

period, free pectate stocked and produced ( _jjsw0 Fig. 5 Z4) are

consumed to produce new cell wall ( _jjcww0 Fig. 5 Z4) and the

number of free pectate tends towards its initial value (Nf Fig. 5

Z4). The growth increment increases with the same rate than

during the first period (D‘ Fig. 5 Z1) but on a different trajectory.

Alternatively, when only the pressure decreases (P Fig. 5 Z6), the

two reactions slow down but do not stop ( _jjcw and _jjs positive but

smaller than during Z5). The number of free pectate grows during

the low pressure time range ( _NNf Fig. 5 Z7) and when pressure is set

to its initial level (P Fig. 5 Z8) the stock of these pectate is quickly

consumed to produce cell wall ( _NNf w0 Fig. 5 Z8). The growth rate

reaches its initial value but, unlike the Z3 period, on the same

trajectory as Z5 when temperature and pressure are at the normal

level.

Deviations between the model and the experiment are mostly

explained by the simple form of kinetics equations (Eq. 26) used to

model chemical fluxes. Other forms of kinetics should be

formulated in the light of new experiments.

The results given by the proposed model, despite its qualitative

aspect due to the lack of quantitative data, describe accurately the

interplay between cell elongation and the ‘‘pectate cycle’’ by

modification and extension of the Ca2z-pectate load-bearing

network in function of pressure and temperature in C. corallina.

Analysis of signs of ci obtained after the fit of Tisza’s matrix

parameters (Table 2) allows extracting the global scheme of C.

corallina internodal cell growth. A variation of pressure or of the

rate of pectate incorporation causes a growth variation of the same

sign (c4w0,c1w0). The creation of new Ca2z-pectate tends to

stop the assembly process (c9v0) but this tendency is counteracted

either by the amount of free pectate available (c5w0) or a raise of

Table 2. Expressions and signs obtained after fit of ci

involved in growth equation (Eq. 28).

c1~{
Bb

c
w0

c4~
1

c
w0

c5~{
bGfu{bGff zbGfb{Df DuzDf

2

b
w0

c6~{
bGuu{2bGfuzbGff {Du

2z2Df Du{Df
2

b
v0

c7~
Du{Df

b
w0

c9~{
bGff c{2bGfbczbGbbc{Df

2c{bBb
2

bc
v0

c11~
Df

b
w0

c12~c1w0

c, Bb , b and Df known and expressed by Eq. 18 to Eq. 21.

doi:10.1371/journal.pone.0074400.t002

Figure 4. Rational of the growth equation system (Eq. 28).
Pressure and temperature rates are the inputs. All the variables of the
core, relative to the chemical part of the energy (i.e. the synthesis and
assembly reactions) are coupled by growth equation coefficients ci (Eq.
28) and by kinetic equations (Eq. 26). Loops in the core part, model
regulation processes. The growth rate, the output, is the resulting effect
of the chemical activity modeled by the core and of the pressure rate.
When pressure and temperature are constant, growth increment is

determined by the kinetics of cell wall creation _jjcw .
doi:10.1371/journal.pone.0074400.g004
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pressure (c12w0) or temperature (c11w0). The more pectate are

linked by chelation, the more free pectate are synthesized (c5w0)

but the synthesis of new pectate can be stopped by a reduction of

temperature (c7w0). This joint fluctuation is modified by amount

of free pectate (variation of b Eq. 20 and Df Eq. 21 in c5 in

function of Nf ). This dependency of the rate of incorporation of

free pectate with the cell wall is an important mechanism which

allows the algal cell to store growth when pressure is low for a

certain length of time and to resume growth when pressure reaches

a non limiting value [34].

These results are in total agreement with the experimental

evidences found by Proseus and Boyer [34] and sketched on Fig. 2.

Back to Lockhart/Ortega’s equation. To model growth of

C. corallina cell, the form of the function describing the rate of

reactions Eq. 14 was chosen as proposed by Prigogine [36] and

Callen [30], in order to explore the relations between growth and

cell wall remodeling and led to Eq. 25. To develop a more physical

approach, focusing mostly on the mechanical part of the energy,

another form of the Eq. 14 can be used. If temperature is omitted

and if the cell wall synthesis and assembly are coarsely described,

we can assume the rate of reactions expressed as in Lockhart’s

equation.

_jjcw~K (P{Y ) PwY

_jjcw~0 PƒY

 
ð30Þ

with K a positive constant, P the pressure and Y a threshold

pressure. The Eq. 30 models the turgor pressure as driving the

growth when the pressure is over the threshold Y , its role of

regulator disappears. This new form of chemical fluxes and the

constitutive equations (Eq. 30) imply that the growth rate

becomes independent of other growth equations describing the

affinities (Eq. 28) since only mechanical quantities _‘‘ and _PP
remain. The growth increment is then modeled by a unique

equation:

_‘‘~(c1=k) _jjcwz(c4=k) _PP ð31Þ

~ c1 K (P{Y )zc4
_PP

� �
=k ð32Þ

By identification with Ortega’s equation.

_‘‘~m(P{Y )z(1=E) _PP ð33Þ

we obtain.

m~K (c1=k)~K ‘=Nb ð34Þ

E~k=c4~ Nb(Gbb NbzGfb Nf )
� �

=V2 ð35Þ

with m the longitudinal irreversible wall extensibility and E the

longitudinal volumetric elastic modulus. Hence, we obtain a cell

wall chemical composition dependent expression of the two

Ortega’s equation parameters. Others expressions can be estab-

lished by a different use of Gibbs-Duhem relationships (Eq. 10).

The magnitudes of parameters E and m have been estimated

in vivo for fungal single-cell sporangiophores of Phycomyces blake-

sleeanus and algal single-celled internodes of C. corallina (in [17]).

These studies established that m increases and E decreases with

the elongation rate. This result is coherent with ours (Fig. 6) since

we observed the same variations for our parameters c1(!m) and

1=c4(!E).

Experimental Limits
The efficiency of this approach, despite the flexibility of the

equations due to Gibbs-Duhem relationships (Eq. 10), depends on

Table 3. Parameters of the model.

Name Value Unit Dimensions Adjusted Sensitivity Rank

As0 4:81 103 J:mol{1 ½M�½L�2½T �{2½N� yes 1

Nb0 8:35 10{1 mol ½N� yes 2

L1,s 5:11 10{9 mol2:min{1:J{1 ½M�{1½L�{2½T �½N�2 yes 3

L1,cw 1:14 10{8 mol2:min{1:J{1 ½M�{1½L�{2½T �½N�2 yes 4

Acw0 8:49 102 J:mol{1 ½M�½L�2½T �{2½N� yes 5

Guu 8:78 105 J{1 ½M�{1½L�{2½T �2 yes 6

Du 2:65 103 K2:J ½h�½N�{1 yes 7

Gfu 2:08 105 J{1 ½M�{1½L�{2½T �2 no 8

Gfb {1:00 106 J{1 ½M�{1½L�{2½T �2 no 9

Gbb 1:00 107 J{1 ½M�{1½L�{2½T �2 no 10

Gff 1:00 108 J{1 ½M�{1½L�{2½T �2 no 11

Nf 0 1:00 10{20 mol ½N� no 12

Nu0 1:00 101 mol ½N� no 13

Value, unit and dimensions of the growth model parameters.½M� mass dimension, ½L� length dimension, ½T � time dimension, ½h� temperature dimension, ½N� chemical
quantity dimension. K Kelvin, J Joule, mol mole, min minute.
doi:10.1371/journal.pone.0074400.t003
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the accessibility of measurements. In particular, some intensities or

extensities such as chemical potential m and entropy S are not

measurable. Therefore, predicting pressure as a function of the

biochemical behaviour is impossible without assumptions on

Tisza’s matrix coefficients. To obtain G, measuring growth

triggered by more complex variations of temperature and pressure

would be pertinent to obtain a more robust fit. In any case, new

experiments focussed on producing quantitative biochemical

measurements are required to describe the initial quantity of

polymers (Eq. 24) or their relative abundance and kinetics of

reaction (i.e. the form of L in Eq. 25).

A Framework for Growth Models
The thermodynamical framework allows considering growth as

the result of coupling effect between different forms of energy

without restrictive hypothesis. The application of the general

growth equation (Eq. 13) to the case of the C. corallina cell growth,

in spite of its qualitative aspect, can be viewed as the first step

towards a more integrative biophysical modeling of growth.

Complex regulation loops, as the one involving turgor pressure

and temperature in C. corallina cell growth, seems to be naturally

described by the present approach due to the strong non linearity

of the growth equations. Future modeling of plant growth

experiments involving complex regulations such as the ones

involved in perceptive mechanisms like mechanoperception [41]

or proprioception [42] will allow testing the robustness of our

approach.

Materials and Methods

Parameters Estimations
The quantitative aspect of the ‘‘pectate cycle’’ is unknown.

Consequently, to test our approach, some assumptions were made

on the chemical part of the energy to determine the initial values

of parameters to fit. Thus, the results of the fit will only be

qualitative concerning the ‘‘pectate cycle’’. The quantity of

unknown reagent used by the cell to produce free pectate was

supposed unlimited (Nu0&Nf 0). In the same manner, the number

of pectates composing the cell wall at the beginning of the

experiment was supposed much higher than the number of free

pectates (Nb0&Nf 0). Parameters (Gff ,Gbb,Guu,L1,s,L2,s,Acw0,As0)

were chosen in order to have the number of pectate synthesized js

and added to the cell wall jcw in the same order of size. Signs of

Acw0 and As0 were set positive meaning that at the initial time free

pectate was synthesized and free pectate was added to the cell wall.

Consequently, the set of 13 parameters to fit is composed per

components of the Tisza’s matrix, of initial quantities of chemical

species involved in the two reactions, and of parameters used to

describe the chemical kinetics called pref such as

Figure 5. Results of the fit of the Eq. 28. Left panel: in black turgor pressure P, temperature T (externally manipulated) and resulting growth
increment D‘ (data extracted from [34]). In orange, result of the fit. Inset depicts the distribution residuals. Right panel: in orange results given by the
model. From top to bottom: degrees of cell wall assembly jcw reaction (proportional to the number of bound pectate Nb), free pectate synthesis js

(proportional to the number of unknown reagent used to produce free pectate {Nu), chemical affinities of the two reactions Acw and As , rate of

internal entropy _SS, temporal evolution of quantity of pectate in the cell wall _NNb (proportional to the speed of creation of new cell wall), number of

free pectate Nf , temporal evolution of free pectate _NNf , temporal evolution of unknown reagent _NNu (proportional to the speed of free pectate

synthesis { _jjs). The 9 zones noted Zi (colored in light grey) are corresponding to the different test set of the experiment. Orange shade between 0
and the curve indicate the sign.
doi:10.1371/journal.pone.0074400.g005
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pref :fDu,Guu,Gbb,Gff ,Gfu,Gfb,

Nb0,Nf 0,Nu0,As0,Acw0,L1s,L1cwg

In order to reduce the number of parameters to adjust, a

sensitivity analysis on the simulated length ‘ was performed in the

vicinity of the parameters set pref . The sensitivity Spi
(‘) of a given

parameter pi around its value p
ref
i was computed as:

Spi
(‘)~p

ref
i

1

‘(pref )

L‘
Lpi

� �				
p~pref

^
D‘(pref zmp

ref
i ei){‘(pref {mp

ref
i ei)D

2m‘(pref )

with ei the ith vector of the canonical basis of R13 and m
‘‘sufficiently small’’ (0.01 in practice). More easily, Spi

quantifies the relative variation of ‘ for a relative variation of pi

equal to m.

The results of the sensitivity test are presented in Fig. 7.

Parameters with a sensitivity in the highest decade were chosen for

the fit. Thus, the set of parameters to fit was reduced to 7

{As0,L1,s,Nb0,Du,Guu,L1,cw,Acw0} whereas others were kept con-

stant (Table 3).

Figure 6. Comparison with Ortega’s model. Instantaneous time variation of c1 and 1=c4 . The evolution of these parameters in function of
growth rate agrees with results in [17].
doi:10.1371/journal.pone.0074400.g006

Figure 7. Time evolution of the sensitivity of the model
parameters (in logscale). In dashed lines, non-sensitive parameters.
On the right, names of the variables refer to parameters defined in the
text (Eq. 28). Zi ’s refer to the test-set of the experiment defined by
different pressure and temperature levels (Fig. 5). Note that the
sensitivity of the parameter Nu0 and Nf 0 disappears.
doi:10.1371/journal.pone.0074400.g007
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Computation of Observable Variables
The vector of observable variables was numerically computed

from a time discretization of the following equations:

D‘

DAs

DAcw

0
BB@

1
CCA~

ðt

0

_‘‘

_AAs

_AAcw

0
BB@

1
CCA

dt~

ðt

0

c1=k 0 0 c4=k

c5 c6 c7 0

c9 c5 c11 c12

0
BB@

1
CCA :

_jjcw

_jjs

_TT

_PP

0
BBBBB@

1
CCCCCA dt

ð36Þ

The inversion of the model was carried out in the least square

sense using a Levenberg-Marquardt algorithm. Measured turgor

pressure and temperature (extracted from [34] Fig. 5 in purple)

were used to determined length increment (Fig. 5 in black). The

initial length ‘0 was set to 5 cm and the thickness of the cell wall

R1{R2 to 5 mm and the inner radius R2 to 2.5 mm (Fig. 3).

Goodness of Fit
R2 coefficient has been computed as

R2~1{
SSerr

SStot

ð37Þ

with

SSerr~
XN

i~1

(‘m
i {‘c

i )2 ð38Þ

and

SStot~
XN

i~1

‘m
j {

1

N

XN

i~j

‘m
j

 !2

: ð39Þ

‘m is the length measured by Proseus and Boyer [34] and ‘c the

length computed by the model.

To account for the number of parameters in our model, an

adjusted R-squared R2� has been computed as:

R2~1{(1{R2)
N{1

N{p{1
ð40Þ

In our case, the number of points N is equal to 1500 and the

number of regressors p to 13.
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