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Abstract

Background: Expression traits can vary quantitatively between individuals and have a complex inheritance.
Identification of the genetics underlying transcript variation can help in the understanding of phenotypic variation
due to genetic factors regulating transcript abundance and shed light into divergence patterns. So far, only a
limited number of studies have addressed this subject in Arabidopsis, with contrasting results due to dissimilar
statistical power. Here, we present the transcriptome architecture in leaf tissue of two RIL sets obtained from a
connected-cross design involving 3 commonly used accessions. We also present the transcriptome architecture
observed in developing seeds of a third independent cross.

Results: The utilisation of the novel R/eqtl package (which goal is to automatize and extend functions from the R/
qtl package) allowed us to map 4,290 and 6,534 eQTLs in the Cvi-0 x Col-0 and Bur-0 x Col-0 recombinant
populations respectively. In agreement with previous studies, we observed a larger phenotypic variance explained
by eQTLs in linkage with the controlled gene (potentially cis-acting), compared to distant loci (acting necessarily
indirectly or in trans). Distant eQTLs hotspots were essentially not conserved between crosses, but instead, cross-
specific. Accounting for confounding factors using a probabilistic approach (VBQTL) increased the mapping
resolution and the number of significant associations. Moreover, using local eQTLs obtained from this approach,
we detected evidence for a directional allelic effect in genes with related function, where significantly more eQTLs
than expected by chance were up-regulated from one of the accessions. Primary experimental data, analysis
parameters, eQTL results and visualisation of LOD score curves presented here are stored and accessible through
the QTLstore service database http://qgtlstore.versailles.inrafr/.

Conclusions: Our results demonstrate the extensive diversity and moderately conserved eQTL landscape between
crosses and validate the utilisation of expression traits to explore for candidates behind phenotypic variation
among accessions. Furthermore, this stresses the need for a wider spectrum of diversity to fully understand
expression trait variation within a species.
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Background

Most traits vary quantitatively between individuals and
are significantly influenced by genetic variation and its
interaction with the environment. In general, transcript
abundance of a gene can be considered as a quantitative
trait since it differs between individuals with respect to
genetic factors [1,2]. The utilisation of technologies such
as microarray and, lately, next generation sequencing,
allowed the simultaneous quantification of thousands of
transcripts, shedding light into the genetics behind gene
expression variation [3-5]. Comparison in Arabidopsis
thaliana showed that at least 46% of the genes in the
genome are differentially expressed between a pair of
accessions [6]. Variation in gene expression levels is
highly heritable and specific genomic regions can be
mapped, underpinning transcript abundance variation
[1,3] and underlying phenotypic diversity, causing for
example differential disease susceptibility in humans [7]
or variation in metabolite accumulation in plants [8]...
Previous studies in experimental segregating populations
have proved the polygenic nature of gene expression
variation among lines and mapped thousands of expres-
sion quantitative trait loci (eQTLs) in different model
organisms, e.g.: Arabidopsis thaliana [3,9-12], Saccharo-
myces cerevisiae [13,14], and Caenorhabditis elegans
[15]. No less important is the interaction between geno-
types and the environment [16]. For instance, a third of
the budding yeast genes showed a significant strain x
condition interaction effect, demonstrating the complex-
ity of the control of transcript abundance.

Transcript level differences can originate from cis-
and/or trans-regulatory changes. Cis- acting regulations
represent polymorphisms in physical linkage to the
gene, affecting the transcription in an allele-specific
manner. Consequently, cis-eQTLs are usually detected
as local-eQTLs, being mapped in the vicinity of the
gene; whereas trans-acting regulations act distantly in a
non allele-specific way and can be located anywhere in
the genome, most likely detected as distant-eQTL
[1,11,17]. Although linkage or association mapping
approaches allow the identification of local- and distant-
eQTLs, cis and trans effects should be directly assessed
by allele-specific expression assays [18]. In yeast, most
expression differences mapped as major trans-acting
loci, where few modifiers regulate the expression of
hundreds of genes [1,14]. Contrasting with these results,
experiments in C. elegans revealed an opposite pattern,
with an over-representation of local-eQTLs compared to
distant regulators [15]. Only few similar studies have
addressed this subject in A. thaliana. Using microarray
technology in recombinant inbred lines (RILs) from a
cross between accessions Bayreuth (Bay) and Shahdara
(Sha), more than 36,000 eQTLs were described using
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whole rosettes [3]. In contrast, a parallel study using
Landsberg (Ler) and Cape Verde Island (Cvi) accessions
as RIL progenitors, detected 9 times less eQTLs than
those mapped in the Bay x Sha population [10]. Discre-
pancies between the two studies were also evident in
the ratio between local- and distant-eQTLs, likely due
to differences in statistical power and significance
thresholds [11]. Different growth conditions, stages and
the lack of similar analytical strategies in these studies
impairs fine comparisons between crosses, stressing the
need for a systematic approach to better understand the
role of natural variation in expression traits among Ara-
bidopsis accessions.

The identification of thousands of local eQTLs allows
testing for marks of concerted evolution in transcript
abundance from genes with related function [19]. Sev-
eral studies have addressed this issue and demonstrated
the presence of signatures of selection associated with
expression traits in a number of systems [5,20]. For
example, several pathways were identified in a yeast
hybrid between two Saccharomyces species exhibiting
polygenic directional divergence in cis-regulatory var-
iants [5]. Similarly, evidence for selection in expression
traits involved in processes such as growth, locomotion
and memory was detected in two subspecies of Mus
musculus [20]. Thus far, evidence for a directional allelic
effect between Arabidopsis accessions is scarce. Tran-
scriptome analyses for 18 natural accessions determined
an overrepresentation of differentially expressed genes
within GO categories, involving response to the biotic
environment, among others [6].

In order to identify genomic regions underlying tran-
script variation in A. thaliana and signatures of selection
between genes with related function, we performed eQTL
mapping in two well-established recombinant populations.
The analysis was essentially based on a connected-cross
design between three accessions [21]: the reference
Columbia (Col-0), Cape Verde Island (Cvi-0) and Burren
(Bur-0). Expression level variation was monitored in parti-
cular for more than 26,166 annotated nuclear genes in 314
RILs and eQTLs were mapped using a novel R/eqtl pack-
age, accurately designed for such a study. Here, we show
that the eQTL landscape is moderately conserved across
populations and many of the eQTLs identified are cross-
specific. Moreover, we show that accounting for con-
founding sources in one of the crosses increases the sensi-
tivity and the power to detect eQTLs, allowing the
identification of a potentially coordinated transcriptional
evolution in genes with related functions.

Results
eQTL analyses were performed in three displays: two on
young rosette transcripts in Cvi-0 x Col-0 (hereafter
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‘CviCol’) and Bur-0 x Col-0 (hereafter ‘BurCol’) RIL sets,
and one on developing seed transcripts in Bay-0 x Shah-
dara (hereafter ‘BaySha’) RIL set. We will henceforth
focus on and compare the results obtained for rosette
samples, while the BaySha data is briefly presented as
Additional file 1.

Transcript abundance can be treated as a highly heri-
table phenotype affected by natural genetic diversity [1].
In order to understand the genetics underlying gene
expression variation among A. thaliana accessions, we
utilised the CATMA array technology [22], which has
the advantage of not being sensitive to punctual poly-
morphisms (SNPs) between accessions’ transcripts
thanks to the length of the probes used (Gene-specific
Sequence Tags: GSTs). We measured expression levels
for almost 35,000 traits (= GSTs) in three week-old
rosettes of 314 RILs obtained from a connected-cross
set between three parental accessions (Col-0 as the com-
mon male parent, Cvi-0, Bur-0 [21]), including 158 RILs
from CviCol and 156 RILs from BurCol. Initially, in
order to characterise expression divergence between the
accessions selected in this study, the number of differen-
tially expressed genes between pairs of accessions was
estimated (Cvi versus Col and Bur versus Col). A total
of 1,709 differentially-expressed genes between Col-0
and Cvi-0 and 1,083 between Col-0 and Bur-0 (P < 5 x
107%; Additional file 2: Table S1) were detected. This
cut-off value represents, at least, 1.3 fold expression dif-
ferences between the two allelic variants. From this dif-
ferentially expressed set, none of the parents showed a
significant excess of up- or down-regulated genes (49.0%
and 54.3% of the probes revealed up-regulation in Cvi
and in Bur, respectively, relative to Col). About half of
the genes (48.3%) showing significant expression con-
trast between Col-0 and Bur-0 were also found when
comparing the other pair (Additional file 3: Figure S1).
Interestingly, 92.3% of this overlap was similarly up- or
down-regulated in Col-0 relative to the other two acces-
sions, suggesting that many of the polymorphisms con-
tributing to these differential expression patterns may
arise from Col-0 or be shared by Cvi-0 and Bur-0.

Local and distant eQTL distributions are highly divergent

between crosses

In order to detect linkage between genomic regions and
transcript accumulation variation, we performed eQTL
mapping implementing the novel R/eqtl package (see
Methods). We identified 4,290 significant eQTLs at a
FDR of 5% (3,906 at 1% FDR) from the CviCol dataset
(Figure 1a; Additional file 4: Table S2a) and respectively
6,534 and 5,354 eQTLs from the BurCol dataset (Figure
1b; Additional file 4: Table S2b). This corresponds to a
1:1.5 ratio between sets, at most, a contrast essentially
relying on eQTLs of low significance. Among the set of
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eQTLs in each cross at a FDR of 5%, 2,528 and 4,020
were up-regulated in Col in the CviCol and BurCol
populations, respectively. From the set of differentially
expressed genes between the parental accessions, 43.1%
and 56.9% of them showed a significant linkage to at
least one genomic region in the CviCol and BurCol
crosses respectively. When comparing the distribution
of the phenotypic variance explained per eQTL in both
crosses, a highly dissimilar pattern was observed (Kol-
mogorov-Smirnov test, P < 2.2 x 107'°). In the CviCol
set we found a higher average explained variance (13.3%
vs. 10.2% in BurCol) with proportionally more eQTLs
having larger effects (Additional file 3: Figure S2). Most
of the traits were associated with a unique genomic
region (89.9% CviCol, 86.3% BurCol), and only a minor-
ity exhibited a significant association with two to five
eQTLs (Additional file 3: Figure S3). When only consid-
ering genes located in the nuclear genome, 13.2% (Cvi-
Col) and 19% (BurCol) of these had at least one
significant eQTL at a FDR of 5%. Altogether, these
results demonstrate the complex nature of transcript
variation between accessions and suggest a distinct
eQTL landscape for each cross.

Linkage analysis allows the examination of local and
distant eQTLs influencing transcript abundance [1,14].
To detect local associations, we set a 1Mb cut-off dis-
tance between the eQTL peak and the CATMA GST
physical position. Any eQTL reaching a significance
peak within 1Mb from the location of the probe it con-
trols was considered as potentially acting in cis and
hence classified as a local eQTL. In both populations we
observed that the distributions of local and distant
eQTLs were not uniform throughout the LOD scale
(Figure 1c-d). Distant eQTLs were enriched at lower
LODs, compared to local eQTLs, which were over-
represented at high significance values. Hence, 50%
(25.5%) of all eQTLs detected at 5% FDR mapped locally
in the CviCol (BurCol) population, while this number
would rise to 69.6% (53.6%) if using a much more con-
servative FDR of 0.1% (P < 1 x 10 in CviCol and P < 5
x 107 in BurCol). Moreover, compared to distant
eQTLs, local eQTLs explained a significantly higher
fraction of the phenotypic variance per trait (Kolmo-
gorov-Smirnov test, P < 2.2 x 107 Additional file 4:
Table S2). These results can lead to contrasting conclu-
sions as we vary threshold values (Figure 1c-d). The
higher phenotypic variance explained by local eQTLs
underlies the fact that most of the phenotypic variation
in expression levels is due to local associations, and
trans-acting factors would have essentially minor effects
on single transcripts, but overall a widespread effect
over many genes.

In order to classify cross-specific and overlapping
eQTLs, we estimated the number of local eQTLs shared
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the y-axis. The colour of the bar indicates the direction and strength of the eQTL additive effect, and its length along the x axis encompasses
the eQTL support interval. Local eQTLs form the diagonal, while distant eQTLs fall elsewhere in the map. b. eQTL heatmap for BurCol as
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between the BurCol and CviCol populations. We found
that 564 transcripts mapped to an overlapping local
eQTL interval in the populations, corresponding to
26.3% of all local eQTLs in the CviCol set (Additional
file 3: Figure S4). The direction of the allelic effect for
these potentially shared eQTLs was consistent in 88.4%
of the cases. Moreover, within this subset, we observed
a strong correlation between populations for the
strength of the additive effect associated with the eQTLs
(R? = 0.82; Figure 2) and for the explained phenotypic
variance (Spearman correlation test, P < 0.01). We also
compared the distribution of local eQTLs along the gen-
ome between crosses. For this, we divided the genome

into 1IMb windows (bin) and estimated the fraction of
transcripts with local eQTLs on every bin per chromo-
some. A spearman test detected a significant correlation
between both distributions (P < 0.01), suggesting major
structural genomic aspects. We determined whether
dense eQTL regions were enriched for SNP polymorph-
isms or were gene-dense regions. A genome-wide
regression analysis did not detect a significant correla-
tion between the number of SNPs and eQTLs within
intervals for CviCol, however a marginally significant
association was found for BurCol (P = 0.15 in CviCol, P
= 0.07 in BurCol). In contrast, an expected significant
correlation was found with gene density in both cases (P
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Figure 2 Correlation between relative expression levels for
potentially shared local eQTLs between the CviCol and BurCol
sets. The relative allelic expression level at the eQTL was plotted for
transcripts sharing local eQTLs with additive effects in the same
direction in both populations. The linear regression and correlation
is indicated with a dashed line.

<2 x 10" in CviCol, P < 1.3 x 10°® in BurCol).
Furthermore, we compared the top 11 bins (from a total
of 116, corresponding to the top 10%) in both sets and
detected 4 overlapping intervals with high eQTL density
between crosses (Additional file 5: Table S3a). Interest-
ingly, the 4 intervals were not among the top poly-
morphic or gene-dense and therefore the overlapping
cannot be solely attributed to these factors.

Distant eQTL hotspots are cross-specific

We considered the set of distant eQTLs mapped at 5%
FDR to test for the presence of hotspots along the gen-
ome. Similarly to the local eQTL analysis, we divided the

400

: : ; { — BurCol
: i — CviCol

300

200

Number of eQTLs

100

Chromosome

Figure 3 Distribution of distant eQTLs across the genome and
detection of hotspots. The number of distant eQTLs (y-axis) is
plotted against the physical position of the 1Mb-window where
they peak (x-axis). In each cross, intervals with an excess of eQTLs
relative to the threshold estimated by permutation (dashed lines)
were classified as hotspots. This figure refers to Additional file 5:
Table S3b.
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genome into 1Mb windows and identified regions contain-
ing a higher number of eQTLs than expected by chance,
according to a permutation test (see Methods). In the Cvi-
Col population, a total of 17 bins contained more than the
34 distant eQTL peaks expected by chance, and up to 170
peaks were found within the strongest hotspot (Figure 3;
Additional file 5: Table S3b). These regions included
44.2% of all the distant eQTLs detected. Moreover, on two
occasions, two or more adjacent bins were above the
threshold, likely highlighting the wide distribution of
eQTLs around a major hotspot due to a lack of precision
when mapping small-effect loci. For example, the hotspot
localised on chromosome 1 included four bins and 13.6%
of all the distant-eQTLs, the strongest one in the genome.
Within this interval, 170 eQTLs are located at the most
dense bin (#6) with an average LOD of 3.6. A different
depiction was obtained in the BurCol population: we
detected 24 bins containing more eQTLs than expected by
chance (> 60 eQTLs; Figure 3). In this population the hot-
spots encompassed the majority (74.7%) of all the distant-
eQTLs. Moreover, within the three major hotspots con-
taining several significant adjacent bins on chromosome 1,
2 and 3 (bins #6-9, #29-31 and #52-53 respectively), we
found a significant enrichment for distally-regulated genes
of 4 GO categories in the branch ‘biological process’.
These categories included response to chitin (P < 2 x 107°)
on chromosome 1 and cell-adhesion (P < 1.3 x 10™) on
chromosome 2 (Additional file 6: Table S4).

We found little overlap between hotspots in the two
populations (Spearman correlation test P = 0.21). From
the 41 hotspots detected in total, only three were colli-
near between sets, suggesting little conservation in the
major determinants of distant eQTLs across the gen-
ome. None of the hotspots co-localised with any of the
major-effect developmental QTLs known to segregate in
A. thaliana (i.e. ERECTA, FRIGIDA, CRY2, ...), except in
BurCol where a marginally significant hotspot was
found on chromosome 5 (bin #93), which contains FLC.
Although 62 traits with a distant eQTL mapping to this
region were observed, only 2 have been shown to inter-
act with FLC [23], suggesting potentially a minor contri-
bution from this locus. The gene-poor centromeres rich
in transposons and pseudogenes were not detected in
any of the hotspot intervals. The lack of a significant
count of eQTLs extended for at least 1Mb from the
centromere until the nearest hotspot, except in the Bur-
Col set where we detected distant eQTLs-rich regions
immediately downstream and upstream the centromeres
on chromosome 1 and 2, respectively (Figure 3).

Controlling for confounding factors increases eQTL
detection in the CviCol dataset

Variation in transcript abundance can also be influenced
by non-genetic factors, such as experimental noise and
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hidden factors [24,25]: greenhouse localisation, tempera-
ture variation, sampling time and other undetected experi-
mental perturbations can affect expression levels among
samples, altering the subsequent analysis. A recent asso-
ciation mapping study in A. thaliana already demon-
strated the greater resolution obtained when considering
confounding sources between genotypes (i.e. population
structure) compared with standard approaches [26].
Hence, it is interesting to try and control these variables in
order to improve the eQTL mapping. For this purpose, we
utilised the probabilistic approach VBQTL together with
R/eqtl to account for hidden confounding factors [24]. We
tested this approach in the CviCol dataset for 0, 5, 10, 20
and 30 hidden factors, finding the lowest number of
eQTLs for no-hidden factors and the highest for 10 factors
(Additional file 3: Figure S5). We chose one known factor
(time of harvest) and ten unknown factors to model the
expression trait, since the lowest number of distant asso-
ciations were explained away, in contrast to 20 and 30 fac-
tors. Contrarily, using the same number of factors (or less)
in the BurCol dataset, we found that many of the distant
associations were lost (Figure 4). Using 10 factors we
mapped 6,270 eQTLs at 5% FDR (42.6% of them are local)
in the BurCol population, while only 29.2% of the distant
associations were retained by both the standard and the
VBQTL methods. Many of the distant associations exhi-
biting high significance values were present in both data-
sets; however, several distant associations with marginally
significant LODs were lost (data not shown). The majority
of the local associations detected by the standard approach
were also mapped by VBQTL (80%). Even more, we
observed a 60% increase in the number of local eQTLs
detected by VBQTL. Nevertheless, the large number of
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genetic associations explained away in the BurCol set hin-
dered the subsequent data analysis, since many distant
eQTLs affecting transcript levels should be considered (for
example, it could be a major regulator causing a hotspot)
and not treated as confounding sources [24,27].

We focused the utilisation of this approach on the
CviCol population. Linkage analysis detected a total of
8,156 eQTLs (5% FDR; 7,817 at 1% FDR; Additional file
7: Table S5), which is almost twice as many eQTLs as
with the standard method, demonstrating the sensitivity
of the approach. Interestingly, the fraction of local and
distant eQTLs remained almost unchanged. At the less
conservative threshold (5% FDR) we mapped 44.6% of
the eQTLs in the vicinity of the transcript, slightly less
than from the analysis of the raw expression values.
Moreover, the contribution to the total number of local
and distant eQTLs was increased by 1,461 and 1,025
eQTLs respectively. Many of the local associations
mapped by the standard approach were also mapped by
VBQTL (92.6%) and, contrarily to the BurCol data set,
56.2% of the distant associations were also retained (Fig-
ure 4). Approximately one third of the peaks that had
remained only marginally significant (= significant at a
lower threshold of 10% FDR) in the standard analysis,
were now detected as significant at 5% FDR after
VBQTL analysis, likely due to the negative effect of con-
founding sources on power in the original approach.

Evidence for directional allelic effect in Col-0 versus Cvi-0
accessions

The independence of eQTLs is crucial for the identifica-
tion of selection on transcript abundance in a group of
genes with related functions [5,20]. In order to detect

a CviCol

Percentage

eQTL

analysis. a. CviCol set, b. BurCol set.

- Only Standard
Il standard + VBQTL

] only vBaTL

Figure 4 Bar plot showing overlap and specific eQTL detections when comparing the VBQTL and standard approach. Linkage mapping
methods were compared and blue regions denote the percentage of common eQTLs mapped at a 5% FDR using both approaches. eQTLs
solely mapped in one or the other strategy are depicted at the bar-extremes (in green and brown). Ten factors were included in the VBQTL
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evidence for a directional allelic effect in the CviCol popu-
lation, we used the larger set of local eQTLs identified by
the VBQTL approach. We considered functional cate-
gories with an overrepresentation of eQTLs and a signifi-
cant bias in the number of genes with either Col or Cvi
alleles upregulated. To test for categories with more
eQTLs than expected by chance (~1 eQTL every 10 genes,
see Methods), the gene functional classification assigned
by the Gene Ontology Consortium was used [28]. In parti-
cular, we focused on the branch ‘biological process’, since
GO categories here contained could give insight into the
divergent adaptation events occurred in each accession.
We identified 3 significant overrepresented categories
(hypergeometric test, P < 8 x 107, Table 1): “Response to
stress”, “Response to Biotic and Abiotic stimulus” and
“Transport”. From the 318 GO sets within these cate-
gories, we only analysed those containing more than 20
genes (86 sets). Subsequently, we estimated the number of
eQTLs within each set either up or down regulated in any
accession and test for deviation from the genome-wide
1.6:1 Col:Cvi eQTL ratio using a hypergeometric test [20].
We found 6 sets showing a significant skew (P < 0.05;
Table 2), all of them part of the response to stress or biotic
and abiotic stimulus, including: defense, hypoxia and
plant-type hypersensitive response. Interestingly, in all
cases most of the members were upregulated in the Col
accession (Table 2). These results demonstrate the pre-
sence of a systematic directional allelic effect in sets of
genes having related functions and validate the utilisation
of expression traits to identify potential intraspecific diver-
sification events.

Discussion
We have performed quantitative genetic analyses for
genome-wide expression traits in a connected-cross set
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between three accessions in the model organism A.
thaliana. Utilising the R/eqtl package in both crosses,
we observed a 52.3% difference in the number of signifi-
cant eQTLs between sets, with the Bur-0 x Col-0 cross
being the one with the highest count (Figure 1). Regard-
less of this difference, the conservative figures of eQTLs
obtained in both sets resemble the one previously
described in RILs between accessions Ler-0 and Cvi-0
[10], but they significantly differ from a previous study
involving Bay-0 and Shahdara accessions, where more
than 36,000 eQTLs were detected [3]. In our study, the
use of a common approach for both sets allowed us to
perform straightforward comparisons between them,
drawing conclusions not necessarily affected by differ-
ences in statistical power [11]. We observed that 17.4%
of all local eQTLs detected were shared between crosses,
likely due to polymorphisms solely present in Col-0 or
shared by Cvi-0 and Bur-0 (although independent SNPs
or some allelic heterogeneity pattern could also lead to
this observation). An argument to support this hypoth-
esis is the high level of shared eQTLs with an additive
effect in the same direction (88.4%) and of similar
strength (Figure 2). However, the low level of overlap-
ping eQTLs demonstrates the greater number of cross-
specific eQTLs, possibly due to the great complexity of
expression traits [1,11,29] and their high potential for
evolution [17]. Our results are consistent with a recent
survey in several Arabidopsis accessions that identified
high allelic heterogeneity within local regulatory eQTLs
[6,12], suggesting the existence of many private poly-
morphisms between all three accessions extending the
eQTL landscape.

Although cis-acting regulation among local eQTLs
remains to be confirmed, the co-localisation of the
eQTL and the controlled gene provides a robust

Table 1 Overrepresented GO categories and terms among CviCol local-eQTLs

Functional Category Expected Number of eQTLs Observed Number of eQTLs P-value

cell organization and biogenesis 165 187 0.034
developmental processes 296 283 0.76

DNA or RNA metabolism 50 54 0.29

electron transport or energy pathways 38 45 0.098

other biological processes 274 295 0.074

other cellular processes 1457 1534 0.004

other metabolic processes 1322 1364 0.041

protein metabolism 524 490 0.94

response to abiotic or biotic stimulus 276 378 770 x 107" (5%)
response to stress 305 414 219 x 107" (5%
signal transduction 160 156 0.61

transport 240 289 0.0002 (S%)
unknown biological processes 1534 1112 1

Number of eQTLs per categories among GO ‘Biological process'. Categories with a significant excess (after Bonferroni, P < 8 x 10™) of eQTLs are indicated with
‘S*. The number of expected eQTLs was estimated from a whole-genome scan considering the fraction of genes in each functional category
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Table 2 Directional allelic effect in CviCol
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GO term Genes/ eQTLs Col up-regulated Cvi up-regulated P-value (directional allelic
term observed alleles alleles effect)

defense response 582 58 50 8 0.00002

response to far-red light 42 8 8 0 0.02

plant-type hypersensitive 37 11 10 1 003

response

response to fungus 35 7 7 0 0.03

response to oxidative stress 231 23 18 5 0.04

response to hypoxia 20 6 6 0 0.05

GO terms showing a significant directional allelic effect. The number of genes per term, eQTLs observed and number of up-regulating allele from each parent is

shown, as well as the P value associated with the allelic bias

probabilistic way of classifying eQTLs into their mode of
action. We observed that, albeit the two crosses shared a
common accession, the eQTL distribution among these
types is very dissimilar. The BurCol set shows three
times more distant than local eQTLs. At the same FDR,
the CviCol set has a very different balance, with an
equivalent number of both types of eQTLs (50% distant
and 50% local, Figure 1c) and a lower number of hot-
spots (Figure 3) encompassing 44.2% of the trans
eQTLs. Nevertheless, the distribution pattern of local
eQTLs on each chromosome was conserved between
crosses, likely due to a strong correlation with gene den-
sity and chromosome structural features. Also, we found
that local eQTLs were overrepresented at higher signifi-
cance in all crosses (Figure 1c-d), explaining a greater
phenotypic variance per trait compared to distant
eQTLs. Our result agrees with another study in Mouse,
where many highly significant local-eQTLs and moder-
ately significant trans-acting associations were observed
[29]. Furthermore, the BurCol recombinant population
exhibited a higher number of distant eQTLs, concentrat-
ing 75% of them in 24 bins classified as hotspots (Figure
3). One of the most interesting intervals was the hotspot
at bin #8, which contained the highest number of genes
whose function is related to the regulation of transcrip-
tion (52 genes), including the strong candidate GIGAN-
TEA [30], a gene known to be involved in diverse
developmental processes [31]. It is difficult to guess
whether a hotspot could be the expression of a locus
actually controlling the transcription of many genes, or
that of a major (for example, developmental) player that
has indirect effects on many genes’ expression (as sec-
ondary consequences of a strong phenotype for exam-
ple). The presence of pleiotropic hotspots affecting the
expression of many transcripts has already been
described in yeast [14], where no more than 200 trans-
eQTLs explained transcript variation for 1,716 traits.
Similarly, many trans-hotspots were described in pre-
vious A. thaliana studies [3,10]. In agreement with these
studies, the hotspots detected here explained

approximately 10% of the individual traits’ variation,
demonstrating their milder effect on transcript abun-
dance compared to local eQTLs [11]. Interestingly, only
~7% of the hotspots overlapped between crosses, sug-
gesting either alternative master regulators or little con-
servation in complex regulatory networks [14]. These
conserved regions could also suggest the presence of
polymorphisms in Col-0 as major contributors for the
large number of trans eQTLs within these shared
regions.

To increase the power in detecting eQTLs and identify
milder genetic variations, we have utilised the bayesian
framework VBQTL, a model designed to dissect gene
expression variation in order to account for confounding
factors [24]. The implementation of this model in the
CviCol set allowed us to detect twice as many eQTLs
compared to the standard approach (Figure 4), without
affecting the ratio of local versus distant eQTLs. Subse-
quently, we used this extended set and focused the pos-
terior analyses on local eQTLs since they likely
represent independent alleles, only affecting a single
transcript and explaining a greater phenotypic variance,
in contrast to distant eQTLs that may affect many genes
and show minor phenotypic effects. The use of this new
set of local eQTLs allowed us to look for potential
traces of selection where Col alleles were overexpressed
in a set of genes with related function. Assuming neu-
trality, no over-representation of either up-regulated or
down-regulated alleles from the same accession is
expected within a cluster of genes, unless a directional
allelic drift has occurred, which may represent selection
[32]. We detected an overrepresentation of eQTLs in
several GO functional categories and a significant skew
within GO terms (Table 1, 2). The accumulation of
local regulatory polymorphisms up-regulating Col alleles
in all cases, suggests dissimilar patterns of responses to
the environment and an advantage in a particular niche
[5] or, else, a specific lack of cost in loosing this
response. For example, one of the clusters of genes glob-
ally up-regulated in Col with respect to Cvi relates to
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hypoxia response, which is a major determinant of sub-
mergence tolerance. It was indeed recently shown that
Col and Cvi contrasts for this trait, with Cvi being one
of the least submergence-tolerant accessions [33]. Inter-
estingly, the entire set of significant categories here
described are related to response to stress or biotic and
abiotic response, highlighting its potential link with
environmental and niche-adaptation changes.

Conclusions

Our results demonstrate the importance of extending
the number of mapping populations in order to under-
stand the eQTL landscape within a species. We found
that the distribution of local and distant eQTLs is mod-
erately conserved between recombinant populations,
demonstrating the complex inheritance of transcript
abundance. Moreover, the identification of candidate
pathways for signatures of selection is a significant step
towards understanding accession diversification and
their adaptation to the environment. Further studies
using novel technologies, such as next generation
sequencing (RNA-seq), association mapping, or the
combination of both, will help elucidating and validating
transcript abundance divergence with a greater resolu-
tion within A. thaliana species.

Methods
Plant material, sample preparation and microarray
hybridization
We used 158 RILs from the core-population of the Cvi-0
x Col-0 set and 156 RILs from the core-population of the
Bur-0 x Col-0 set [21], along with their respective par-
ents. Plants were cultivated in a greenhouse in typical
long day conditions (16h photoperiod) at 20°C and whole
plants were collected above the roots 20 days after sow-
ing, which corresponds on average to growth stage ‘1.08’
from Boyes et al. [34]. Total RNA was extracted using
RNeasy Plant mini Kit (Qiagen kit #74904) according to
the supplier’s instructions. For each biological sample
(RIL), total RNAs were obtained by pooling RNAs from
three randomized plants within a single experiment.
Transcript abundance estimates were carried out using
the bicolour CATMA microarrays version 5, containing
34,529 spots (including multiple internal controls) allow-
ing, among others, to uniquely interrogate 26,166
nuclear genes (predicted from TAIR and EUGENE algo-
rithms) in A. thaliana [22,35]. For each comparison of
two RILs (random pair design), one technical replicate
with fluorochrome reversal was performed (i.e. four
hybridisations -2 arrays- per comparison of two RILs).
Labelling of cRNAs with Cy3-dUTP or Cy5-dUTP (Per-
kin-Elmer-NEN Life Science Products), hybridisation to
the slides, and scanning procedures were performed as
previously described [36].
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Microarray data analysis

For each array, the raw data comprised the logarithm of
the median feature pixel intensity at wavelengths 635
nm (red) and 532 nm (green) and no background was
subtracted. An array-by-array normalisation was per-
formed to remove systematic biases. First, spots consid-
ered as badly formed features were excluded. Then a
global intensity-dependent normalisation using the loess
procedure was performed to correct the dye bias [37].
Finally, for each block, the log-ratio median calculated
over the values for the entire block was subtracted from
each individual log-ratio value to correct print tip
effects. Differential analysis was based on the log ratios
averaged on the dye-swap: the technical replicates were
averaged to get one log-ratio per biological replicate and
these values were used to perform a paired ¢-test. A
trimmed variance is calculated from spots which do not
display extreme variance [38]. The raw P-values were
adjusted by the Bonferroni method, which controls the
Family Wise Error Rate in order to keep a strong con-
trol of the false positives in a multiple-comparison con-
text. We considered probes as being differentially
expressed after Bonferroni correction using a P < 0.05.
For the eQTL analysis, normalised intensity per probe x
RIL has been calculated from the normalised log-ratio
by sharing the correction value between both samples
[39]. To be specific, after the normalization of each
array, we get a log-ratio denoted M and a mean inten-
sity denoted A for each probe. First, we average M and
A across the two arrays taking into account the dye
switching and then calculate the normalised intensity of
the two co-hybridized RILs which are equal to (2A-M)/2
and (2A + M)/2. The intensity (2A-M)/2 corresponds to
the RIL labelled in green on the first array of the dye-
swap. Then a between-array normalisation was per-
formed to rescale the mean intensity of each slide at an
arbitrary value equal to 8.5. This second round of nor-
malisation makes probe x RIL intensity comparable and
gives us a single expression level for each probe x RIL
that can be used further for the eQTL mapping strategy.

Data Deposition

Microarray data was deposited at Gene Expression
Omnibus http://www.ncbi.nlm.nih.gov/geo/, accession
no. GSE28791 and at CATdb (http://urgv.evry.inra.fr/
CATdb/; Project: GNPO7_RILKIT) according to the
‘Minimum Information About a Microarray Experiment’
standards.

R/eqtl package and eQTL mapping

eQTL mapping was performed utilising the normalised
microarray data using our R package R/eqtl http://cran.
r-project.org/web/packages/eqtl/, which exploits func-
tions from R/qtl [40]. R/eqtl is designed specifically for
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the mapping of thousands of traits in parallel. It
includes functions to systematically and automatically
identify and select QTLs with supporting intervals from
R/qtl simple genome scan results (interval mapping),
defining QTL as covariates for a composite interval
mapping, calculating additive effect, estimating heritabil-
ity for single QTL and for QTL x QTL interactions,
classifying eQTL as candidate for trans- (distant) and
cis-acting (local) eQTL (according to the position of the
controlled gene with respect to the eQTL support inter-
val and/or an arbitrary physical window), projecting and
plotting the QTL estimated location relative to the gene
location and summarising eQTL data at the genome
scale with various generic plots and tabular files. R/eqtl
is a free and open-source multi-platform package devel-
oped under the statistical language R, and is available
under the GPLv3 license. R/qtl and its extension R/eqtl
are hosted and can be downloaded from the Compre-
hensive R Archive Network (CRAN) at http://cran.r-pro-
ject.org.

Interval Mapping (IM) and Composite Interval Map-
ping (CIM) were performed on each cross for all of the
32,300 non-technical and non-repetitive probes on the
CATMA array, as implemented in the R/eqtl package.
The Cvi x Col and Bur x Col RIL populations have
been previously genotyped for 90 and 87 markers,
respectively [21]. For each probe, IM was first applied to
identify a primary set of eQTLs and then this set was
used as co-factor in CIM to detect less significant QTLs.
Taking into account population size and, hence, the
number of observed informative recombinants that con-
ditions the ability to distinguish two linked QTL, a 15
cM exclusionary window on each side of all QTL peaks
was applied to refrain from trying to detect too closely
linked eQTLs or interpreting large peaks into multiple
eQTLs. The analysis was completed with the estimation
of the additive effect by averaging the phenotype value
for each allele at the QTL marker (or pseudomarker)
and estimating the relative contribution of each allele as
Xxx minus Col (so that a negative allelic effect indicates
that Col is up-regulated with respect to Xxx). We also
estimated the proportion of the phenotypic variation
explained by the segregation of each individual eQTL or
significant eQTL x eQTL interaction (R*) by analysis of
variance. QTLs were defined using a LOD significance
threshold computed by permuting the phenotypes while
maintaining the genotype across the RIL set [41] and a
1.5 LOD drop-support interval [42]. In order to obtain a
genome-wide threshold we determined the 95-percentile
permutation threshold among 500 randomly chosen
traits and estimated the 95% upper-bound from the
traits distribution. We called an eQTL significant if the
LOD score was above the threshold (genome-wide False
Discovery Rate, FDR = 0.05)[3,16]. To correct for
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multiple-traits testing, we estimated the minimum P-
value from each randomly chosen trait and estimated
the corresponding q-value [43]. P-values for transcrip-
tome-wide FDR 5% (P = 6 x 107 in CviCol and P = 9 x
10 in Burcol) and 1% (P = 1 x 107 in CviCol and Bur-
Col) were also used as significance threshold.

QTLstore

All results are recorded in QTLstore, a comprehensive
web service which allows to store, manage, explore and
cross QTL experiment results from the single-trait scan
to genome-wide expression QTL experiments. QTLstore
is hosted at http://qtlstore.versailles.inra.fr/ and is com-
posed of an extensive SQL database and a web interface,
which are available under the GPLv2 license. The SQL
database is convenient for all kinds of QTL experiments
and analysis, by being able to store all the experiments
primary data separately from all subsequent analyses
results. It typically stores and interrogates QTL para-
meters such as location, significance, effect and type,
among others.

Local and distant eQTL distribution

Local and distant eQTLs were classified in 1Mb bins as
in [1]. Briefly, we divided the genome into 116 physical
bins (independent of the number of markers on each
population) of 1Mb each (the chromosome ends were
included into the previous 1Mb bin if the remaining
region was smaller than 500 Kb). For distant eQTLs we
performed a permutation test as previously described
[3]. Bins containing a higher number than the maximum
expected by chance (o = 0.05) were considered as trans-
hotspots. For local eQTLs, we performed a regression
analysis against SNP (for Cvi-0 and Bur-0, SNP data was
downloaded from the 1001genomes project website
http://1001genomes.org/) and gene densities as
described in [10]. Significance was estimated using a
one-way ANOVA. Significance for GO enrichment was
assessed utilising a P < 2 x 107 after Bonferroni
correction.

VBQTL and test for directional allelic effect

We applied the VBQTL (Variational Bayesian QTL
Mapper) approach as previously described [24] on the
dataset obtained in the Cvi-0 x Col-0 population, using
one known factor to model hidden confounding sources.
Residuals of the estimated effect were used as phenoty-
pic values and eQTLs were detected again using R/eqtl
and the statistical procedure implemented for the stan-
dard approach (P < 1 x 102, FDR 5%). We tested for 5,
10, 20 and 30 factors and chose the model with the
highest number of additional linkages (FDR 5%). Next,
potential directional selection was tested as previously
described with modifications [20]. Briefly, only local
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eQTLs were retained after the VBQTL analysis and
tabulated based on their gene ontology (GO) classifica-
tion. Initially, we selected functional categories with a
significant over-representation of eQTLs within the ‘Bio-
logical process’ set. For this purpose, we assessed signifi-
cance utilising the hypergeometric test (P < 8 x 107
after Bonferroni) considering the number of genes
within each category at the whole-genome level. Within
the selected functional categories, we focused the subse-
quent analysis on GO categories containing more than
20 genes. For each category we tested departure from
the 1.6:1 ratio (Col:Cvi) using a hypergeometric test.

Additional material

Additional file 1: eQTL mapping in the Bay x Sha recombinant
population [44].

Additional file 2: Table S1. Set of differentially expressed genes
between parental accessions Cvi, Bur and Col. Expression differences are
reported in logs.

Additional file 3: Figure S1. Venn diagram depicting the overlap
between genes with differential expression in parental accessions pairs
(Cvi vs. Col and Bur vs. Col). Figure S2. Histograms of the explained
phenotypic variance (R2; %) for the eQTLs in the a.CviCol and b. BurCol
populations. Figure S3. Number of eQTLs per trait. Figure S4. Venn
diagram depicting the overlap between probes with local eQTLs in the
CviCol and BurCol populations. Figure S5. Histogram of the number of
probes with a significant eQTL for different numbers of hidden factors
tested with VBQTL in CviCol. Figure S6. Genetic landscape for transcript
accumulation variation in BaySha. Figure S7. Histogram of the explained
phenotypic variance (R2) for the eQTLs in the BaySha population. Figure
S8. Number of eQTLs per trait in BaySha. Figure S9. Distribution of
distant-eQTLs along the genome in BaySha.

Additional file 4: Table S2. List of eQTLs detected in each cross.
Abbreviations: eQTL Chr = chromosome localisation of eQTL, type =
eQTL tentative classification (cis’/‘trans’ = local/distant), peak.bp =
physical position of the LOD peak, inf.pb = inferior limit, sup.pb =
superior limit of supporting physical interval, Add = additive effect
(estimated as Xxx-Col, so that a negative allelic effect means Col up-
regulated with respect to Xxx), Rsq = variance explained, Rpf =
significance.

Additional file 5: Table S3. Number of -eQTLs per 1 Mb interval. a.
local, b. distant.

Additional file 6: Table S4. Overrepresented GO terms within the
BurCol distant-hotspots.

Additional file 7: Table S5. List of eQTLs detected by VBQTL in CviCol.
See Additional file 4: Table S2 for column headings.
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