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Abstract

Peptidoglycan (PG) is the major component of Gram positive bacteria cell wall and is essential for bacterial integrity and
shape. Bacteria synthesize PG hydrolases (PGHs) which are able to cleave bonds in their own PG and play major roles in PG
remodelling required for bacterial growth and division. Our aim was to identify the main PGHs in Lactobacillus casei BL23, a
lactic acid bacterium with probiotic properties. The PGH complement was first identified in silico by amino acid sequence
similarity searches of the BL23 genome sequence. Thirteen PGHs were detected with different predicted hydrolytic
specificities. Transcription of the genes was confirmed by RT-PCR. A proteomic analysis combining the use of SDS-PAGE and
LC-MS/MS revealed the main seven PGHs synthesized during growth of L. casei BL23. Among these PGHs, LCABL_02770
(renamed Lc-p75) was identified as the major one. This protein is the homolog of p75 (Msp1) major secreted protein of
Lactobacillus rhamnosus GG, which was shown to promote survival and growth of intestinal epithelial cells. We identified its
hydrolytic specificity on PG and showed that it is a c-D-glutamyl-L-lysyl-endopeptidase. It has a marked specificity towards
PG tetrapeptide chains versus tripeptide chains and for oligomers rather than monomers. Immunofluorescence experiments
demonstrated that Lc-p75 localizes at cell septa in agreement with its role in daughter cell separation. It is also secreted
under an active form as detected in zymogram. Comparison of the muropeptide profiles of wild type and Lc-p75-negative
mutant revealed a decrease of the amount of disaccharide-dipeptide in the mutant PG in agreement with Lc-p75 activity. As
a conclusion, Lc-p75 is the major L. casei BL23 PGH with endopeptidase specificity and a key role in daughter cell separation.
Further studies will aim at investigating the role of Lc-p75 in the anti-inflammatory potential of L. casei BL23.
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Introduction

Peptidoglycan (PG) is the major cell wall component in Gram

positive bacteria, and plays a key role to guarantee bacterial cell

integrity and shape. PG is constituted of glycan chains made of

alternating b-1,4-linked N-acetyl-glucosamine (GlcNAc) and N-

acetyl-muramic acid (MurNAc) cross-linked by peptidic chains

which composition varies between bacterial species [1]. The cell

wall PG is the target of specific PG hydrolases (PGHs) (also named

autolysins), synthesized by the bacteria themselves [2,3]. Accord-

ing to their hydrolytic bond specificity, PGHs are classified into

different classes: N-acetylmuramidases and N-acetylglucosamini-

dases which hydrolyze glycan chains between MurNAc and

GlcNAc or GlcNAc and MurNAc, respectively, N-acetylmuramyl-

L-Ala amidases which hydrolyze the bond between MurNAc and

the first L-Ala of the lateral peptidic chain, and peptidases which

hydrolyze different bonds inside PG peptidic chains. In addition,

lytic transglycosylases break the same bonds as muramidases but

yield anhydromuropeptides as products. D-Ala-carboxypeptidases

are also usually present but are not able to provoke bacterial lysis

on their own thus they are not classified as autolysins. These PGHs

are involved in different cellular functions in bacteria, which

require cell wall remodelling during growth and division. These

include cell wall expansion, peptidoglycan turn over, recycling and

maturation, and daughter cell separation. In conditions leading to

growth arrest, their PG hydrolysing activity is susceptible to

provoke bacterial lysis.

Lactobacilli are important components of the natural flora of

the human digestive tract and certain strains are also recognized as

probiotic bacteria. Probiotics are defined as live microorganisms

which, when ingested in sufficient amount, have health benefits

besides their traditional nutritional effects. The most obvious
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positive effects attributed to lactobacilli include their impact on

immune responses, in particular the down-regulation of inflam-

matory responses through the induction of anti-inflammatory

mechanisms mediated by immunocompetent cells and by their

secreted cytokines [4,5].

Lactobacillus casei BL23 strain has been reported to stimulate

human peripheral blood mononuclear cells (PBMCs) to produce

anti-inflammatory cytokine IL-10 [6]. In addition, it was shown to

have anti-inflammatory properties in vivo in murine models of

intestinal inflammation and to protect mice in TNBS- as well as in

DSS-induced colitis [6,7]. However, knowledge of the molecular

and cellular mechanisms involved in these effects is still lacking. As

reported previously in other lactobacilli strains [8,9], PG

metabolism and muropeptide release by PGHs could modulate

immune cell response and cytokine production. Therefore we have

undertaken to characterize the major PGHs in L. casei BL23.

In this study, we determined in silico the PGH complement of L.

casei BL23 and identified by a proteomic analysis the main PGHs

synthesized by bacteria during exponential growth phase. We

characterized in detail the major PGH, LCABL_02770 (renamed

Lc-p75), by biochemical and genetic studies.

Results

In silico search of the PGH complement of L. casei BL23
The PGH complement of L. casei BL23 was identified in silico in

the available BL23 genome sequence [10] by amino acid sequence

similarity search with well known PGHs from other Gram positive

species [3]. Thirteen putative enzymes were identified with

different predicted hydrolytic specificities (Table 1). Among these,

two putative amidases LCABL_11280 and LCABL_10020 and

one muramidase LCABL_13470 are annotated as prophage-

encoded enzymes and genes encoding holins are present next to

the corresponding genes. The identified PGHs can be divided into

six classes according to their putative hydrolytic specificities

(muramidases, glucosaminidases, amidases, endopeptidases,

CHAP-domain-containing enzymes with amidase or endopepti-

dase activity and carboxypeptidases) predicted on the basis of

Pfam domains. Only three of them contain additional domains

previously identified as cell-wall binding domains such as LysM

[11] or SH3 domains [12].

Identification of the main PGHs expressed during growth
of L. casei BL23

By RT-PCR experiments, we showed that the twelve putative

PGH genes encoding non-carboxypeptidase-type enzymes are

transcribed in L. casei BL23 during the exponential growth phase

(Figure S1). In order to identify the main PGHs synthesized during

exponential phase growth of L. casei BL23, we used a proteomic

approach combining 1D SDS-PAGE separation and liquid

nanochromatography coupled to tandem mass spectrometry

(LC-MS/MS) identification of the proteins. Bacterial proteins

were fractionated in cell envelope and cytoplasmic fractions and

proteins associated non-covalently to the cell wall were extracted

with LiCl. Proteins of the different fractions were separated by

SDS-PAGE (Figure S2) and analyzed after tryptic digestion by

LC-MS/MS. In total, seven PGHs were detected in at least one of

the BL23 cell fractions indicating that these PGHs are expressed

during bacterial growth (Table 2). The relative amount of each

PGH in the different cellular extracts was estimated by calculation

of its PAI as previously described [13]. All the identified PGHs

appear more abundant in the cell envelope fraction or the LiCl

fraction than in the cytoplasmic fraction in agreement with the

presence of a signal peptide sequence and according to their

presumed cellular functions. On the whole, the putative

endopeptidase LCABL_02770 appears as the major PGH in L.

casei BL23 cell wall. The full-length LCABL_02770 protein is a

494-residue protein with a calculated molecular mass of 49.6 kDa.

It exhibits a conserved NlpC/P60 (Pfam00877) domain located in

Table 1. The PGH complement of L. casei BL23 predicted in silico on whole genome sequence.

Locus tag MMa (kDa) SPb Putative hydrolytic specificity Catalytic domainc Other domainsd

LCABL_02350 100.5 Yes Muramidase GH25

LCABL_12360 28.0 No Muramidase GH25

LCABL_04610 27.4 No Muramidase GH25 LysM

LCABL_13470e 42.9 Yes Muramidase GH25 SH3, LysM

LCABL_12760 24.0 Yes Glucosaminidase Glucosaminidase

LCABL_05960 35.8 Yes Glucosaminidase and endopeptidase Glucosaminidase and NplC/P60

LCABL_17510 46.9 Yes Amidase Amidase_3 SH3

LCABL_11280e 37.6 No Amidase Amidase_2

LCABL_10020e 34.8 No Amidase Amidase_5

LCABL_02770 49.6 Yes Endopeptidase NplC/P60

LCABL_21960 41.4 Yes Endopeptidase NplC/P60

LCABL_00230 42.3 Yes Endopeptidase or amidase CHAP

LCABL_02100 46.9 Yes Carboxypeptidase Peptidase_S11 PBP5_C

aCalculated molecular mass.
bSP, signal peptide predicted with SignalP tool [40].
cCatalytic domains were predicted with Pfam domain prediction [41]. Glucosaminidase (PF01832), muramidase (glyco_hydro_25; PF01183), Amidase_2 (PF01510),
Amidase_3 (PF01520), CHAP (cysteine, histidine-dependant amidohydrolase/peptidase) domain (amidase or peptidase) (PF05257), NlpC_P60 (PF00877) (including c-
glutamyl-diamino-acid endopeptidases), Peptidase_S11 (PF00768).

dSH3, SH3-domain (PF08460); LysM, LysM-domain (PF01476); PBP5_C (PF07943).
ePutative prophage-encoded PGH.
doi:10.1371/journal.pone.0032301.t001

Major Peptidoglycan Hydrolase from L. casei
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the C-terminal part with a 32-residue N-terminal signal sequence

(Table 1).

Remarkably, LCABL_02770 protein has high amino acid

sequence identity (72%) with p75 (Msp1) protein from Lactobacillus

rhamnosus GG. p75 is one of the major secreted proteins of L.

rhamnosus GG and was reported to promote the survival and

growth of epithelial cells especially under pro-inflammatory

conditions [14,15]. The L. casei homolog corresponding to

LCABL_02770 (renamed Lc-p75) was previously partially char-

acterized and was shown to be able to cleave PG [16]. However,

the exact bond targeted by Lc-p75 was not identified.

Hydrolytic specificity of Lc-p75 on peptidoglycan
In order to identify Lc-p75 hydrolytic specificity, the protein

devoid of signal sequence and with a six-His tag added at its N-

terminus was produced in E. coli with the use of pBAD plasmid,

dedicated to the expression of toxic proteins. The His6-tagged

protein was purified to homogeneity by nickel-affinity chromatog-

raphy, followed by anion exchange chromatography (Figure 1). In

SDS-PAGE (Figure 1A), purified His6-tagged Lc-p75 migrated as

a 75-kDa protein whereas its calculated molecular mass is around

50 kDa. The pure protein displayed hydrolytic activity in a

zymogram assay (Figure 1B) when L. casei cells first treated with

TCA were used as substrate. No activity was detected on

micrococci in zymogram assay (data not shown).

We then examined the hydrolytic specificity of recombinant

His-tagged purified Lc-p75 on L. casei PG first digested with

mutanolysin to generate soluble muropeptides. After reduction,

half of the muropeptide mixture was incubated with pure His6-

tagged Lc-p75. Muropeptides obtained after mutanolysin digestion

and after mutanolysin plus Lc-p75 digestion were separated by

RP-HPLC (Figure 2A, B) and analyzed by Maldi-Tof MS. The

structure of 63 muropeptides could be deduced for the reference

mutanolysin digest of L. casei BL23 PG (Figure 2A, Figure S3 and

Table S3). The main changes observed after subsequent Lc-p75

digestion on the muropeptide profile (Figure 2B) are summarized

in Table 3. First, after Lc-p75 digestion we observed a large

increase (more than 6-fold) of disaccharide dipeptide (Peak 2) and

(more than 7-fold) of acetylated dissacharide dipeptide (Peak 8).

Concomitantly, a clear decrease of dimers (Peaks 23, 27, 31, 34),

Table 2. Proteomic identification by 1D SDS-PAGE and LC-MS/MS of the PGHs present in L. casei BL23 extracts and estimation of
relative amounts by PAI calculation.

Protein namea
Calculated
MM (kDa) SPb Putative hydrolytic specificity

Protein log(E-
value)c PAI valuesd

Cytoplasmic
extract

Cell envelope
extract

LiCl
extract

LCABL_02350 100.5 Yes Muramidase 2196.6 0.91 1.72 0.13

LCABL_02100 46.9 Yes Carboxypeptidase 2138.9 1.23 2.42 0

LCABL_02770 49.6 Yes Endopeptidase 267.0 1.00 0.86 3.86

LCABL_17510 46.9 Yes Amidase 267.8 0 0.23 0.73

LCABL_21960 41.4 Yes Endopeptidase 226.2 0.18 0.27 0.64

LCABL_00230 42.3 Yes Endopeptidase or Amidase 217.5 0.13 0.38 1.00

LCABL_11280 37.6 No Amidase 228.0 0 0.40 0

aAs defined in Table 1.
bSP, signal peptide predicted with SignalP tool [40].
cProtein log(E-value) is the log of the product of validated unique peptide E-values and was calculated by X!tandem PAPPSO pipeline.
dPAI (Protein Abundance Index) was calculated according to [13] as the number of observed spectra divided by the number of calculated observable peptides and

calculated with the X!Tandem pipeline.
doi:10.1371/journal.pone.0032301.t002

Figure 1. Analysis of purified recombinant Lc-p75. (A) SDS-PAGE
after Coomassie blue staining and (B) zymogram assay.
doi:10.1371/journal.pone.0032301.g001
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trimers (Peaks 40, 45) and tetramers (Peak 47) was observed. In

addition, new muropeptides listed in Table 3 (and Table S3)

corresponding to partially hydrolyzed muropeptides were identi-

fied in the Lc-p75 digest (Figure 2B). These partially hydrolyzed

muropeptides arose after the loss of disaccharide dipeptide (mass

reduction of 679 Da) or acetylated disaccharide dipeptide (mass

reduction of 721 Da) from dimers or trimers present in the

mutanolysin digest. As a conclusion, muropeptides generated by

Lc-p75 hydrolysis demonstrated that Lc-p75 hydrolyses peptido-

glycan bonds inside the stem peptide between D-iGln and L-Lys

(Figure 3).

In order to investigate in more details the specificity of Lc-p75,

pure isolated muropeptides were digested with the purified

recombinant Lc-p75 (Table 4). The results show first that

multimeric muropeptides are better substrates than monomers.

Regarding monomers, we can conclude that muropeptides with

tetrapeptide stem peptides are better substrates than muropeptides

with tripeptide chains which are very poor substrates. The

presence of an Asn bridge as well as MurNAc O-acetylation

tends to increase Lc-p75 activity. All these results identified Lc-p75

as a c-D-glutamyl-L-lysyl-endopeptidase.

Immunolocalization of Lc-p75
The gene lcabl_02270 encoding Lc-p75 was previously inacti-

vated by single cross-over in strain L. casei BL23 and the resulting

mutant was shown to form long chains [16]. We confirmed the

role of Lc-p75 in daughter cell separation in L. casei BL23 by

constructing a double-cross over (DCO) mutant by a method

previously established in L. plantarum [17,18]. First observations of

the morphology of isolated colonies on MRS agar plates indicated

that the DCO negative mutant formed bigger colonies with non

regular shape and jagged border compared to the wild type strain

BL23 (Figure 4A, B). In liquid broth, the mutant displayed a fast-

sedimenting phenotype linked to the formation of long chains

(Fig. 4C, D). Labeling of Lc-p75 DCO mutant cells with DAPI

and the membrane dye FM4–64 showed that the chains are made

of unseparated cells (Figure 4F, G). TEM observations indicate

that in the mutant strain, septa are not digested and cell separation

is blocked (Figure 4H, I). Complemented Lc-p75 mutant was able

to recover the wild type short-chain phenotype (Fig. 4E).

To gain further insights in the role of Lc2270 in cell separation,

we localized Lc-p75 by indirect immunofluorescence experiments.

Strep-tagged Lc-p75 protein was expressed under the control of

the nisin-inducible promoter in wild-type BL23 and in Lc-p75-

negative DCO mutant. We checked that Strep-tagged Lc-p75 was

produced upon nisin induction in both strains (Figure S4 and data

not shown). As it can be observed on Fig. 5, Strep-tagged Lc-p75

complements the long chain phenotype of the mutant leading to

short chains (Fig. 5B) like the wild-type strain expressing Strep-

tagged Lc-p75 (Fig. 5A); also loss of the fast-sedimenting

phenotype was observed (data not shown). Using a specific

monoclonal antibody directed against Strep-tag, we were able to

localize Strep-tagged Lc-p75 at the septa in the wild type strain as

well as in the negative mutant (Figure 5A, B). As a control, no

Figure 2. RP-HPLC separation profile of muropeptides obtained from L. casei BL23 PG. PG was digested by mutanolysin (A) or by
mutanolysin and recombinant Lc-p75 (B). Numbers correspond to the main muropeptides which amounts changed between Panel A and B. Letters
indicate new peaks present in Panel B and absent in Panel A. Complete annotation of the chromatograms is presented in Figure S3.
doi:10.1371/journal.pone.0032301.g002
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fluorescence was detected in wild type BL23 strain (data not

shown).

Lc-p75 is secreted as an active PGH
L. casei Lc-p75 was previously reported to be secreted in the

culture supernatant like its L. rhamnosus p75 (Msp1) homolog [16].

In order to examine whether Lc-p75 is active after secretion, L.

casei BL23 and its derivative Lc-p75-negative mutant were grown

in AOAC broth and 60-fold concentrated supernatants were

analyzed by SDS-PAGE and zymogram. As shown on Figure 6

(lanes A, B), one of the major stained bands migrating at 75 kDa,

detected in wild type BL23 and absent in the mutant strain was

identified as Lc-p75 by peptide mass fingerprint (data not shown).

In zymogram assay with TCA-treated L. casei cells as substrate

(Figure 6, lanes C, D), an activity band was visualized around

75 kDa in BL23 and absent in the mutant. These results indicate

Figure 3. Schematic structure of L. casei BL23 peptidoglycan and site of cleavage determined for Lc-p75. GlcNAc, N-acetylglucosamine;
MurNAc, N-acetylmuramic acid. MurNAc may be O-acetylated (O-Ac) or not in PG.
doi:10.1371/journal.pone.0032301.g003

Table 3. Main muropeptides from L. casei BL23 PG hydrolyzed by Lc-p75 and main products of digestion.

Peaka Proposed structureb
Observed
m/z

Calculatedc

[M+Na]+ % of all peaksd,e

mutanolysin
mutanolysin and Lc-
p75

2 Di 720.28 720.29 2.26 15.19

8 Di (Ac) 762.31 762.3 0.79 7.59

11 Tetra-N 1033.44 1033.47 14.12 10.85

E Tetra-N-(A-K)-N 1346.59 1346.65 ND 6.06

I Tetra-N-(A-K)-N (Ac) 1388.84 1388.65 ND 2.62

23 Tri-N-Tetra-N 1954.86 1954.89 3.01 1.62

27 Tetra-N-Tetra-N 2025.93 2025.93 9.73 4.26

M Tetra-N-Tetra-N-(A-K)-N 2339.12 2339.11 ND 1.98

31 Tri-N-Tetra-N (Ac) 1996.68 1996.91 2.70 1.38

34 Tetra-N-Tetra-N (Ac) 2067.94 2067.94 9.18 4.16

40 Tetra-N-Tetra-N-Tetra-N 3018.23 3018.39 3.33 0.89

45 Tetra-N-Tetra-N-Tetra-N (Ac) 3060.42 3060.4 3.83 1.11

47 Tetra-N-Tetra-N-Tetra-N-Tetra-N 4010.44 4010.86 0.77 0.04

aPeak numbers refer to Figure 2 and Figure S3. New peaks obtained after Lc-p75 digestion, are indicated by letters.
bDi, disaccharide dipeptide (L-Ala-D-iGln); Tri, disaccharide tripeptide (L-Ala-D-iGln-L-Lys); Tetra, disaccharide tetrapeptide (L-Ala-D-iGln-L-Lys-D-Ala); Disaccharide,

GlcNAc-MurNAc; Ac, acetylation on MurNAc, iGln, isoglutamine; N, D-Asn; A, D-Ala; K, L-Lys.
cSodiated molecular ions were the most abundant ones on MALDI-TOF mass spectra for all muropeptides.
dPercentage of each peak was calculated as the ratio of the peak area over the sum of areas of all the peaks identified in the corresponding chromatogram (see Table

S3).
eND, non detected.
doi:10.1371/journal.pone.0032301.t003
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that Lc-p75 is active after secretion in the culture supernatant of L.

casei BL23.

Effect of Lc-p75 inactivation on L. casei PG structure
PG was extracted from wild type BL23 and Lc-p75-negative

DCO mutant, digested with mutanolysin and the muropeptides

were separated by RP-HPLC. Comparison of the RP-HPLC

muropeptide profiles obtained for the two strains (data not shown)

revealed that lcabl_02770 inactivation leads to a decrease of the

amount of disaccharide peptide and of acetylated disaccharide

dipeptide. The total amount of disaccharide dipeptide with

acetylation or not constitutes 6.3% of the total muropeptides in

wild type BL23 whereas it constitutes 5.4% in the Lc-p75-negative

mutant. These results suggest that Lc-p75 is active inside the cell

wall in living cells and is able to modulate the amount of

constituent disaccharide dipeptide in whole PG.

Discussion

The PGH complement of L. casei BL23 was first determined in

silico. As well as the three prophage-encoded lysins, ten putative

PGHs were detected. The L. casei PGH complement comprises

enzymes of various specificities but no lytic transglycosylase.

Thanks to a proteomic analysis based on LC-MS/MS analysis, we

identified the most abundant PGHs expressed during growth of L.

casei BL23. The major PGH expressed in the cell wall was a

putative endopeptidase named Lc-p75, with a catalytic domain of

the NlpC/P60 family.

Lc-p75 is the homolog of p75 (Msp1) protein, which is one of

the major proteins secreted by the probiotic L. rhamnosus GG.

Previous studies have shown that p75 (Msp1) purified from L.

rhamnosus GG supernatant prevents cytokine-induced apoptosis in

intestinal epithelial cells and promote intestinal homeostasis

[14,15]. The L. casei BL23 homolog was shown previously to be

able to hydrolyze PG-derived muropeptides [16]. In this study, we

identified the cleavage site of Lc-p75 inside PG and demonstrated

that this enzyme is a c-D-glutamyl-L-lysyl-endopeptidase. We

observed that tetrapeptide chains are better substrates than

tripeptide chains in muropeptides. In addition, we showed that it

hydrolyzes preferentially multimeric muropeptides rather than

monomeric ones. We detected Lc-p75 activity in zymogram assay,

but only when L. casei cells were previously treated with TCA

suggesting that a cell wall polymer such as polysaccharide should

be removed from the bacterial cell wall in order to make PG

accessible for sufficient hydrolysis and appearance of a clear band

in the gel. Several cell wall-associated polysaccharides were

described in L. casei in a previous report [19]. Noteworthy, the

p75 (Msp1) protein of L. rhamnosus was recently found to be equally

a cell wall hydrolase with a c-D-glutamyl-L-lysyl-endopeptidase

specificity [20].

Inactivation of lcabl_02770 gene leads to the formation of long

chains as described previously [16] and in this study. We show

here that the long-chain phenotype was reversed upon mutant

complementation. In addition, we confirmed by FM4-64 mem-

brane labelling and TEM that cell separation was impaired in the

mutant strain because septa were not digested. Lc-p75 constitutes

a new example of the structural diversity of PGHs involved in

daughter cell separation in Firmicutes [21]. Other enzymes with

NlpC/P60 catalytic domain were previously reported to perform

this function but with different domain structures; in L. casei Lc-

p75, no known cell wall binding domain could be identified.

By immunofluorescence experiments, we showed that Lc-p75 is

located at the level of bacterial septa when associated to the cell

wall. In addition, Lc-p75 is one of the major secreted proteins by

L. casei BL23 and it is active after secretion into culture

supernatant as shown by zymogram assay. We hypothesize that

as reported previously for the major L. lactis autolysin AcmA, a cell

wall component is hindering Lc-p75 binding sites at the bacterial

surface and these sites would be accessible only at the cell poles

[11]. Since the conserved catalytic domain is located at the C-

terminus of Lc-p75, the N-terminal part is candidate for being

involved in cell wall binding. However, none of the known cell-

wall-binding domains, or other conserved characterized domain

was found at the N-terminal part of Lc-p75. Noteworthy, the N-

terminal domain is conserved in L. rhamnosus p75 (Msp1) although

presenting less sequence identity than the catalytic domain.

PG or PG-derived fragments have been previously shown to be

microbial-associated molecular patterns (MAMPS) sensed by host

pattern-recognition receptors (PRRs) such as Toll-like receptors

(TLRs) [22] or NOD-like receptors (NLRs) [23]. These receptors

signal the bacterial presence to the host and can activate a cascade

of signals leading to immune response against pathogens. PGH

activity can promote the release of muropeptides into the host or

host immune cells [24,25,26]. In the case of commensal or

probiotic bacteria, the underlying molecular mechanisms and the

signalling pathways involved in bacteria-host cross-talk are still

poorly identified. Nevertheless, recent studies conducted with

lactobacilli strains highlighted the role of PG and PG-derived

fragments in the modulation of cytokine production by macro-

phages or dendritic cells through the involvement of PRRs such as

TLR2 and NOD2 [8,9]. In L. casei BL23, PG structural analysis of

the negative mutant indicated that Lc-p75 endopeptidase activity

inside bacterial cell wall is able to modulate the amount of

disaccharide dipeptide muropeptide present in PG. Since

disaccharide dipeptide contains muramyl-dipeptide sensed by

NOD2 receptors, our results suggest that wild type and mutant

Table 4. Lc-p75 activity on purified muropeptides selected as
substrates.

Muropeptide substratea,b

Undigested
muropeptide
(%)c

Dia

(%)c
Other forms
(%)c,d

Tri 98.1 1.9 0

Tri-N 98.6 1.4 0

Tri-N (Ac) 99.4 0.6 0

Tetra 61.1 38.9 0

Tetra-N 77.4 22.6 0

Tetra-N (Ac) 15.2 84.7 0

Tri-N-Tetra-N 0 33.7 66.3

Tri-N-Tetra-N (Ac) 0 37.8 62.2

Tetra-N-Tetra-N 0 80.3 19.7

Tetra-N-Tetra-N (Ac) 0 86.2 13.7

Tetra-N-Tetra-N (2Ac) 0 94.4 5.6

Tetra-N-Tetra-N-Tetra-N 0 80.6 19.4

Tetra-N-Tetra-N-Tetra-N (Ac) 0 95.0 4.9

Tetra-N-Tetra-N-Tetra-N (2Ac) 0 95.4 4.6

aDi, disaccharide dipeptide; Tri, disaccharide tripeptide (L-Ala-D-iGln-L-Lys);
Tetra, disaccharide tetrapeptide (L-Ala-D-iGln-L-Lys-D-Ala); Disaccharide,
GlcNAc-MurNAc; iGln, isoglutamine; N, Asn; Ac, acetylation on MurNAc.

bSimilar amounts of each muropeptide were used for each test.
cPercentage of each peak was calculated as the ratio of the peak area over the
sum of areas of all the peaks identified in the corresponding chromatogram.

dOther forms of muropeptides resulting from partial digestion of the substrate.
doi:10.1371/journal.pone.0032301.t004
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strains could interact differently with host cells expressing NOD2

receptors. In a recent study, the anti-inflammatory capacity of a

Lactobacillus strain was shown to be linked to the presence of a

muropeptide (disaccharide tripeptide) which is a NOD2 activator,

whereas this muropeptide was absent in a Lactobacillus strain devoid

of anti-inflammatory properties [9].

As a conclusion, Lc-p75 plays a key role in bacterial physiology,

since among the ten identified PGHs, not encoded by prophages,

it has a major role in daughter cell separation after cell division.

Further work will aim at evaluating its involvement in the anti-

inflammatory properties of L. casei BL23 and in the cross talk

between L. casei BL23 and host epithelial and dendritic cells. In the

Figure 4. Phenotype comparison between wild type L. casei BL23, Lc-p75-negative mutant and complemented Lc-p75 mutant.
Pictures of wild type L. casei (A, C, F, H), Lc-p75-negative mutant (B, D, I) and complemented Lc-p75 mutant (E). Colony morphology (A, B), phase
contrast microscopy (C, D, E) fluorescence microscopy with merged FM-4-64 (red) and DAPI (blue) staining (F, G) and transmission electron
microscopy (H, I).
doi:10.1371/journal.pone.0032301.g004
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light of our results, it will be necessary to consider both its role as a

secreted protein that can interact with host cell receptors and its

role as a PGH able to release muropeptides that can be sensed by

other receptors.

Materials and Methods

Bacterial strains, plasmids, and growth conditions
The bacterial strains and plasmids used in this study are listed in

Table S1. Escherichia coli strains were grown in Luria–Bertani (LB)

medium with shaking at 37uC. L. casei strains were routinely grown

in MRS broth or when indicated in AOAC medium (Difco

Laboratories) at 37uC. When required, antibiotic concentrations

used were 150 mg/ml erythromycin, 10 mg/ml chloramphenicol

or 100 mg/ml ampicillin for E. coli and 5 mg/ml erythromycin or

5 mg/ml chloramphenicol for L. casei. Growth was monitored by

optical density (OD) measurement at 600 nm (OD600) with a

spectrophotometer (Spectronic 20, Genesys).

Protein identification in bacterial extracts by 1D SDS-
PAGE and LC-MS/MS

Protein identification by 1D SDS-PAGE and LC-MS/MS was

performed as described previously [27] by the Plateforme

d’Analyse Protéomique de Paris Sud Ouest (PAPSSO) (INRA,

Jouy-en-Josas, France). Briefly, cells were harvested during

logarithmic growth phase by centrifugation and disrupted using

Bazic Z cell disruptor (Constant Systems Ltd) at a pressure of 2500

bar. Unbroken cells were removed by centrifugation at 40006 g

during 15 min at 4uC. Then the supernatant was centrifuged at

220,0006g for 30 min at 4uC to separate « cell envelope fraction

» from cytosolic proteins. Also, cell wall-associated proteins were

extracted by incubation of L. casei cells during 30 min at 4uC by

4 M LiCl in 20 mM Tris-HCl, pH 7. Ten micrograms of proteins

from cytosolic and cell envelope extracts and around one mg of

proteins from LiCl-extract were separated by 4–12% gradient

SDS-PAGE (Invitrogen) and stain with Blue safe stain (Invitrogen).

The gel was washed with deionized H2O and cut horizontally into

26 sections lane by lane. Gel slices were washed, reduced with

DTT, alkylated with iodoacetamide, dried and incubated

overnight at 37uC with 125 ng sequencing grade trypsin

(Promega) as described previously [27]. Each tryptic digest was

analyzed by liquid chromatography coupled to tandem mass

spectrometry (LC-MS/MS). Analysis were performed on an

Ultimate 3000 LC system (Dionex) connected to a LTQ-Orbitrap

Discovery mass spectrometer (Thermo Fisher). Protein identifica-

tion was performed using X!tandem software (X!Tandem tornado

2008.02.01.3, http://www.thegpm.org) against a protein database

of BL23 strain (GenBank: NC_010999.1) associated to a classical

contaminant database as described in Text S1.

The relative abundance of each detected PGH was estimated by

calculation of its Protein Abundance Index (PAI) as previously

described [13,28] after extraction of the PGH proteins to the list of

validated proteins (1485 proteins after elimination of contaminant

Figure 5. Indirect immunofluorescence localization of Strep-tagged Lc-p75 in L. casei. Strep-tagged Lc-p75 was localized in overexpressing
strain (A) and in complemented negative mutant (B) with monoclonal antibody directed against Strep-tag as first antibody.
doi:10.1371/journal.pone.0032301.g005

Figure 6. Detection of Lc-p75 in culture supernatant. Analysis by
SDS-PAGE (A, B) and zymogram assay (C, D) of the culture supernatant
of wild type BL23 (A, C) and negative mutant (B, D) grown on AOAC
medium. Lc-p75 is indicated by an arrow.
doi:10.1371/journal.pone.0032301.g006
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proteins). For PAI calculation, observable tryptic peptides were

taken to be those in the mass range 800 to 2500 Da. It was

calculated with the X!tandem parser developed and used on

PAPPSO platform (X!Tandem pipeline version 3.1.2 http://

pappso.inra.fr/bioinfo/xtandempipeline/).

DNA techniques and electrotransformation
General molecular biology techniques were used as previously

described [29]. Electro-transformation of E. coli was performed

according to [30]. Electrocompetent L. casei cells were prepared as

previously described [31]. PCR were performed with the Phusion

high-fidelity DNA polymerase (Finnzymes) using a Mastercycler

gradient thermocycler (Eppendorf). The primers used in this study

were purchased from Eurogentec and they are listed in Table S2.

Cloning of DNA fragments in plasmids pNZ5319 and pMSP3545

was initially performed in E. coli TG1 repA+, then the

recombinant positive plasmids were extracted using QIAprep

Spin Miniprep kit (Qiagen) and subsequently transferred to L. casei

BL23 by electroporation using a Gene-Pulser apparatus (Bio-Rad).

RT-PCR experiments
Transcription of the in silico detected PGH genes in L. casei BL23

was tested by RT-PCR experiments. Total RNA was extracted

using the TRIzol Reagent (Invitrogen) and cDNA synthesis was

performed from 1 mg of RNA with Moloney murine leukemia

virus reverse transcriptase (Invitrogen) according to the manufac-

turer’s instructions. Primers located inside the different genes, were

designed using Primer 3 software (http://frodo.wi.mit.edu/

primer3/) and are listed in Table S4. PCR was performed as

described above. The L. casei tuf gene, encoding the elongation

factor TU, was used as a positive control in RT-PCR experiments

as described previously [32]. The absence of contamination of

RNA samples by genomic DNA was checked by performing PCR

with the tuf-specific primers on total RNA preparation.

Construction of the lcabl_02770 deletion mutant
Construction of the L. casei BL23 gene deletion mutant for

lcabl_02770 gene was performed using the cre-lox based system

described previously for L. plantarum [17,18]. This system allows

replacement by double crossover (DCO) of the target gene by a

chloramphenicol resistance cassette flanked by two lox sites

containing mutations within the inverted repeats (lox66-P32cat-

lox71). Briefly, the upstream and downstream flanking regions of

the target gene were amplified by PCR using L. casei chromosomal

DNA as template and primers listed in Table S2. Subsequently,

PCR products were cloned into the SwaI and SmaI sites

respectively, of the non-replicating integration vector pNZ5319

[17]. The recombinant mutagenesis plasmid was extracted from E.

coli and transformed into competent L. casei BL23 cells. Colonies

displaying a chloramphenicol-resistant and erythromycin-sensitive

phenotype represent candidates with DCO gene replacement.

Selected colonies were checked by PCR with primers flanking the

sites of recombination to confirm cat-replacement genotype.

Subsequently, the lox66-P32cat-lox71 cassette was excised by

expression of the cre recombinase as described [17] using the

thermosensitive cre expression plasmid pGhostcre [33] transformed

previously into the selected double crossover mutants. To cure

pGhost plasmid, bacteria were grown at 42uC in the absence of

antibiotics until erythromycin sensitive clones were found. Clones

displaying the expected erythromycin- and chloramphenicol-

sensitive phenotype were checked for Cre-mediated recombina-

tion and correct excision of the chloramphenicol cassette, with

primers flanking the recombination locus (Table S2). One clone

was selected for further study.

Cloning and overexpression of lcabl_02770 and
lcabl_02770 with Strep-tag in L. casei

Plasmid pMSP3545 [34] which carries both the nisA inducible

promoter and the nisRK genes required for nisin-controlled gene

expression [35] was used as expression vector in L. casei BL23. The

lcabl_02770 gene was amplified by PCR using the primer pair 2770-

pMSP-F and 2770-pBAD-R (Table S2). Also, a construct was made

to obtain Lc-p75 fused at its C-terminus with Strep-tagII sequence

(Trp-Ser-His-Pro-Gln-Phe-Glu-Lys). Strep-tag was added by PCR

by amplifying lcabl_02770 gene with a reverse primer encoding the

Strep-tagII sequence (Table S2). The amplified fragments were

digested with NcoI and XbaI and ligated to NcoI/XbaI restricted

pMSP3545 plasmid. The ligation mixtures were electroporated into

E. coli and recombinant plasmids with an insert, named pMSP::2770

and pMSP::2770StrepTag, were isolated. They were then trans-

formed in L. casei BL23. To induce the expression of the genes under

the control of the nisA expression signals, nisin A (Sigma-Aldrich) was

used at 50 ng/ml final concentration.

SDS-PAGE and zymogram
SDS-PAGE was performed with 10% (w/v) polyacrylamide

separating gels. Gels were stained with PageBlue Protein Staining

Solution (Fermentas). Zymogram was used to detect cell wall

hydrolase activity and was performed as described previously [36]. L.

casei cells used as enzyme substrate were previously treated with 10%

TCA during 10 min at 100uC, washed 3 times with cold PBS and 3

times with deionized water. The TCA-treated L. casei cells were

included at 0.4% (w/v) into polyacrylamide gels. After sample

migration, the gels were washed three times for 15 min in deionized

water at room temperature and then incubated in 50 mM sodium

phosphate buffer, pH 6.5, containing 1 mM DTT, and 0.1% (v/v)

Triton X-100 overnight at 37uC. Stained polyacrylamide gels and

zymogram gels were digitized with a DuoScan T1200 scanner (Agfa).

Expression in E. coli and purification of His-tagged
protein

His6-tagged Lc-p75 devoid of its putative signal sequence was

overexpressed in E. coli TOP10 with pBAD/His B expression

vector. Briefly, lcabl_02770 without its 59 region was amplified by

PCR from L. casei BL23 DNA using primers listed in Table S2.

The PCR fragment was cloned into XhoI and HindIII restriction

sites of pBAD/His B vector. Expression was induced with L-

arabinose at 0.2% final concentration according to manufacturer’s

instructions (Invitrogen). Bacteria were harvested 4 h after

addition of arabinose by centrifugation and disrupted using

BAZIC Z cell disruptor (Constant Systems Ltd) at a pressure of

1600 bar. The clarified soluble fraction containing the recombi-

nant protein was loaded onto a HisTrap HP 1 ml-column (GE

Healthcare) connected to a FPLC AKTA chromatography system

(GE Healthcare). His6-tagged Lc-p75 was eluted using a linear

gradient of imidazole from 30 mM to 400 mM. Fractions

containing His6-tagged Lc-p75 were combined and desalted by

Fast Desalting HR 10/10 column (GE Healthcare). Anion

exchange chromatography was selected as a polishing step.

Desalted sample was loaded onto Mono Q 5/50 GL column

(GE Healthcare) and His6-tagged Lc-p75 was eluted using a linear

gradient of NaCl from 0 to 250 mM in Tris-HCl 20 mM pH 8.0.

The purity of the His-tagged protein was checked by SDS-PAGE.

The pure protein was then concentrated by ultrafiltration with an

Amicon Ultra-4 Centrifugal Filter Units with 30 kDa cut-off

(Millipore). Protein concentration was measured using BCA

method (BCA Protein Assay Kit, Thermo Scientific). The pure

protein was stored at 220uC.
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Peptidoglycan extraction and structural analysis
PG was extracted from L. casei BL23 cells according to the

protocol described previously for L. lactis [37,38] with some

modifications. Additional DNase (50 mg/ml) and RNase (50 mg/

ml) treatments were applied before hydrofluoric acid treatment.

The material was lyophilized and then stored at 220uC. Purified

PG (2 mg dry weight) was digested with mutanolysin from

Streptomyces globisporus (Sigma) (2500 U/ml) for 19 h in 25 mM

sodium phosphate buffer at 37uC. The resulting soluble muropep-

tides were reduced with sodium borohydride. They were separated

by reverse phase-high-pressure liquid chromatography (RP-

HPLC) with a Nucleodur C18 Pyramid column (150/3 mm;

particle size, 3 mm) (Macherey-Nagel) at 50uC using ammonium

phosphate buffer and methanol linear gradient [37]. Muropeptides

were analyzed without desalting by MALDI-TOF mass spectrom-

etry (MS) using a Voyager-DE STR mass spectrometer (Applied

Biosystems) as reported previously [37].

Determination of the hydrolytic bond specificity of Lc-
p75 on peptidoglycan

Purified PG (2 mg dry weight) was first digested with

mutanolysin as described above and the resulting soluble

muropeptides were reduced with sodium borohydride. The

mixture was adjusted to pH 6.5 and supplemented with 5 mM

DTT. To determine the hydrolytic specificity of Lc-p75, 80 mg of

pure His6-tagged Lc-p75 was incubated with 200 ml of the

muropeptide mixture at 37uC during 24 h. Control sample was

incubated in the same conditions without Lc-p75. The samples

were boiled for 3 min and the products were separated by reverse

phase high pressure liquid chromatography (RP-HPLC) and

analyzed by MALDI-TOF MS as described above.

The specificity of Lc-p75 was also examined on purified

muropeptides. Selected L. casei BL23 muropeptides obtained after

mutanolysin digest were collected after RP-HPLC separation and

desalted on a Betasil C18 column (4.66250 mm, Thermo Electron

Corporation) with acetonitrile/formic acid buffer system and dried

with speed-vacuum. Similar amounts of each purified muropep-

tide, estimated according to the corresponding peak areas, were

then incubated with 10 mg of purified His6-tagged Lc-p75 in a

final volume of 50 ml in the conditions described above. The

reaction products were then analyzed by RP-HPLC and MALDI-

TOF MS as described above.

Microscopy
Microscopy images were taken with a phase contrast micro-

scope Leica DM1000 equipped with a Topview 1.3MP camera

(Motic). Fluorescent dyes, DAPI and the membrane stain FM4-64

(Invitrogen), were used for wild type and negative mutant staining

and pictures were taken with Leica DMRA2 microscope

connected to CCD camera (Roper). Overlays images were

generated with the MetaMorph software. Transmission electron

microscopy (TEM) was performed after inclusion of bacteria in

Epon on thin sections as described previously [39] by the MIMA2

platform (INRA, Jouy-en-Josas, France).

Immunofluorescence microscopy
Indirect immunofluorescence was used to determine cellular

localization of Lc-p75 in L. casei BL23 cells. The Lc-p75-negative

mutant and the wild-type BL23 strain complemented with Strep-

tagged Lc-p75 were grown in 10 ml MRS broth with 50 ng/ml

nisin to induce expression of the tagged-Lc-p75. Bacteria were

harvested at OD 0.2 and washed twice with cold PBS. They were

incubated in PBS containing 2% BSA for 15 min, then with a

monoclonal antibody directed against StrepTagII (IBA GmbH)

(10 mg/ml) for 1 h at room temperature. After 3 washes with PBS,

goat anti-mouse FITC-conjugate (Sigma Aldrich) diluted 1:40 in

PBS containing 2% BSA, was added for 1 h at room temperature

in the dark. Bacteria were washed another 3 times with PBS. Cells

were immobilized on microscope slides covered with a thin film of

1.5% agarose in H2O, then examined by epifluorescence

microscopy with a Leica DMRA2 microscope. Images were

acquired by using a charge-coupled device camera. Images were

analyzed with the supplied MethaMorph software making overlays

of bright field and fluorescent images.

Supporting Information

Text S1 Protein identification by MS-MS analysis with
X!tandem software.
(PDF)

Figure S1 Detection by RT-PCR of the transcripts
corresponding to the in silico detected PGHs in L. casei
BL23. Elongation factor TU (tuf gene) chosen as a positive

control. (A) Control PCR experiments on L. casei BL23 genomic

DNA with the different primer pairs selected for each PGH gene

and the tuf gene; (B) RT-PCR experiments with the same primer

pairs on total RNA extracted from exponential phase culture; (C)

PCR with the tuf-specific primers on total RNA as a negative

control.

(TIF)

Figure S2 SDS-PAGE of proteins from cytoplasmic (A)
cell envelope (B) and lithium chloride (C) fractions
prepared from L. casei BL23. The gel was stained with

colloidal Coomasie blue. Labeled gel sections from 1 to 26 were

cut lane by lane, then digested with trypsin and analyzed

separately by LC-MS/MS.

(TIF)

Figure S3 RP-HPLC profile of muropeptides obtained
from L. casei BL23 PG digested by mutanolysin (A) or by
mutanolysin and recombinant Lc-p75 (B).
(PDF)

Figure S4 Detection of Strep-tagged Lc-p75 in a culture
supernatant of the lcabl_02770-negative mutant
(PAR006). (A) SDS-PAGE gel, (B) Western Blot with monoclonal

antibody directed against Strep-tag and (C) zymogram.

(TIF)

Table S1 Bacterial strains and plasmids.
(PDF)

Table S2 Primers used for cloning and validation.
(PDF)

Table S3 Structures, molecular masses and propor-
tions of muropeptides obtained from L. casei BL23 PG
digested by mutanolysin or by mutanolysin and recom-
binant Lc-p75.
(PDF)

Table S4 Primers used for RT-PCR experiments.
(PDF)
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